Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete-like Materials
Abstract
:1. Introduction
2. Specimen Preparation and Experimental Setups
2.1. Specimen Preparation
2.2. Digital Image Correlation
2.3. Split Hopkinson Pressure Bar
3. Methods
3.1. The Concrete Specimen with a Turning Point in the Load–Time Curve
3.2. The concrete Specimen without a Turning Point in the Load–Time Curve
4. Results and Discussions
4.1. The Crack Evolution
4.2. The Tensile Strength at Crack Initiation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ning, J.; Wang, J.; Jiang, J.; Hu, S.; Jiang, L.; Liu, X. Estimation of Crack Initiation and Propagation Thresholds of Confined Brittle Coal Specimens Based on Energy Dissipation Theory. Rock Mech. Rock Eng. 2018, 51, 119–134. [Google Scholar] [CrossRef]
- Brace, W.F.; Paulding, B.W.; Scholz, C., Jr. Dilatancy in the fracture of crystalline rocks. J. Geophys. Res. 1966, 71, 3939–3953. [Google Scholar] [CrossRef]
- Ündül, O.; Amann, F.; Aysal, N.; Plötze, M.L. Micro-textural effects on crack initiation and crack propagation of andesitic rocks. Eng. Geol. 2015, 193, 267–275. [Google Scholar] [CrossRef]
- Lajtai, E. Brittle fracture in compression. Int. J. Fract. 1974, 10, 525–536. [Google Scholar] [CrossRef]
- Martin, C.D.; Chandler, N.A. The progressive fracture of Lac du Bonnet granite. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1994, 31, 643–659. [Google Scholar] [CrossRef]
- Nicksiar, M.; Martin, C.D. Evaluation of Methods for Determining Crack Initiation in Compression Tests on Low-Porosity Rocks. Rock Mech. Rock Eng. 2012, 45, 607–617. [Google Scholar] [CrossRef]
- Wen, T.; Tang, H.; Ma, J.; Wang, Y. Evaluation of methods for determining crack initiation stress under compression. Eng. Geol. 2018, 235, 81–97. [Google Scholar] [CrossRef]
- Eberhardt, E.; Stead, D.; Stimpson, B.; Read, R. Identifying crack initiation and propagation thresholds in brittle rock. Can. Geotech. J. 1998, 35, 222–233. [Google Scholar] [CrossRef]
- Pepe, G.; Mineo, S.; Pappalardo, G.; Cevasco, A. Relation between crack initiation-damage stress thresholds and failure strength of intact rock. Bull. Eng. Geol. Environ. 2018, 77, 709–724. [Google Scholar] [CrossRef]
- Li, X.F.; Li, H.; Liu, L.; Liu, Y.; Ju, M.; Zhao, J. Investigating the crack initiation and propagation mechanism in brittle rocks using grain-based finite-discrete element method. Int. J. Rock Mech. Min. Sci. 2020, 127, 104219. [Google Scholar] [CrossRef]
- Rocco, C.; Guinea, G.; Planas, J.; Elices, M. Review of the splitting-test standards from a fracture mechanics point of view. Cem. Concr. Res. 2001, 31, 73–82. [Google Scholar] [CrossRef]
- Xu, Y.; Dai, F.; Zhao, T.; Xu, N.-W.; Liu, Y. Fracture Toughness Determination of Cracked Chevron Notched Brazilian Disc Rock Specimen via Griffith Energy Criterion Incorporating Realistic Fracture Profiles. Rock Mech. Rock Eng. 2016, 49, 3083–3093. [Google Scholar] [CrossRef]
- Chen, C.-S.; Pan, E.; Amadei, B. Fracture mechanics analysis of cracked discs of anisotropic rock using the boundary element method. Int. J. Rock Mech. Min. Sci. 1998, 35, 195–218. [Google Scholar] [CrossRef]
- Sun, W.; Wu, S. A study of crack initiation and source mechanism in the Brazilian test based on moment tensor. Eng. Fract. Mech. 2021, 246, 107622. [Google Scholar] [CrossRef]
- Guo, H.; Tao, J.; Chen, Y.; Li, D.; Jia, B.; Zhai, Y. Effect of steel and polypropylene fibers on the quasi-static and dynamic splitting tensile properties of high-strength concrete. Constr. Build. Mater. 2019, 224, 504–514. [Google Scholar] [CrossRef]
- Aliabadian, Z.; Zhao, G.-F.; Russell, A.R. Failure, crack initiation and the tensile strength of transversely isotropic rock using the Brazilian test. Int. J. Rock Mech. Min. Sci. 2019, 122, 104073. [Google Scholar] [CrossRef]
