Estimating Optimal Cost, Insulation Layer Thickness, and Structural Layer Thickness of Different Composite Insulation External Walls Using Computational Methods
Abstract
:1. Introduction
2. Methodology
2.1. Case Study of a Masonry Wall Construction in Beijing
2.2. Mathematical Model
2.2.1. Initial Investment Cost of a CIEW
2.2.2. Heating and Cooling Loss through CIEW
2.2.3. Energy Consumption Cost
2.2.4. Life Cycle Cost
2.2.5. Payback Period
2.2.6. Economic Insulation Layer Thickness and Overall U Value
2.3. Optimization Technique: Nonlinear Least Squares Error Method (LSE)
3. Results
4. Discussion
4.1. Comparison between LSE and LCCA
4.1.1. Percentage Value Comparison
4.1.2. Comparative Analysis of Optimal Thickness
4.1.3. Payback Period
4.1.4. U-Value Comparison
4.1.5. Structural and Insulation Layer Thickness Comparison for Different Heating Systems
4.2. Traditional Methodologies vs. New Insights
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | |
ASHP | Air-Source Heat Pump |
CIEW | Composite Insulation External Walls |
CFB | Circulating Fluidized Bed |
GFB | Grate-Fired Boiler |
GW | Glass Wool |
HVAC | Heating, Ventilating, and Air Conditioning |
LCCA | Life Cycle Cost Analysis |
LSE | Least Squares Error |
LCC | Life Cycle Cost (USD) |
LCS | Life Cycle Savings (USD) |
N | Payback period (years) |
RW | Rock Wool |
XPS | Extruded Polystyrene |
X | Optimal structural layer thickness (mm) |
Y | Optimal insulation layer thickness (mm) |
Symbols | |
Lower heating value of energy consumed per unit of heating (kJ/kg, kJ/m3, or kJ/kWh) | |
Efficiency of the heating source | |
Efficiency of the network | |
Fuel cost for heating per unit kilogram, volume, or kilowatt hour (USD/m·t, USD/km3, or USD/MWh) | |
Coefficient of performance of the cooling system | |
Price of the insulation material per unit volume (USD/m3) | |
Labour and insulation installation cost per unit area (USD/m2) | |
Material and labour costs associated with mortar plaster on a unit surface area (USD/m2) | |
Thermal conductivity of the structure material layer (W/m.K) | |
Thermal conductivity of the insulation material layer (W/m.K) | |
Heating degree days based on 18 °C (°C·d) | |
Cooling degree days based on 26 °C (°C·d) | |
Overall thermal resistance of walls, excluding that offered by structural and insulation layers (m2k/W) | |
Price of electricity per unit kilowatt hour (USD/kW) | |
Service life of the insulating material (years) | |
Initial investment cost of the wall per unit area (USD/m2) | |
Overall heat transfer coefficient offered by the external wall with mortar, structural, and insulation layer (W/m2K) | |
Overall heat transfer coefficient of the CIEW, without considering the insulation and structural layer (W/m2K) | |
Overall heat transfer coefficient offered by the structural and insulation layer (W/m2K) | |
Heating losses through the wall, considering structure and insulation layers (kJ/kg, kJ/m3, or kJ/kWh) | |
Cooling losses through the wall, considering structure and insulation layers (kJ/kg, kJ/m3, or kJ/kWh) | |
