Health Risk Assessment of Inhalable Dust Exposure during the Welding and Grinding Process of Subway Aluminum Alloy Components
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Subway Aluminum Alloy Body Workshop
2.2. Sample Collection and Analysis
2.3. Health Risk Assessment
2.4. Sensitivity Analysis
3. Results and Discussion
3.1. Monitoring Results and Analysis
3.1.1. Dust Mass Concentration
3.1.2. Main Elements of PM10
3.2. Exposure Parameters
3.3. Health Risk Assessment
3.4. Sensitivity Analysis
3.5. Limitations and Future Research Directions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sun, J.; Zong, Z. Service life evaluation method of metro vehicle aluminum alloy carbody. Urban Mass Transit 2023, S1, 46–50. [Google Scholar] [CrossRef]
- Li, X.; Wang, S.; Liu, C.; Zhang, J.; Chen, Y. Fatigue life assess-ment of metro carbody based on submodel method. J. Southwest Jiaotong Univ. 2022, 57, 295–300+330. [Google Scholar]
- Zimmer, A.T.; Biswas, P. Characterization of the aerosols resulting from arc welding processes. J. Aerosol Sci. 2001, 32, 993–1008. [Google Scholar] [CrossRef]
- Wang, Y.; Kuo, Y.; Wang, L. Long-term metal fume exposure assessment of workers in a shipbuilding factory. Sci. Rep. 2022, 12, 790. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Hu, B.; Liu, Y.; Xu, J.; Yang, G.; Xu, D.; Chen, C. Beyond PM2.5: The role of ultrafine particles on adverse health effects of air pollution. Biochim. Biophys. Acta (BBA) Gen. Subj. 2016, 1860, 2844–2855. [Google Scholar] [CrossRef]
- Chen, W.; Liu, Y.; Wang, H.; Hnizdo, E.; Sun, Y.; Su, L.; Zhang, X.; Weng, S.; Bochmann, F.; Hearl, F.J.; et al. Long-term exposure to silica dust and risk of total and cause-specific mortality in Chinese workers: A cohort study. PLoS Med. 2012, 9, e1001206. [Google Scholar] [CrossRef]
- Han, B.-C.; Liu, I.J.; Chuang, H.-C.; Pan, C.-H.; Chuang, K.-J. Effect of welding fume on heart rate variability among workers with respirators in a shipyard. Sci. Rep. 2016, 6, 34158. [Google Scholar] [CrossRef]
- Rahul, M.; Sivapirakasam, S.P.; Vishnu, B.R.; Balasubramanian, K.R.; Mohan, S. Health issue owing to exposure with welding fumes and their control strategies at the source—A review. Mater. Today Proc. 2021, 46, 9239–9245. [Google Scholar] [CrossRef]
- Riediker, M.; Zink, D.; Kreyling, W.; Oberdörster, G.; Elder, A.; Graham, U.; Lynch, I.; Duschl, A.; Ichihara, G.; Ichihara, S.; et al. Particle toxicology and health—Where are we? Part. Fibre Toxicol. 2019, 16, 19. [Google Scholar] [CrossRef]
- Huang, S.; Ma, R.; Zhang, P.; Hu, C.; Wu, D.; Sun, L.; Deng, M. Characteristics and health risk assessments of fine particulate matter at the overground and underground subway sites in Chengdu. Build. Environ. 2023, 242, 110577. [Google Scholar] [CrossRef]
- Alias, A.; Latif, M.T.; Othman, M.; Azhari, A.; Abd Wahid, N.B.; Aiyub, K.; Khan, M.F. Compositions, source apportionment and health risks assessment of fine particulate matter in naturally-ventilated schools. Atmos. Pollut. Res. 2021, 12, 101190. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Bo, Y.; Zhang, Y.; Zhang, L. Air pollution characteristics and human health risk assessment of underground parking garages in Xi’an, China. Indoor Built Environ. 2022, 32, 632–651. [Google Scholar] [CrossRef]
- Hamzah, N.A.; Tamrin, S.B.M.; Ismail, N.H. Metal Dust Exposure and Respiratory Health of Male Steel Workers in Terengganu, Malaysia. Iran. J. Public Health 2014, 43, 154–166. [Google Scholar]
- Dueck, M.; Rafiee, A.; Mino, J.; Nair, S.; Kamravaei, S.; Pei, L.; Quemerais, B. Welding Fume Exposure and Health Risk Assessment in a Cohort of Apprentice Welders. Ann. Work Expo. Health 2021, 65, 775–788. [Google Scholar] [CrossRef]
- Tong, R.; Cheng, M.; Ma, X.; Yang, Y.; Liu, Y.; Li, J. Quantitative health risk assessment of inhalation exposure to automobile foundry dust. Environ. Geochem. Health 2019, 41, 2179–2193. [Google Scholar] [CrossRef]
- Buonanno, G.; Morawska, L.; Stabile, L. Exposure to welding particles in automotive plants. J. Aerosol Sci. 2011, 42, 295–304. [Google Scholar] [CrossRef]
- Dehghani, F.; Omidi, F.; Fallahzadeh, R.A.; Pourhassan, B. Health risk assessment of occupational exposure to heavy metals in a steel casting unit of a steelmaking plant using Monte–Carlo simulation technique. Toxicol. Ind. Health 2021, 37, 431–440. [Google Scholar] [CrossRef]
- Soltanpour, Z.; Rasoulzadeh, Y.; Mohammadian, Y. Occupational Exposure to Metal Fumes Among Iranian Welders: Systematic Review and Simulation-Based Health Risk Assessment. Biol. Trace Elem. Res. 2023, 201, 1090–1100. [Google Scholar] [CrossRef]
- Lin, D.; Nelson, J.D.; Beecroft, M.; Cui, J. An overview of recent developments in China’s metro systems. Tunn. Undergr. Space Technol. 2021, 111, 103783. [Google Scholar] [CrossRef]
- GBZ 2.1-2019; Occupational Exposure Limits for Hazardous Agents in the Workplace in Part 1: Chemical Hazardous Agents. NHC: Beijing, China, 2019.
