Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature
Abstract
:1. Introduction
2. Climate Change Projections
2.1. Mediterranean Region and Southern Europe
2.2. Portugal: A Hot and Dry Summer Temperate Climate
3. Climate-Induced Degradation of Rendered Façades
3.1. Characteristics of the Cladding
3.2. Degradation Mechanisms and Climate Agents
3.2.1. Stains
Stains | Degradation Mechanisms | ||
---|---|---|---|
Actions | Climate Agents | Favourable Factors or Conditions | |
Dirt | Dirt or pollution particles: | ||
- transport and deposition | wind wind-rain action | - wind strength - wind direction towards the façade | |
- adherence | wind-rain action temperature | - wind direction towards the façade - wet render/moist surface - long moisture cycle - cold temperature - lack of sun exposure | |
- washing | wind-rain action | - wind direction towards the façade - water runoff | |
- accumulation | wind wind-rain action temperature | - long and consecutive moisture cycles (implied continuation of “transport and deposition”) | |
Biological growth | Living organisms: | ||
- transport and deposition | wind wind-rain action | - wind strength - wind direction towards the façade | |
- adherence | wind-rain action temperature | - wind direction towards the façade - wet render/moist surface - long moisture cycle - cold temperature - lack of sun exposure | |
- growth | |||
- accumulation | wind wind-rain action temperature | - long and consecutive moisture cycles (implied continuation of “transport and deposition”) | |
Efflorescence | Soluble salts (existing in the render or penetrating it in rainwater): | ||
- dissolution | wind-rain action humidity | - wind direction towards the façade - wet render / water in the pores - high relative humidity | |
- crystallization and deposition | wind humidity temperature | - fast drying process of the wet render - water migration towards the surface - evaporation of water in the surface - wind flow - relative humidity decrease - temperature increase | |
Discolouration | Chemical components (existing in the render or in the coating): | ||
- leaching | wind-rain action | - wind direction towards the façade | |
- reaction to pollutants | wind wind-rain action temperature | (implied “adherence”and “transport and deposition” subsections) | |
- photodegradation | solar radiation | - significant exposure to UV radiation |
3.2.2. Cracks
Cracks | Degradation Mechanisms | ||
---|---|---|---|
Actions | Climate Agents | Favourable Factors or Conditions | |
Mapped cracking | Fresh render’s curing process: | ||
- shrinkage | wind humidity temperature | - high wind velocity - low relative humidity - high temperature - excessive speed of evaporation of water in the mix | |
Hardened render: | |||
- shrinkage by carbonation | wind-rain action humidity temperature | - wet render/water in the pores, unless if excessively or constantly - relative humidity around 40–60% [78] - high temperature | |
Hardened render: | |||
- expansion by alkali-aggregate reaction | wind-rain action humidity temperature | - wet render/water in the pores - internal relative humidity >80% [79] - swelling of alkali-silica gel - high temperature | |
Render level cracking | Hardened render: | ||
- expansion | temperature | - considerable exposure to UV radiation - warm temperature | |
- shrinkage by thermal shock | wind-rain action temperature | - wet render - cold temperature - temperature variation and gradient within the render | |
Oriented cracking | Hardened render: | ||
- movement of hygrothermal nature | temperature | - temperature and damp variations in the render and/or in related building components; differential hygrothermal behaviours - dimensional change - expansion with warm temperature - shrinkage with cold temperature (implied influence of “wind-rain”) | |
Por level cracking | Soluble salts (existing in the render or penetrating it in rainwater): | ||
- transport and deposition (of salts in air pollution) | wind wind-rain action humidity | - wind strength - wind direction towards the façade - high relative humidity | |
- dissolution | wind-rain action humidity | - wind direction towards the façade - wet render/water in the pores - high relative humidity | |
- crystallization and deposition | wind humidity temperature | - fast drying process of the wet render - water migration in the porous structure - evaporation of water in the pores - relative humidity decrease - temperature increase | |
Water in the render: | |||
- freeze-thaw | temperature | - wet render/water in the pores - transformation of liquid water into ice crystals and subsequent melting |
3.2.3. Loss of Adhesion
Loss of Adhesion | Degradation Mechanisms | ||
---|---|---|---|
Actions | Climate Agents | Favourable Factors or Conditions | |