Difference in heating losses through the wall, without considering structure and insulation layers (kJ/kg, kJ/m3, or kJ/kWh) | |
Difference in cooling losses through the wall, without considering Structure and insulation layers (kJ/kg, kJ/m3, or kJ/kWh) | |
Annual energy consumption cost through CIEW (USD/kW) | |
Difference between heating and cooling energy costs saved with and without considering structure and insulation layers (USD/kW) | |
Present worth factor | |
Inflation discount rates (%) | |
Market discount rates (%) | |
A given structural layer thickness (mm) | |
Economic insulation layer thickness (Equation (16)) (mm) | |
Overall U value at (Equation (15)) (W/m2K) |
References
- Mousavi, S.; Rismanchi, B.; Brey, S.; Aye, L. Lessons Learned from PCM Embedded Radiant Chilled Ceiling Experiments in Melbourne. Energy Rep. 2022, 8, 54–61. [Google Scholar] [CrossRef]
- Aggarwal, V.; Meena, C.S.; Kumar, A.; Alam, T.; Kumar, A.; Ghosh, A.; Ghosh, A. Potential and Future Prospects of Geothermal Energy in Space Conditioning of Buildings: India and Worldwide Review. Sustainability 2020, 12, 8428. [Google Scholar] [CrossRef]
- Ali, A. Determination of Optimum Thickness of Nano and Traditional Insulation Materials for Building External Walls by Using Degree-Day Approach for Different Climatic Regions in Egypt. MSA Eng. J. 2022, 1, 39–58. [Google Scholar] [CrossRef]
- Malka, L.; Kuriqi, A.; Haxhimusa, A. Optimum Insulation Thickness Design of Exterior Walls and Overhauling Cost to Enhance the Energy Efficiency of Albanian’s Buildings Stock. J. Clean. Prod. 2022, 381, 135160. [Google Scholar] [CrossRef]
- Balo, F.; Ulutaş, A. Energy-Performance Evaluation with Revit Analysis of Mathematical-Model-Based Optimal Insulation Thickness. Buildings 2023, 13, 408. [Google Scholar] [CrossRef]
- Dong, Y.; Kong, J.; Mousavi, S.; Rismanchi, B.; Yap, P.-S. Wall Insulation Materials in Different Climate Zones: A Review on Challenges and Opportunities of Available Alternatives. Thermo 2023, 3, 38–65. [Google Scholar] [CrossRef]
- Li, X.; Densley Tingley, D. A Whole Life, National Approach to Optimize the Thickness of Wall Insulation. Renew. Sustain. Energy Rev. 2023, 174, 113137. [Google Scholar] [CrossRef]
- Espejel-Blanco, D.F.; Hoyo-Montaño, J.A.; Arau, J.; Valencia-Palomo, G.; García-Barrientos, A.; Hernández-De-León, H.R.; Camas-Anzueto, J.L. HVAC Control System Using Predicted Mean Vote Index for Energy Savings in Buildings. Buildings 2022, 12, 38. [Google Scholar] [CrossRef]
- Ramin, H.; Hanafizadeh, P.; Akhavan-Behabadi, M.A. Determination of Optimum Insulation Thickness in Different Wall Orientations and Locations in Iran. Adv. Build. Energy Res. 2016, 10, 149–171. [Google Scholar] [CrossRef]
- Rosti, B.; Omidvar, A.; Monghasemi, N. Optimal Insulation Thickness of Common Classic and Modern Exterior Walls in Different Climate Zones of Iran. J. Build. Eng. 2020, 27, 100954. [Google Scholar] [CrossRef]
- Hou, J.; Zhang, T.; Liu, Z.; Hou, C.; Fukuda, H. A Study on Influencing Factors of Optimum Insulation Thickness of Exterior Walls for Rural Traditional Dwellings in Northeast of Sichuan Hills, China. Case Stud. Constr. Mater. 2022, 16, e01033. [Google Scholar] [CrossRef]