- GBZ 159-2019; Specifications of Air Sampling for Hazardous Substances Monitoring in the Workplace. NHC: Beijing, China, 2019.
- Jiang, H.; Lu, L. Measurement of the surface charge of ultrafine particles from laser printers and analysis of their electrostatic force. Atmos. Environ. 2010, 44, 3347–3351. [Google Scholar] [CrossRef]
- Hamamoto, N.; Nakajima, Y.; Sato, T. Experimental discussion on maximum surface charge density of fine particles sustainable in normal atmosphere. J. Electrost. 1992, 28, 161–173. [Google Scholar] [CrossRef]
- Sennato, S.; Truzzolillo, D.; Bordi, F.; Sciortino, F.; Cametti, C. Colloidal particle aggregates induced by particle surface charge heterogeneity. Colloids Surf. A Physicochem. Eng. Asp. 2009, 343, 34–42. [Google Scholar] [CrossRef]
- Mbazima, S.J. Health risk assessment of particulate matter 2.5 in an academic metallurgy workshop. Indoor Air 2022, 32, e13111. [Google Scholar] [CrossRef] [PubMed]
- Di Vaio, P.; Magli, E.; Caliendo, G.; Corvino, A.; Fiorino, F.; Frecentese, F.; Saccone, I.; Santagada, V.; Severino, B.; Onorati, G.; et al. Heavy Metals Size Distribution in PM10 and Environmental-Sanitary Risk Analysis in Acerra (Italy). Atmosphere 2018, 9, 58. [Google Scholar] [CrossRef]
- Guo, M.; Wang, Z.; Jian, N.; Gu, Y.; Xu, S.; Tan, Y.; Duan, X. Transformation Coefficient between Occupational Exposure Limits and Ambient Air Pollutant Limits Based on the Exposure Characteristics of Chinese Population. Res. Environ. Sci. 2022, 35, 2518–2526. [Google Scholar] [CrossRef]
- Castro, A.; Götschi, T.; Achermann, B.; Baltensperger, U.; Buchmann, B.; Felber Dietrich, D.; Flückiger, A.; Geiser, M.; Gälli Purghart, B.; Gygax, H.; et al. Comparing the lung cancer burden of ambient particulate matter using scenarios of air quality standards versus acceptable risk levels. Int. J. Public Health 2020, 65, 139–148. [Google Scholar] [CrossRef]
- Arı, A. A comprehensive study on gas and particle emissions from laser printers: Chemical composition and health risk assessment. Atmos. Pollut. Res. 2020, 11, 269–282. [Google Scholar] [CrossRef]
- Candeias, C.; Ávila, P.F.; Ferreira da Silva, E.A.; Rocha, F. Metal(Loids) Bioaccessibility in Road Dust from the Surrounding Villages of an Active Mine. Atmosphere 2021, 12, 685. [Google Scholar] [CrossRef]
- Qu, C.; Li, B.; Wu, H.; Wang, S.; Giesy, J.P. Multi-pathway assessment of human health risk posed by polycyclic aromatic hydrocarbons. Environ. Geochem. Health 2015, 37, 587–601. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T.; Mohamed, A.F. Health impact assessment from building life cycles and trace metals in coarse particulate matter in urban office environments. Ecotoxicol. Environ. Saf. 2018, 148, 293–302. [Google Scholar] [CrossRef]
- Chiang, K.C.; Chio, C.P.; Chiang, Y.H.; Liao, C.M. Assessing hazardous risks of human exposure to temple airborne polycyclic aromatic hydrocarbons. J. Hazard. Mater. 2009, 166, 676–685. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, Y.; Bezerra, M.; Wang, J.; Sperry, T. Numerical simulation of welding fume lung dosimetry. J. Aerosol Sci. 2019, 135, 113–129. [Google Scholar] [CrossRef]
- Gou, G.; Zhang, M.; Chen, H.; Chen, J.; Li, P.; Yang, Y.P. Effect of humidity on porosity, microstructure, and fatigue strength of A7N01S-T5 aluminum alloy welded joints in high-speed trains. Mater. Des. 2015, 85, 309–317. [Google Scholar] [CrossRef]
- Morawska, L.; Buonanno, G. The physics of particle formation and deposition during breathing. Nat. Rev. Phys. 2021, 3, 300–301. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Duque Mahecha, S.; Aguacil Moreno, S.; Licina, D. Integration of Indoor Air Quality Prediction into Healthy Building Design. Sustainability 2022, 14, 7890. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.; Bai, H.; Zhang, S.; Mu, L.; Peng, L. Characteristics and health risk assessments of heavy metals in PM2.5 in Taiyuan and Yuci college town, China. Air Qual. Atmos. Health 2020, 13, 909–919. [Google Scholar] [CrossRef]