Crumbling and spalling | Soluble salts (existing in the render or penetrating it in rainwater): | ||
- transport and deposition (of salts in air pollution and sea spray) | wind wind-rain action humidity temperature | - high wind velocity - wind direction towards the façade - high relative humidity - flooding (for capillarity driven salts) | |
- dissolution | wind-rain action humidity | - wind direction towards the façade - wet render/water in the pores - high relative humidity | |
- crystallization and deposition | wind humidity temperature | - fast drying process of the wet render - water migration in the porous structure - evaporation of water in the pores - relative humidity decrease - temperature increase | |
Hardened render: | |||
- expansion by alkali-aggregate reaction | wind-rain action humidity temperature | - wet render/water in the pores - internal relative humidity >80–85% [90] - swelling of alkali-silica gel - high temperature | |
Water in the render: | |||
- freeze-thaw | temperature | - wet render/water in the pores - transformation of liquid water into ice crystals and subsequent melting | |
Fine particles: | |||
- washing | wind wind-rain action | - wind direction towards the façade | |
Prior triggering defects: cracks and detachment of the external layer of the render | |||
Bulging | Hardened render: | ||
- wetting | wind-rain action | - wind direction towards the façade | |
- deformation of hygrothermal nature | temperature | - wet render/damp in the pores - temperature and damp variations - dimensional expansion - high temperature - weight increase by damp in the pores | |
The degradation mechanism based on the dissolution and crystallization of salts is applicable | |||
Prior triggering defects: cracks | |||
Detachment | The degradation mechanism based on the dissolution and crystallization of salts, between render layers or on the interface render/substrate, is applicable | ||
The degradation mechanism based on the hardened render’s deformation of hygrothermal nature is applicable | |||
Prior triggering defects: bulging and cracks |
4. Expected Degradation of Rendered Façades in a Progressively Warmer and Drier Climate—Discussion
4.1. Stains
4.2. Cracks
4.3. Loss of Adhesion
4.4. Potential Influencing Aspects Not Detailed in the Study
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freitas, S.S.; de Freitas, V.P. Cracks on ETICS along thermal insulation joints: Case study and a pathology catalogue. Struct. Surv. 2016, 34, 57–72. [Google Scholar] [CrossRef]
- De Brito, J.; Pereira, C.; Silvestre, J.D.; Flores-Colen, I. Expert Knowledge-Based Inspection Systems—Inspection, Diagnosis and Repair of the Building Envelope; Springer International Publishing: Zurich, Switzerland, 2020. [Google Scholar] [CrossRef]
- Almeida, L.; Silva, A.S.; Veiga, M.D.R.; Mirão, J.; Vieira, M. 20th-Century Award-Winning Buildings in Lisbon (Portugal). Study of Plasters, Rendering and Concrete Materials Aiming Their Sustainable Preservation. Buildings 2021, 11, 359. [Google Scholar] [CrossRef]
- Sandak, A.; Sandak, J.; Brzezicki, M.; Riggio, M. Bio-Based Building Skin; Springer International Publishing: Singapore, 2019. [Google Scholar] [CrossRef] [Green Version]
- Stagrum, A.E.; Andenæs, E.; Kvande, T.; Lohne, J. Climate change adaptation measures for buildings—A scoping review. Sustainability 2020, 12, 1721. [Google Scholar] [CrossRef] [Green Version]
- Pereira, T.C.; Amaro, A.; Borges, M.; Silva, R.; Pina, A.; Canaveira, P. Portuguese National Inventory Report on Greenhouse Gases, 1990–2017; Portuguese Environmental Agency: Amadora, Portugal, 2019. [Google Scholar]
- Allen, M.R.; Dube, O.P.; Solecki, W.; Aragón-Durand, F.; Cramer, W.; Humphreys, S.; Kainuma, M.; Kala, J.; Mahowald, N.; Mulugetta, Y.; et al. Framing and Context. In Global Warming of 1.5 °C, An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; IPCC: Geneva, Switzerland, 2018; pp. 49–91. [Google Scholar]
- Seneviratne, S.; Nicholls, N.; Easterling, D.; Goodess, C.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M. Changes in climate extremes and their impacts on the natural physical environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, A Special Report of Working Groups I and II of the Inter-governmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Corti, T.; Wüest, M.; Bresch, D.; Seneviratne, S.I. Drought-induced building damages from simulations at regional scale. Nat. Hazards Earth Syst. Sci. 2011, 11, 3335–3342. [Google Scholar] [CrossRef]
- Armstrong, M.; Egorov, I.; Lacasse, M.A.; Laouadi, A.; Trischuk, K. Climate Resilience of Buildings—Review of State of Practice: Climate Resilience of Building Enclosures and Temperature Effects on Buildings; Technical Report CRBCPI-Y1-R7; National Research Council Canada: Ottawa, ON, Canada, 2017.