- Ziapour, B.M.; Rahimi, M.; Yousefi Gendeshmin, M. Thermoeconomic Analysis for Determining Optimal Insulation Thickness for New Composite Prefabricated Wall Block as an External Wall Member in Buildings. J. Build. Eng. 2020, 31, 101354. [Google Scholar] [CrossRef]
- Huang, J.; Feng, W.; Huang, Z.; Wang, S. Optimum Construction Form and Overall U-Value of Composite Insulation External Wall. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 5806–5822. [Google Scholar] [CrossRef]
- Tian, Y.; Wu, J.; Xu, Z.; Yang, J.; Guan, X. Optimal Analysis of Multi-Energy System towards Low-Carbon Building. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 6323–6328. [Google Scholar]
- Dai, B.; Zhao, R.; Liu, S.; Xu, T.; Qian, J.; Wang, X.; Yang, P.; Wang, D. CO2 System Integrated with Ejector and Mechanical Subcooling: A Comprehensive Assessment. Appl. Therm. Eng. 2023, 234, 121269. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, T.; Ma, Q.; Fukuda, H. Thermal Performance and Optimizing of Composite Trombe Wall with Temperature-Controlled DC Fan in Winter. Sustainability 2022, 14, 3080. [Google Scholar] [CrossRef]
- Simpeh, E.K.; Pillay, J.-P.G.; Ndihokubwayo, R.; Nalumu, D.J. Improving Energy Efficiency of HVAC Systems in Buildings: A Review of Best Practices. IJBPA 2022, 40, 165–182. [Google Scholar] [CrossRef]
- Evins, R. A Review of Computational Optimisation Methods Applied to Sustainable Building Design. Renew. Sustain. Energy Rev. 2013, 22, 230–245. [Google Scholar] [CrossRef]
CFB | |||||
---|---|---|---|---|---|
XPS | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 127 | 73 | 36.95 | 115.83 | 4.97 |
250 | 187 | 63 | 39.00 | 113.77 | 5.33 |
300 | 259 | 41 | 40.22 | 112.54 | 5.54 |
350 | 321 | 29 | 42.13 | 110.62 | 5.88 |
400 | 383 | 17 | 44.05 | 108.70 | 6.22 |
RW | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 123 | 77 | 43.21 | 109.54 | 6.07 |
250 | 191 | 59 | 44.59 | 108.16 | 6.32 |
300 | 259 | 41 | 45.97 | 106.77 | 6.57 |
350 | 326 | 24 | 47.42 | 105.31 | 6.83 |
400 | 394 | 6 | 48.80 | 103.92 | 7.08 |
GW | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 53 | 147 | 40.31 | 112.48 | 5.56 |
250 | 119 | 131 | 42.68 | 110.11 | 5.98 |
300 | 185 | 115 | 45.05 | 107.74 | 6.40 |
350 | 251 | 99 | 47.41 | 105.37 | 6.83 |
400 | 313 | 87 | 49.88 | 102.91 | 7.27 |
GFB | |||||
---|---|---|---|---|---|
XPS | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 121 | 79 | 42.32 | 214.52 | 2.95 |
250 | 184 | 66 | 44.17 | 212.67 | 3.13 |
300 | 247 | 53 | 46.02 | 210.82 | 3.32 |
350 | 306 | 44 | 48.14 | 208.69 | 3.53 |
400 | 365 | 35 | 50.27 | 206.57 | 3.75 |
RW | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 139 | 61 | 48.17 | 208.65 | 3.53 |
250 | 208 | 42 | 49.55 | 207.27 | 3.67 |
300 | 275 | 25 | 50.93 | 205.88 | 3.81 |
350 | 337 | 13 | 52.38 | 204.42 | 3.96 |
400 | 396 | 4 | 53.76 | 203.03 | 4.10 |
GW | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 67 | 133 | 45.27 | 211.60 | 3.24 |
250 | 126 | 124 | 47.64 | 209.23 | 3.48 |
300 | 187 | 113 | 50.00 | 206.86 | 3.72 |
350 | 244 | 106 | 52.37 | 204.49 | 3.96 |