- Guo, Q.; Li, L.; Zhao, X.; Yin, B.; Liu, Y.; Wang, X.; Yang, W.; Geng, C.; Wang, X.; Bai, Z. Source Apportionment and Health Risk Assessment of Metal Elements in PM2.5 in Central Liaoning’s Urban Agglomeration. Atmosphere 2021, 12, 667. [Google Scholar] [CrossRef]
- Kim, W.-G.; Yong, S.-D.; Yook, S.-J.; Ji, J.H.; Kim, K.-H.; Bae, G.-N.; Chung, E.-K.; Kim, J.H. Comparison of black carbon concentration and particle mass concentration with elemental carbon concentration for multi-walled carbon nanotube emission assessment purpose. Carbon 2017, 122, 228–236. [Google Scholar] [CrossRef]
- Hammer, T.; Sachinidou, P.; He, X.; Pan, Z.; Bahk, Y.K. Advanced filtration and lung deposition models of airborne multi-walled carbon nanotubes for inhalation exposure assessment. NanoImpact 2020, 19, 100240. [Google Scholar] [CrossRef]
- Riihimäki, V.; Aitio, A. Occupational exposure to aluminum and its biomonitoring in perspective. Crit. Rev. Toxicol. 2012, 42, 827–853. [Google Scholar] [CrossRef]
- Li, R.; Zhou, R.; Zhang, J. Function of PM2.5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncol. Lett. 2018, 15, 7506–7514. [Google Scholar] [CrossRef] [PubMed]
- Cole, H.; Epstein, S.; Peace, J. Particulate and Gaseous Emissions When Welding Aluminum Alloys. J. Occup. Environ. Hyg. 2007, 4, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Wiil, U.K. Important steps for artificial intelligence-based risk assessment of older adults. Lancet Digit. Health 2023, 5, E635–E636. [Google Scholar] [CrossRef] [PubMed]
Working Area | Dust | Distribution | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Welding area | TSP | Normal | 1052 | 509 | 475 | 1714 |
PM10 | Normal | 838 | 518 | 260 | 1517 | |
PM2.5 | Normal | 237 | 116 | 117 | 394 | |
Grinding area | TSP | Normal | 2562 | 1528 | 756 | 4283 |
PM10 | Normal | 1937 | 1487 | 304 | 3565 | |
PM2.5 | Normal | 88 | 16 | 67 | 108 |
Working Area | Distribution | Mean | SD | Min | Max |
---|---|---|---|---|---|
Welding area | Normal | 235 | 145 | 73 | 425 |
Grinding area | Normal | 484 | 372 | 76 | 891 |
Exposure Parameter | Unit | Distribution | Probable Value | Min | Max | SD |
---|---|---|---|---|---|---|
IR | m3/h | Normal | 2.37 | 2.12 | 2.97 | 0.81 |
ED | a | Triangular | 26 | 5 | 35 | |
EF | d/a | Triangular | 296 | 272 | 318 | |
ET | h/d | Triangular | 9.50 | 8 | 10.25 | |
BW | kg | Normal | 54.3 | 46.5 | 72.8 | 6.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Han, D.; Wei, X.; Yang, J.; Wu, C. Health Risk Assessment of Inhalable Dust Exposure during the Welding and Grinding Process of Subway Aluminum Alloy Components. Buildings 2023, 13, 2469. https://doi.org/10.3390/buildings13102469
Li C, Han D, Wei X, Yang J, Wu C. Health Risk Assessment of Inhalable Dust Exposure during the Welding and Grinding Process of Subway Aluminum Alloy Components. Buildings. 2023; 13(10):2469. https://doi.org/10.3390/buildings13102469
Chicago/Turabian StyleLi, Can, Duanjun Han, Xiaoqing Wei, Jinlin Yang, and Chunlong Wu. 2023. "Health Risk Assessment of Inhalable Dust Exposure during the Welding and Grinding Process of Subway Aluminum Alloy Components" Buildings 13, no. 10: 2469. https://doi.org/10.3390/buildings13102469
APA StyleLi, C., Han, D., Wei, X., Yang, J., & Wu, C. (2023). Health Risk Assessment of Inhalable Dust Exposure during the Welding and Grinding Process of Subway Aluminum Alloy Components. Buildings, 13(10), 2469. https://doi.org/10.3390/buildings13102469