- Sharafisafa, M.; Aliabadian, Z.; Shen, L. Crack initiation and failure of block-in-matrix rocks under Brazilian test using digital image correlation. Theor. Appl. Fract. Mech. 2020, 109, 102743. [Google Scholar] [CrossRef]
- Cai, M. Practical Estimates of Tensile Strength and Hoek–Brown Strength Parameter mi of Brittle Rocks. Rock Mech. Rock Eng. 2010, 43, 167–184. [Google Scholar] [CrossRef]
- Wang, Q.Z.; Yang, J.; Zhang, C.; Zhou, Y.; Li, L.; Zhu, Z.; Wu, L. Sequential determination of dynamic initiation and propagation toughness of rock using an experimental–numerical–analytical method. Eng. Fract. Mech. 2015, 141, 78–94. [Google Scholar] [CrossRef]
- Zhou, Z.L.; Li, X.B.; Zou, Y.; Jiang, Y.H.; Li, G.N. Dynamic Brazilian Tests of Granite Under Coupled Static and Dynamic Loads. Rock Mech. Rock Eng. 2014, 47, 495–505. [Google Scholar] [CrossRef]
- Ai, D.H.; Zhao, Y.C.; Xie, B.; Li, C.W. Experimental Study of Fracture Characterizations of Rocks under Dynamic Tension Test with Image Processing. Shock Vib. 2019, 2019, 6352609. [Google Scholar] [CrossRef]
- Chen, J.J.; Guo, B.Q.; Liu, H.B.; Liu, H.; Chen, P.W. Dynamic Brazilian Test of Brittle Materials Using the Split Hopkinson Pressure Bar and Digital Image Correlation. Strain 2014, 50, 563–570. [Google Scholar] [CrossRef]
- Wu, R.J.; Li, H.B.; Wang, D.P. Full-field deformation measurements from Brazilian disc tests on anisotropic phyllite under impact loads. Int. J. Impact Eng. 2021, 149, 103790. [Google Scholar] [CrossRef]
- Ruiz, G.; Ortiz, M.; Pandolfi, A. Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int. J. Numer. Methods Eng. 2000, 48, 963–994. [Google Scholar] [CrossRef]
- Liu, P.; Zhou, X.; Qian, Q.; Berto, F.; Zhou, L. Dynamic splitting tensile properties of concrete and cement mortar. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 757–770. [Google Scholar] [CrossRef]
- China Academy of Building Research. Specification for Mix Proportion Design of Ordinary Concrete; China Architecture & Building Press: Beijing, China, 2011. [Google Scholar]
- Sharafisafa, M.; Aliabadian, Z.; Shen, L. Crack initiation and failure development in bimrocks using digital image correlation under dynamic load. Theor. Appl. Fract. Mech. 2020, 109, 102688. [Google Scholar] [CrossRef]
- Szewczyk, P.; Kudyba, P. Effectiveness of Selected Strain and Displacement Measurement Techniques in Civil Engineering. Buildings 2022, 12, 172. [Google Scholar] [CrossRef]
- Beßling, M.; Czaderski, C.; Orlowsky, J. Prestressing Effect of Shape Memory Alloy Reinforcements under Serviceability Tensile Loads. Buildings 2021, 11, 101. [Google Scholar] [CrossRef]
- Pan, B. Digital image correlation for surface deformation measurement: Historical developments, recent advances and future goals. Meas. Sci. Technol. 2018, 29, 082001. [Google Scholar] [CrossRef]
- Pan, B.; Qian, K.; Xie, H.; Asundi, A. Two-dimensional digital image correlation for in-plane displacement and strain measurement: A review. Meas. Sci. Technol. 2009, 20, 62001. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Xia, K.; Tong, T. Dynamic Tensile Response of a Microwave Damaged Granitic Rock. Exp. Mech. 2021, 61, 461–468. [Google Scholar] [CrossRef]
- Ma, H.B.; Yang, S.F.; Xu, Y.; Chen, P.Y.; Wang, L. Dynamic Mechanical Properties of Slag Mortar with Alkali-Resistant Glass Fiber. Buildings 2022, 12, 266. [Google Scholar] [CrossRef]
- Lindholm, U. Some experiments with the split hopkinson pressure bar*. J. Mech. Phys. Solids 1964, 12, 317–335. [Google Scholar] [CrossRef]
- Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens; ASTM International: West Conshohocken, PA, USA, 2011.