- Lisø, K.R.; Myhre, L.; Kvande, T.; Thue, J.V.; Nordvik, V. A Norwegian perspective on buildings and climate change. Build. Res. Inf. 2007, 35, 437–449. [Google Scholar] [CrossRef]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Change 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Cavalagli, N.; Kita, A.; Castaldo, V.L.; Pisello, A.L.; Ubertini, F. Hierarchical environmental risk mapping of material degradation in historic masonry buildings: An integrated approach considering climate change and structural damage. Constr. Build. Mater. 2019, 215, 998–1014. [Google Scholar] [CrossRef]
- Revi, A.; Satterthwaite, D.E.; Aragón-Durand, F.; Corfee-Morlot, J.; Kiunsi, R.B.R.; Pelling, M.; Roberts, D.C.; Solecki, W. Urban areas. In Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 535–612. [Google Scholar]
- Galvão, J.; Duarte, R.; Flores-Colen, I.; de Brito, J.; Hawreen, A. Non-destructive mechanical and physical in-situ testing of rendered walls under natural exposure. Constr. Build. Mater. 2020, 230, 116838. [Google Scholar] [CrossRef]
- Pires, R.; de Brito, J.; Amaro, B. Inspection, diagnosis, and rehabilitation system of painted rendered façades. J. Perform. Constr. Facil. 2015, 29, 04014062. [Google Scholar] [CrossRef]
- Gaspar, P.L.; de Brito, J. Limit states and service life of cement renders on façades. J. Mater. Civ. Eng. 2011, 23, 1396–1404. [Google Scholar] [CrossRef]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Iturbide, M.; Gutiérrez, J.M.; Alves, L.M.; Bedia, J.; Cerezo-Mota, R.; Cimadevilla, E.; Vera, C.S. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 2020, 12, 2959–2970. [Google Scholar] [CrossRef]
- Bauer, E.; Piazzarollo, C.B.; de Souza, J.S.; dos Santos, D.G. Relative importance of pathologies in the severity of facade degradation. J. Build. Pathol. Rehabil. 2020, 5, 7. [Google Scholar] [CrossRef]
- Kovats, R.S.; Valentini, R.; Bouwer, L.M.; Georgopoulou, E.; Jacob, D.; Martin, E.; Rounsevell, M.; Soussana, J.-F. Europe. In Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part B: Regional Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 1267–1326. [Google Scholar]
- Tuel, A.; Eltahir, E.A. Why is the Mediterranean a climate change hot spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Christensen, J.H.; Krishna Kumar, K.; Aldrian, E.; An, S.-I.; Cavalcanti, I.F.A.; de Castro, M.; Dong, W.; Goswami, P.; Hall, A.; Kanyanga, J.K.; et al. Climate Phenomena and their Relevance for Future Regional Climate Change. In Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 1217–1308. [Google Scholar]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A multi-model, multi-scenario, and multi-domain analysis of regional climate projections for the Mediterranean. Reg. Environ. Change 2019, 19, 2621–2635. [Google Scholar] [CrossRef] [Green Version]
- Ciscar, J.C.; Iglesias, A.; Feyen, L.; Szabó, L.; Van Regemorter, D.; Amelung, B.; Nicholls, R.; Watkiss, P.; Christensen, O.B.; Dankers, R.; et al. Physical and economic consequences of climate change in Europe. Proc. Natl. Acad. Sci. USA 2011, 108, 2678–2683. [Google Scholar] [CrossRef] [Green Version]
- Platon, S.; Driouech, F.; El Rhaz, K.; Lionello, P. The climate of the Mediterranean regions in the future climate projections. In The Mediterranean Region under Climate Change, A Scientific Update; IRD Éditions: Marseille, France, 2016; pp. 83–91. [Google Scholar]
- Fischer, E.M.; Knutti, R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 2014, 41, 547–554. [Google Scholar] [CrossRef]
- Molina, M.O.; Sánchez, E.; Gutiérrez, C. Future heat waves over the Mediterranean from and Euro-CORDEX regional climate model ensemble. Sci. Rep. 2020, 10, 8801. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.P.; Iglesias, A.; Manfred, L.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Change 2018, 8, 972–980. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.M.; Soares, P.M.; Lima, D.C.; Miranda, P.M. Mean and extreme temperatures in a warming climate: EURO CORDEX and WRF regional climate high-resolution projections for Portugal. Clim. Dyn. 2019, 52, 129–157. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- Andrade, C.; Fraga, H.; Santos, J.A. Climate change multi-model projections for temperature extremes in Portugal. Atmos. Sci. Lett. 2014, 15, 149–156. [Google Scholar] [CrossRef]
- Pereira, S.C.; Marta-Almeida, M.; Carvalho, A.C.; Rocha, A. Heat wave and cold spell changes in Iberia for a future climate scenario. Int. J. Climatol. 2017, 37, 5192–5205. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.; Schmidt, L.; Santos, F.D.; Delicado, A. Climate change research and policy in Portugal. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 199–217. [Google Scholar] [CrossRef] [Green Version]