400 | 311 | 89 | 54.84 | 202.02 | 4.21 |
ASHP | |||||
---|---|---|---|---|---|
XPS | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 123 | 77 | 37.40 | 118.89 | 4.90 |
250 | 179 | 71 | 39.73 | 116.55 | 5.30 |
300 | 234 | 66 | 42.14 | 114.15 | 5.71 |
350 | 291 | 59 | 44.41 | 111.88 | 6.11 |
400 | 347 | 53 | 46.75 | 109.54 | 6.52 |
RW | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 112 | 88 | 44.23 | 112.05 | 6.08 |
250 | 176 | 74 | 45.91 | 110.36 | 6.37 |
300 | 239 | 61 | 47.67 | 108.60 | 6.68 |
350 | 303 | 47 | 49.36 | 106.91 | 6.98 |
400 | 366 | 34 | 51.12 | 105.15 | 7.29 |
GW | |||||
(mm) | (mm) | (mm) | (USD) | (USD) | (Years) |
200 | 34 | 166 | 40.95 | 115.37 | 5.51 |
250 | 105 | 145 | 43.19 | 113.12 | 5.90 |
300 | 177 | 123 | 45.41 | 110.89 | 6.28 |
350 | 242 | 108 | 47.80 | 108.50 | 6.70 |
400 | 306 | 94 | 50.22 | 106.08 | 7.13 |
CFB-XPS | CFB-RW | CFB-GW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(USD) | (USD) | (years) | (USD) | (USD) | (years) | (USD) | (USD) | (years) | |||
0.995 | −0.995 | 0.995 | 1.000 | −1.000 | 1.000 | 1.000 | −1.000 | 1.000 | |||
−0.981 | 0.982 | −0.981 | −1.000 | 1.000 | −1.000 | −0.998 | 0.998 | −0.998 | |||
GFB-XPS | GFB-RW | GFB-GW | |||||||||
(USD) | (USD) | (years) | (USD) | (USD) | (years) | (USD) | (USD) | (years) | |||
0.998 | −0.999 | 0.998 | 0.999 | −0.999 | 0.999 | 1.000 | −1.000 | 1.000 | |||
−0.991 | 0.991 | −0.991 | −0.988 | 0.988 | −0.988 | −0.991 | 0.991 | −0.991 | |||
ASHP-XPS | ASHP-RW | ASHP-GW | |||||||||
(USD) | (USD) | (years) | (USD) | (USD) | (years) | (USD) | (USD) | (years) | |||
1.000 | −1.000 | 1.000 | 1.000 | −1.000 | 1.000 | 0.999 | −0.999 | 0.999 | |||
−0.998 | 0.998 | −0.999 | −1.000 | 1.000 | −1.000 | −0.993 | 0.993 | −0.992 |
XPS | RW | GW | ||||
---|---|---|---|---|---|---|
Heating System | LCC (%) | LCS (%) | LCC (%) | LCS (%) | LCC (%) | LCS (%) |
CFB | −5.03 | 7.04 | −7.41 | 9.12 | 1.51 | 4.50 |
GFB | −2.15 | 5.60 | −8.16 | 7.66 | 4.89 | 3.94 |
ASHP | −0.28 | 3.29 | −4.41 | 7.56 | 2.02 | 4.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrasheed, M.R.A. Estimating Optimal Cost, Insulation Layer Thickness, and Structural Layer Thickness of Different Composite Insulation External Walls Using Computational Methods. Buildings 2023, 13, 2774. https://doi.org/10.3390/buildings13112774
Alrasheed MRA. Estimating Optimal Cost, Insulation Layer Thickness, and Structural Layer Thickness of Different Composite Insulation External Walls Using Computational Methods. Buildings. 2023; 13(11):2774. https://doi.org/10.3390/buildings13112774
Chicago/Turabian StyleAlrasheed, Mohammed R. A. 2023. "Estimating Optimal Cost, Insulation Layer Thickness, and Structural Layer Thickness of Different Composite Insulation External Walls Using Computational Methods" Buildings 13, no. 11: 2774. https://doi.org/10.3390/buildings13112774
APA StyleAlrasheed, M. R. A. (2023). Estimating Optimal Cost, Insulation Layer Thickness, and Structural Layer Thickness of Different Composite Insulation External Walls Using Computational Methods. Buildings, 13(11), 2774. https://doi.org/10.3390/buildings13112774