Measuring Comprehensive Production Efficiency of the Chinese Construction Industry: A Bootstrap-DEA-Malmquist Approach
Abstract
:1. Introduction
2. Literature Review
2.1. Productivity in the Construction Industry
2.2. Indicator Selection
2.3. Research Gaps
3. Research Methodology
3.1. Research Framework
3.1.1. Evaluation Index System Establishment
- (1)
- Principle of indicator selection
- (2)
- Input and output indicator selection
3.1.2. Evaluation Model Establishment and Data Analysis
- (1)
- DEA
- (2)
- Bootstrap-DEA correction measure model
- (3)
- Malmquist exponential decomposition method
3.1.3. Comprehensive Productivity Calculation and Visualization
3.2. Case Study
4. Empirical Results
4.1. Static Production Efficiency Comparison Analysis
4.2. Static Production Efficiency Measurement
4.3. Dynamic Production Efficiency Measures
4.4. Comprehensive Production Efficiency Measurement
4.5. Comparison of Regional Construction Industry Productivity Index Differences
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, Z.; Yu, A.T.W.; Shen, L. Investigating the determinants of contractor’s construction and demolition waste management behavior in Mainland China. Waste Manag. 2017, 60, 290–300. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, X.; Song, Y. Green Building Efficiency and Influencing Factors of Transportation Infrastructure in China: Based on Three-Stage Super-Efficiency SBM-DEA and Tobit Models. Buildings 2022, 12, 623. [Google Scholar] [CrossRef]
- You, Z.J. Intelligent construction: Unlocking opportunities for the digital transformation of China’s construction industry. Eng. Constr. Archit. Manag. 2023. [Google Scholar] [CrossRef]
- Jiang, H.; Jiang, P.; Wang, D.; Wu, J. Can smart city construction facilitate green total factor productivity? A quasi-natural experiment based on China’s pilot smart city. Sustain. Cities Soc. 2021, 69, 102809. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, G.; Zhang, Y.; Mu, P.; Wang, H. Total factor productivity growth and its contribution: Lessons from the Chinese construction industry pre- and post-2008 financial crisis. Eng. Constr. Archit. Manag. 2020, 27, 2911–2929. [Google Scholar] [CrossRef]
- Pearce, D. The Social and Economic Value of Construction: The Construction Industry’s Contribution to Sustainable Development. 2003. Available online: www.ncrisp.org.uk (accessed on 18 December 2021).
- Li, J.; Wen, X. Research on the Relationship between the Allocation Efficiency and Influencing Factors of China’s Science and Technology Finance. China Soft Sci. 2019, 1, 164–174. (In Chinese) [Google Scholar]
- Xu, X.; Wang, Y.; Tao, L. Comprehensive evaluation of sustainable development of regional construction industry in China. J. Clean. Prod. 2019, 211, 1078–1087. [Google Scholar] [CrossRef]
- Tang, Y.C.; Xia, N.N.; Varga, L.; Tan, Y.T.; Hua, X.J.; Li, Q.M. Sustainable international competitiveness of regional construction industry: Spatiotemporal evolution and influential factor analysis in China. J. Clean. Prod. 2022, 337, 130592. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Abbasi, M.; Deng, X. Evaluating the Performance of the Suppliers Using Hybrid DEA-OPA Model: A Sustainable Development Perspective. Group Decis. Negot. 2022, 31, 335–362. [Google Scholar] [CrossRef]
- Wu, P.; Ma, J.; Guo, X. Efficiency evaluation and influencing factors analysis of fiscal and taxation policies: A method combining DEA-AHP and CD function. Ann. Oper. Res. 2022, 309, 325–345. [Google Scholar] [CrossRef]
- Nong, N.-M.T. An application of delphi and dea to performance efficiency assessment of retail stores in fashion industry. Asian J. Shipp. Logist. 2022, 38, 135–142. [Google Scholar] [CrossRef]
- Chen, Q.; Kamran, S.M.; Fan, H. Real estate investment and energy efficiency: Evidence from China’s policy experiment. J. Clean. Prod. 2019, 217, 440–447. [Google Scholar] [CrossRef]
- Yuan, F.; Tang, M.; Hong, J. Efficiency estimation and reduction potential of the Chinese construction industry via SE-DEA and artificial neural network. Eng. Constr. Archit. Manag. 2020, 27, 1533–1552. [Google Scholar] [CrossRef]