- Soares, P.M.; Cardoso, R.M.; Lima, D.C.; Miranda, P.M. Future precipitation in Portugal: High-resolution projections using WRF model and EURO-CORDEX multi-model ensembles. Clim. Dyn. 2017, 49, 2503–2530. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Sobolowski, S.; Kjellström, E.; Stegehuis, A.; Watkiss, P.; Jacob, D. The European climate under a 2 °C global warming. Environ. Res. Lett. 2014, 9, 034006. [Google Scholar] [CrossRef]
- Nogueira, M.; Soares, P.M.; Tomé, R.; Cardoso, R.M. High-resolution multi-model projections of onshore wind resources over Portugal under a changing climate. Theor. Appl. Climatol. 2019, 136, 347–362. [Google Scholar] [CrossRef]
- Flores-Colen, I.; de Brito, J. Renders. In Materials for Construction and Civil Engineering; Springer International Publishing: Cham, Switzerland, 2014; pp. 53–122. [Google Scholar] [CrossRef]
- Nogueira, R.; Pinto, A.P.F.; Gomes, A. Design and behavior of traditional lime-based plasters and renders—Review and critical appraisal of strengths and weaknesses. Cem. Concr. Compos. 2018, 89, 192–204. [Google Scholar] [CrossRef]
- Carrajola, R.; Hawreen, A.; Flores-Colen, I.; de Brito, J. Fresh properties of cement-based thermal renders with fly ash, air lime and lightweight aggregates. J. Build. Eng. 2021, 34, 101868. [Google Scholar] [CrossRef]
- Paiva, H.; Esteves, L.P.; Cachim, P.B.; Ferreira, V.M. Rheology and hardened properties of single-coat render mortars with different types of water retaining agents. Constr. Build. Mater. 2009, 23, 1141–1146. [Google Scholar] [CrossRef]
- Stolz, C.M.; Masuero, A.B.; Pagnussat, D.T.; Kirchheim, A.P. Influence of substrate texture on the tensile and shear bond strength of rendering mortars. Constr. Build. Mater. 2016, 128, 298–307. [Google Scholar] [CrossRef]
- Pavía, S.; Treacy, E. A comparative study of the durability and behaviour of fat lime and feebly-hydraulic lime mortars. Mater. Struct. 2006, 39, 391–398. [Google Scholar] [CrossRef]
- Marvila, M.T.; de Azevedo, A.R.; Ferreira, R.L.; Vieira, C.M.F.; de Brito, J.; Adesina, A. Validation of alternative methodologies by using capillarity in the determination of porosity parameters of cement-lime mortars. Mater. Struct. 2022, 55, 19. [Google Scholar] [CrossRef]
- Maia, J.; Pedroso, M.; Ramos, N.M.; Flores-Colen, I.; Pereira, P.F.; Silva, L. Durability of a New Thermal Aerogel-Based Rendering System under Distinct Accelerated Aging Conditions. Materials 2021, 14, 5413. [Google Scholar] [CrossRef]
- Flores-Colen, I.; Silva, L.; de Brito, J.; de Freitas, V.P. In-service parameters from façade rendering mortars: Bulk density and open porosity determined from samples collected in situ. Struct. Surv. 2010, 28, 17–27. [Google Scholar] [CrossRef]
- Johansson, S.; Wadsö, L.; Sandin, K. Estimation of mould growth levels on rendered façades based on surface relative humidity and surface temperature measurements. Build. Environ. 2010, 45, 1153–1160. [Google Scholar] [CrossRef] [Green Version]
- Sá, G.; Sá, J.; de Brito, J.; Amaro, B. Statistical survey on inspection, diagnosis and repair of wall renderings. J. Civ. Eng. Manag. 2015, 21, 623–636. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, P.L.; de Brito, J. Quantifying environmental effects on cement-rendered facades: A comparison between different degradation indicators. Build. Environ. 2008, 43, 1818–1828. [Google Scholar] [CrossRef]
- Kus, H.; Nygren, K.; Norberg, P. In-use performance assessment of rendered autoclaved aerated concrete walls by long-term moisture monitoring. Build. Environ. 2004, 39, 677–687. [Google Scholar] [CrossRef]
- Corvo, F.; Reyes, J.; Valdes, C.; Villaseñor, F.; Cuesta, O.; Aguilar, D.; Quintana, P. Influence of air pollution and humidity on limestone materials degradation in historical buildings located in cities under tropical coastal climates. Water Air Soil Pollut. 2010, 205, 359–375. [Google Scholar] [CrossRef]
- Prieto, A.J.; Macías-Bernal, J.M.; Chávez, M.J.; Alejandre, F.J. Fuzzy modeling of the functional service life of architectural heritage buildings. J. Perform. Constr. Facil. 2017, 31, 04017041. [Google Scholar] [CrossRef]
- Silva, A.; Neves, L.C.; Gaspar, P.L.; de Brito, J. Probabilistic transition of condition: Render facades. Build. Res. Inf. 2016, 44, 301–318. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J. Service life of building envelopes: A critical literature review. J. Build. Eng. 2021, 44, 102646. [Google Scholar] [CrossRef]