- Gomez, J.; Shukla, A.; Sharma, A. Static and dynamic behavior of concrete and granite in tension with damage. Theor. Appl. Fract. Mech. 2001, 36, 37–49. [Google Scholar] [CrossRef]
- Guo, Y.B.; Gao, G.F.; Jing, L.; Shim, V.P.W. Quasi-static and dynamic splitting of high-strength concretes—tensile stress–strain response and effects of strain rate. Int. J. Impact Eng. 2019, 125, 188–211. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int. J. Rock Mech. Min. Sci. 2004, 41, 939–957. [Google Scholar] [CrossRef]
- Yanagidani, T.; Sano, O.; Terada, M.; Ito, I. The observation of cracks propagating in diametrically-compressed rock discs. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 225–235. [Google Scholar] [CrossRef]
Cement | Fine Aggregate | Coarse Aggregate | Water |
---|---|---|---|
310 | 701 | 1194 | 195 |
Specimen Type | Load (kN) | Tensile Strength (MPa) | Ratio (%) | |||
---|---|---|---|---|---|---|
Crack Initiation | Peak | Crack Initiation | Peak | |||
The load–time curve with a turning point | N-2 | 121.21 | 130.82 | 6.43 | 6.94 | 107.9 |
N-6 | 126.28 | 134.45 | 6.70 | 7.14 | 106.5 | |
N-10 | 102.84 | 145.81 | 5.46 | 7.74 | 141.8 | |
The load–time curve with no turning point | N-1 | 138.96 | 138.96 | 7.38 | 7.38 | 100.0 |
N-3 | 142.26 | 142.26 | 7.55 | 7.55 | 100.0 | |
N-4 | 129.98 | 129.98 | 6.90 | 6.90 | 100.0 | |
N-5 | 143.34 | 143.34 | 7.61 | 7.61 | 100.0 | |
N-7 | 135.51 | 135.51 | 7.19 | 7.19 | 100.0 | |
N-8 | 136.27 | 136.27 | 7.23 | 7.23 | 100.0 | |
N-9 | 144.14 | 144.14 | 7.65 | 7.65 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Tao, J. Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete-like Materials. Buildings 2022, 12, 797. https://doi.org/10.3390/buildings12060797
Wang J, Tao J. Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete-like Materials. Buildings. 2022; 12(6):797. https://doi.org/10.3390/buildings12060797
Chicago/Turabian StyleWang, Jie, and Junlin Tao. 2022. "Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete-like Materials" Buildings 12, no. 6: 797. https://doi.org/10.3390/buildings12060797
APA StyleWang, J., & Tao, J. (2022). Determination of Tensile Strength at Crack Initiation in Dynamic Brazilian Disc Test for Concrete-like Materials. Buildings, 12(6), 797. https://doi.org/10.3390/buildings12060797