- Pereira, C.; Silva, A.; de Brito, J.; Silvestre, J.D. Urgency of repair of building elements: Prediction and influencing factors in façade renders. Constr. Build. Mater. 2020, 249, 118743. [Google Scholar] [CrossRef]
- Auras, M.; Bundschuh, P.; Eichhorn, J.; Kirchner, D.; Mach, M.; Seewald, B.; Scheuvens, D.; Snethlage, R. Salt deposition and soiling of stone facades by traffic-induced immissions. Environ. Earth Sci. 2018, 77, 323. [Google Scholar] [CrossRef]
- Pereira, C.; de Brito, J.; Silvestre, J.D. Contribution of humidity to the degradation of façade claddings in current buildings. Eng. Fail. Anal. 2018, 90, 103–115. [Google Scholar] [CrossRef]
- Crocker, C.R. Influence of Orientation on Exterior Cladding, Technical Report CBD 126. National Research Council Canada: Ottawa, ON, Canada, 1970. [Google Scholar]
- Gaspar, P.; de Brito, J. Mapping defect sensitivity in external mortar renders. Constr. Build. Mater. 2005, 19, 571–578. [Google Scholar] [CrossRef]
- Lubelli, B.; Van Hees, R.P.J.; Groot, C.J.W.P. Sodium chloride crystallization in a “salt transporting” restoration plaster. Cem. Concr. Res. 2006, 36, 1467–1474. [Google Scholar] [CrossRef]
- Flores-Colen, I.; de Brito, J.; de Freitas, V.P. Stains in facades’ rendering –Diagnosis and maintenance techniques’ classification. Constr. Build. Mater. 2008, 22, 211–221. [Google Scholar] [CrossRef]
- Zehnder, K.; Arnold, A. Crystal growth in salt efflorescence. J. Cryst. Growth 1989, 97, 513–521. [Google Scholar] [CrossRef]
- Bochen, J.; Słomka-Słupik, B.; Ślusarek, J. Experimental study on salt crystallization in plasters subjected to simulate groundwater capillary rise. Constr. Build. Mater. 2021, 308, 125039. [Google Scholar] [CrossRef]
- Dow, C.; Glasser, F.P. Calcium carbonate efflorescence on Portland cement and building materials. Cem. Concr. Res. 2003, 33, 147–154. [Google Scholar] [CrossRef]
- Tuna, J.; Feiteira, J.; Flores-Colen, I.; Pereira, M.F.; de Brito, J. In situ characterization of damaging soluble salts in wall construction materials. J. Perform. Constr. Facil. 2014, 29, 04014127. [Google Scholar] [CrossRef]
- Varas, M.J.; de Buergo, M.A.; Perez-Monserrat, E.; Fort, R. Decay of the restoration render mortar of the church of San Manuel and San Benito, Madrid, Spain: Results from optical and electron microscopy. Mater. Charact. 2008, 59, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Pires, R.; de Brito, J.; Amaro, B. Statistical survey of the inspection, diagnosis and repair of painted rendered façades. Struct. Infrastruct. Eng. 2015, 11, 605–618. [Google Scholar] [CrossRef]
- Parracha, J.L.; Borsoi, G.; Veiga, R.; Flores-Colen, I.; Nunes, L.; Garcia, A.R.; Faria, P. Effects of hygrothermal, UV and SO2 accelerated ageing on the durability of ETICS in urban environments. Build. Environ. 2021, 204, 108151. [Google Scholar] [CrossRef]
- Bertelsen, I.M.G.; Kragh, C.; Cardinaud, G.; Ottosen, L.M.; Fischer, G. Quantification of plastic shrinkage cracking in mortars using digital image correlation. Cem. Concr. Res. 2019, 123, 105761. [Google Scholar] [CrossRef]
- Houst, Y.F. Carbonation shrinkage of hydrated cement paste. In Proceedings of the 4th CANMET/ACI International Conference on Durability of Concrete, CANMET, Ottawa, ON, Canada, 1 January 1997; pp. 481–491. [Google Scholar]
- Metalssi, O.O.; Aït-Mokhtar, A.; Turcry, P.; Ruot, B. Consequences of carbonation on microstructure and drying shrinkage of a mortar with cellulose ether. Constr. Build. Mater. 2012, 34, 218–225. [Google Scholar] [CrossRef]
- Roy, S.K.; Northwood, D.O.; Poh, K.B. Effect of plastering on the carbonation of a 19-year-old reinforced concrete building. Constr. Build. Mater. 1996, 10, 267–272. [Google Scholar] [CrossRef]
- Saha, M.; Eckelman, M.J. Urban scale mapping of concrete degradation from projected climate change. Urban Clim. 2014, 9, 101–114. [Google Scholar] [CrossRef]
- Andrade, C. Evaluation of the degree of carbonation of concretes in three environments. Constr. Build. Mater. 2020, 230, 116804. [Google Scholar] [CrossRef]
- Wang, D.; Noguchi, T.; Nozaki, T.; Higo, Y. Investigation of the carbonation performance of cement-based materials under high temperatures. Constr. Build. Mater. 2021, 272, 121634. [Google Scholar] [CrossRef]
- Drouet, E.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.; Bourbon, X. Carbonation of hardened cement pastes: Influence of temperature. Cem. Concr. Res. 2019, 115, 445–459. [Google Scholar] [CrossRef] [Green Version]
- Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D. Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Maia, J.; Ramos, N.M.; Veiga, R. A new durability assessment methodology of thermal mortars applied in multilayer rendering systems. Constr. Build. Mater. 2019, 222, 654–663. [Google Scholar] [CrossRef]
- Nenevê, B.L.; Costa, M.R.; Medeiros-Junior, R.A. Alternative small-scale accelerated test to measure the effect of thermal shock on rendering mortar properties. J. Build. Eng. 2022, 46, 103807. [Google Scholar] [CrossRef]
- Ioannou, I.; Hoff, W.D. Water repellent influence on salt crystallisation in masonry. Proc. Inst. Civ. Eng.—Constr. Mater. 2008, 161, 17–23. [Google Scholar] [CrossRef]
- Marszałek, M.; Dudek, K.; Gaweł, A. Cement render and mortar and their damages due to salt crystallization in the Holy Trinity Church, Dominicans Monastery in Cracow, Poland. Minerals 2020, 10, 641. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Effects of gypsum formation on the performance of cement mortars during external sulfate attack. Cem. Concr. Res. 2003, 33, 325–332. [Google Scholar] [CrossRef]
- Cultrone, G.; Sebastian, E. Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials. Environ. Geol. 2008, 56, 729–740. [Google Scholar] [CrossRef]
- Shi, C.; Wang, D.; Behnood, A. Review of thaumasite sulfate attack on cement mortar and concrete. J. Mater. Civ. Eng. 2012, 24, 1450–1460. [Google Scholar] [CrossRef]
- Brimblecombe, P. The Effects of Air Pollution on the Built Environment; Imperial College Press: London, UK, 2003. [Google Scholar]
- Angulo-Ramírez, D.E.; de Gutiérrez, R.M.; Medeiros, M. Alkali-activated Portland blast furnace slag cement mortars: Performance to alkali-aggregate reaction. Constr. Build. Mater. 2018, 179, 49–56. [Google Scholar] [CrossRef]
- Deschenes Jr, R.A.; Giannini, E.R.; Drimalas, T.; Fournier, B.; Hale, W.M. Effects of Moisture, Temperature, and Freezing and Thawing on Alkali-Silica Reaction. ACI Mater. J. 2018, 115, M51. [Google Scholar] [CrossRef]
- Fournier, B.; Bérubé, M.A. Alkali-aggregate reaction in concrete: A review of basic concepts and engineering implications. Can. J. Civ. Eng. 2000, 27, 167–191. [Google Scholar] [CrossRef]
- De Grazia, M.T.; Goshayeshi, N.; Gorga, R.; Sanchez, L.F.M.; Santos, A.C.; Souza, D.J. Comprehensive semi-empirical approach to describe alkali aggregate reaction (AAR) induced expansion in the laboratory. J. Build. Eng. 2021, 40, 102298. [Google Scholar] [CrossRef]
- Grubeša, I.N.; Marković, B.; Vračević, M.; Tunkiewicz, M.; Szenti, I.; Kukovecz, Á. Pore structure as a response to the freeze/thaw resistance of mortars. Materials 2019, 12, 3196. [Google Scholar] [CrossRef] [Green Version]
- Frazier, S.D.; Matar, M.G.; Osio-Norgaard, J.; Aday, A.N.; Delesky, E.A.; Srubar III, W.V. Inhibiting freeze-thaw damage in cement paste and concrete by mimicking nature’s antifreeze. Cell Rep. Phys. Sci. 2020, 1, 100060. [Google Scholar] [CrossRef]
- Lubelli, B.; Nijland, T.G.; Van Hees, R.P.J.; Hacquebord, A. Effect of mixed in crystallization inhibitor on resistance of lime–cement mortar against NaCl crystallization. Constr. Build. Mater. 2010, 24, 2466–2472. [Google Scholar] [CrossRef]
- Gonçalves, T.D.; Rodrigues, J.D.; Abreu, M.M.; Esteves, A.M.; Santos Silva, A. Causes of salt decay and repair of plasters and renders of five historic buildings in Portugal. In Heritage, Weathering and Conservation, Proceedings of the International Heritage, Weathering and Conservation Conference (HWC-2006), Madrid, Spain, 21-24 June 2006; Taylor & Francis Group: London, UK, 2006; pp. 273–284. [Google Scholar]
- Falchi, L.; Zendri, E.; Capovilla, E.; Romagnoni, P.; de Bei, M. The behaviour of water-repellent mortars with regards to salt crystallization: From mortar specimens to masonry/render systems. Mater. Struct. 2017, 50, 66. [Google Scholar] [CrossRef]
- Fragata, A.; Veiga, M.R.; Velosa, A. Substitution ventilated render systems for historic masonry: Salt crystallization tests evaluation. Constr. Build. Mater. 2016, 102, 592–600. [Google Scholar] [CrossRef]
- Hossain, K.M.; Lachemi, M.; Şahmaran, M. Performance of cementitious building renders incorporating natural and industrial pozzolans under aggressive airborne marine salts. Cem. Concr. Compos. 2009, 31, 358–368. [Google Scholar] [CrossRef]
- Pel, L.; Huinink, H.; Kopinga, K.; Van Hees, R.P.J.; Adan, O.C.G. Efflorescence pathway diagram: Understanding salt weathering. Constr. Build. Mater. 2004, 18, 309–313. [Google Scholar] [CrossRef]
- Arnold, A.; Zehnder, K. Monitoring wall paintings affected by soluble salts. In The Conservation of Wall Paintings, Proceedings of a Symposium Organized by the Courtauld Institute of Art and the Getty Conservation Institute, London, UK 13–16 July 1987; The J. Paul Getty Trust: Singapore, 1991; pp. 103–135. [Google Scholar]
- Chwast, J.; Janssen, H.; Elsen, J. Gypsum efflorescence under laboratory conditions: Preliminary study. In Proceedings of the 3rd International Conference on Salt Weathering of Buildings and Stone Sculptures, Brussels, Belgium, 14–16 October 2014; Royal Institute for Cultural Heritage, Peeters Press: Brussels, Belgium, 2014; pp. 117–131. [Google Scholar]
- Madariaga, J.M.; Maguregui, M.; De Vallejuelo, S.F.O.; Knuutinen, U.; Castro, K.; Martinez-Arkarazo, I.; Pitarch, A. In situ analysis with portable Raman and ED-XRF spectrometers for the diagnosis of the formation of efflorescence on walls and wall paintings of the Insula IX 3 (Pompeii, Italy). J. Raman Spectrosc. 2014, 45, 1059–1067. [Google Scholar] [CrossRef]
- Zehnder, K. Long-term monitoring of wall paintings affected by soluble salts. Environ. Geol. 2006, 52, 353–367. [Google Scholar] [CrossRef]
- Bais, A.F.; McKenzie, R.L.; Bernhard, G.; Aucamp, P.J.; Ilyas, M.; Madronich, S.; Tourpali, K. Ozone depletion and climate change: Impacts on UV radiation. Photochem. Photobiol. Sci. 2014, 14, 19–52. [Google Scholar] [CrossRef]
- Beyene, M.; Snyder, A.; Lee, R.J.; Blaszkiewicz, M. Alkali Silica Reaction (ASR) as a root cause of distress in a concrete made from Alkali Carbonate Reaction (ACR) potentially susceptible aggregates. Cem. Concr. Res. 2013, 51, 85–95. [Google Scholar] [CrossRef]
- Xystouris, K.; Apostolidou, E.; Kylili, A.; Fokaides, P.A. The Effect of Climate Change on Weathering: Evidences from Heritage Buildings under Subtropical Conditions. J. Sustain. Archit. Civ. Eng. 2021, 29, 232–245. [Google Scholar] [CrossRef]
- Jia, M.; Liang, J.; He, L.; Zhao, X.; Simon, S. Hydrophobic and hydrophilic SiO2-based hybrids in the protection of sandstone for anti-salt damage. J. Cult. Herit. 2019, 40, 80–91. [Google Scholar] [CrossRef]
- Kourkoulis, S.K. Fracture and Failure of Natural Building Stones: Applications in the Restoration of Ancient Monuments; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Cao, J.; Chung, D.D.L. Damage evolution during freeze–thaw cycling of cement mortar, studied by electrical resistivity measurement. Cem. Concr. Res. 2002, 32, 1657–1661. [Google Scholar] [CrossRef]
- Pérez-Bella, J.M.; Domínguez-Hernández, J.; Rodríguez-Soria, B.; del Coz-Díaz, J.J.; Cano-Suñén, E. Combined use of wind-driven rain and wind pressure to define water penetration risk into building façades: The Spanish case. Build. Environ. 2013, 64, 46–56. [Google Scholar] [CrossRef]
- Haagenrud, S.; Krigsvoll, G.; Lisø, K.R.; Thiis, T.; Sjöström, C. Environmental characterisation and mapping with respect to durability. In Proceedings of the 10 DBMC International Conference on Durability of Building Materials and Components, Lyon, France, 17–20 April 2005. [Google Scholar]
- Westberg, K.; Norén, J.; Kus, H. On using available environmental data in service life estimations. Build. Res. Inf. 2001, 29, 428–439. [Google Scholar] [CrossRef]
- Ferreira, C.; Barrelas, J.; Silva, A.; de Brito, J.; Dias, I.S.; Flores-Colen, I. Impact of environmental exposure conditions on the maintenance of facades’ claddings. Buildings 2021, 11, 138. [Google Scholar] [CrossRef]
- Prieto, A.J.; Verichev, K.; Silva, A.; de Brito, J. On the impacts of climate change on the functional deterioration of heritage buildings in South Chile. Build. Environ. 2020, 183, 107138. [Google Scholar] [CrossRef]
Climate Agent | General Projections | Main Reference |
---|---|---|
Temperature | Rise | [31] |
Heat waves intensification | ||
Precipitation | Decline | [37] |
Rainfall events intensification | ||
Wind (WED) | Decline | [39] |
Defects | Climate Agents’ Projections | Expectations | ||
---|---|---|---|---|
Stains | Dirt | wind▼ wind-rain action▼ temperature▲ | Dirt and pollution particles ↓ less transport and deposition ↓ less adherence due to reduction of moisture from rainwater on the surface shorter moisture cycles ↓ less washing due to reduction of water runoff ↓ less accumulation due to shorter and less consecutive moisture cycles | ↓ |
Biological growth | wind▼ wind-rain action▼ temperature▲ | Living organisms ↓ less transport and deposition ↓ less adherence and growth due to reduction of moisture from rainwater on the surface shorter moisture cycles ↓ less accumulation due to shorter and less consecutive moisture cycles | ↓ | |
Efflorescence | wind▼ wind-rain action▼ humidity▼▼ temperature▲ | Soluble salts ↓ less dissolution due to reduction of rainwater in the render shorter moisture cycles ↕ less or more crystallization and deposition due to ↓ reduction of dissolution probability ↑ faster drying process and evaporation | ↕− | |
Stains | Discolouration | wind▼ wind-rain action▼ temperature▲ solar radiation▼ | Chemical components ↓ less leaching potential ↓ less reaction to pollutants due to reduction of transport, deposition and adherence of particles ↓ less photo degradation | ↓ |
Cracks | Mapped cracking | wind▼ wind-rain action▼ humidity▼▼ temperature▲ | Fresh render curing process ↑ more shrinkage due to faster evaporation of water from the mix Hardened render ↕ less or more shrinkage by carbonation due to ↓ less dissolution of chemical componds due to reduction of rainwater in the render ↑ deeper CO2 penetration due to reduction of rainwater in the render ↑ deeper and faster CO2 penetration by temperature warming Hardened render ↕ less or more expansion by alkali-aggregate reaction due to ↓ less swelling of alkali-silica gel due to reduction of rainwater in the render ↑ more ultimate thermal induced expansion | ↕+ |
Oriented cracking | temperature▲ | Hardened render ↑ more differential movements of hygrothermal nature due to increase of thermal expansion increase of dimensional change by intense warming | ↑ | |
Render level cracking | wind-rain action▼ temperature▲ | Hardened render ↑ more thermal expansion and dimensional change by intense warming ↓ less shrinkage due to decrease of cooling by wind-rain action decrease of temperature gradient within the render | ↕+ | |
Pore level cracking | wind▼ wind-rain action▼ humidity▼▼ temperature▲ | Soluble salts ↓ less transport and deposition ↓ less dissolution potential due to reduction of rainwater in the render shorter moisture cycles ↕ less or more crystallization and deposition due to ↓ reduction of dissolution probability ↑ faster drying process and evaporation Water in the render ↓ less freeze-thaw potential | ↕− | |
Loss of adhesion | Crumbling and spalling | wind▼ wind-rain action▼ humidity▼▼ temperature▲ | Soluble salts ↓ less transport and deposition ↓ less dissolution potential due to reduction of rainwater in the render shorter moisture cycles ↕ less or more crystallization and deposition due to ↓ reduction of dissolution probability ↑ faster drying process and evaporation Hardened render ↕ less or more expansion by alkali-aggregate reaction due to ↓ less swelling of alkali-silica gel due to reduction of rainwater in the render ↑ more ultimate thermal induced expansion Water in the render ↓ less freeze-thaw potential Fine particles ↓ less washing | ↕− |
Prior triggering defects: cracks and detachment of the outer render layer | + | |||
Loss of adhesion | Bulging | wind-rain action▼ temperature▲ | Hardened render ↓ less wetting ↑ more deformations of hygrothermal nature due to increase of thermal expansion ↓ less damp weight in the render | ↕+ |
wind▼ wind-rain action▼ humidity▼▼ temperature▲ | The degradation mechanism based on the dissolution and crystallization of salts is applicable | ↕− | ||
Prior triggering defects: cracks | + | |||
Detachment | wind▼ wind-rain action▼ humidity▼▼ temperature▲ | The degradation mechanism based on the dissolution and crystallization of salts is applicable | ↕− | |
wind-rain action▼ temperature▲ | The degradation mechanism based on the hardened render’s deformation of hygrothermal nature is applicable | ↕+ | ||
Prior triggering defects: cracks and bulging | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrelas, J.; Silva, A.; de Brito, J.; Tadeu, A. Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature. Buildings 2023, 13, 352. https://doi.org/10.3390/buildings13020352
Barrelas J, Silva A, de Brito J, Tadeu A. Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature. Buildings. 2023; 13(2):352. https://doi.org/10.3390/buildings13020352
Chicago/Turabian StyleBarrelas, Joana, Ana Silva, Jorge de Brito, and António Tadeu. 2023. "Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature" Buildings 13, no. 2: 352. https://doi.org/10.3390/buildings13020352
APA StyleBarrelas, J., Silva, A., de Brito, J., & Tadeu, A. (2023). Effects of Climate Change on Rendered Façades: Expected Degradation in a Progressively Warmer and Drier Climate—A Review Based on the Literature. Buildings, 13(2), 352. https://doi.org/10.3390/buildings13020352