- Ma, D.L.; Zhao, N.; Zhang, F.T.; Xiao, Y.P.; Guo, Z.M.; Liu, C.L. Green Total-Factor Energy Efficiency of Construction Industry and Its Driving Factors: Spatial-Temporal Heterogeneity of Yangtze River Economic Belt in China. Int. J. Environ. Res. Public Health 2022, 19, 9972. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, Z.; Li, X.; Feng, W.; Li, J. Assessing the effects of technological progress on energy efficiency in the construction industry: A case of China. J. Clean. Prod. 2019, 238, 117908. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.F.; Liu, B.; Li, H.Y.; Guo, Y.M.; Guo, X.R. Regional green total factor performance analysis of China’s construction industry based on a unified framework combining static and dynamic indexes. Environ. Sci. Pollut. Res. 2022, 1–15. [Google Scholar] [CrossRef]
- Luo, L.; Chen, H.; Yang, Y.; Wu, G.D.; Chen, L. A three-stage network DEA approach for performance evaluation of BIM application in construction projects. Technol. Soc. 2022, 71, 102105. [Google Scholar] [CrossRef]
- Liu, S.; Tian, X.; Cai, W.; Chen, W.; Wang, Y. How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective. Appl. Energy 2018, 211, 64–75. [Google Scholar]
- Nazarko, J.; Chodakowska, E. Measuring productivity of construction industry in Europe with Data Envelopment Analysis. Procedia Eng. 2015, 122, 204–212. [Google Scholar] [CrossRef] [Green Version]
- Sala-Garrido, R.; Mocholi-Arce, M.; Maziotis, A.; Molinos-Senante, M. Benchmarking the performance of water companies for regulatory purposes to improve its sustainability. Npj Clean Water 2023, 6, 1. [Google Scholar] [CrossRef]
- Bal, D.P.; Patra, S.K.; Mohanty, S. Impact of sectoral decompositions of electricity consumption on economic growth in India: Evidence from SVAR framework. Environ. Sci. Pollut. Res. 2022, 29, 51554–51566. [Google Scholar] [CrossRef] [PubMed]
- Sarac, S.B.; Atici, K.B.; Ulucan, A. Elasticity measurement on multiple levels of DEA frontiers: An application to agriculture. J. Product. Anal. 2022, 57, 313–324. [Google Scholar] [CrossRef]
- Huang, M.; Xia, T.; Chen, Z.; Pan, E.; Xi, L. A DEA integrated grey factor analysis approach for efficiency evaluation and ranking in uncertain systems. Comput. Ind. Eng. 2021, 162, 107681. [Google Scholar] [CrossRef]
- Tu, Z.; Qiao, L.; Nowak, R.; Lv, H.; Lv, Z. Digital Twins-Based Automated Pilot for Energy-Efficiency Assessment of Intelligent Transportation Infrastructure. IEEE Trans. Intell. Transp. Syst. 2022, 23, 22320–22330. [Google Scholar] [CrossRef]
- Zhou, L.J.; Zhang, R.C.; Li, A.J. New concepts for bootstrap-based cross-efficiency and relative weight analysis and an application to China’s governance-finance-innovation-sustainability system. J. Clean. Prod. 2022, 379, 118360. [Google Scholar] [CrossRef]
- Xue, Y.; Mohsin, M.; Taghizadeh-Hesary, F.; Iqbal, N. Environmental Performance Assessment of Energy-Consuming Sectors Through Novel Data Envelopment Analysis. Front. Energy Res. 2022, 9, 868. [Google Scholar] [CrossRef]
- Xia, B.; Dong, S.C.; Li, Z.H.; Zhao, M.Y.; Sun, D.Q.; Zhang, W.B.; Li, Y. Eco-Efficiency and Its Drivers in Tourism Sectors with Respect to Carbon Emissions from the Supply Chain: An Integrated EEIO and DEA Approach. Int. J. Environ. Res. Public Health 2022, 19, 6951. [Google Scholar] [CrossRef]
- Chen, L.; Gao, X.; Hua, C.; Gong, S.; Yue, A. Evolutionary process of promoting green building technologies adoption in China: A perspective of government. J. Clean. Prod. 2020, 279, 123607. [Google Scholar] [CrossRef]
- Li, J.; Alburaikan, A.; de Fatima Muniz, R. Evaluation of safety-based performance in construction projects with neutrosophic data envelopment analysis. Manag. Decis. 2022, 61, 552–568. [Google Scholar] [CrossRef]
- Qu, J.J.; Wang, B.H.; Liu, X.H. A modified super-efficiency network data envelopment analysis: Assessing regional sustainability performance in China. Socio-Econ. Plan. Sci. 2022, 82, 101262. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Profitability performance assessment in the Australian construction industry: A global relational two-stage DEA method. Constr. Manag. Econ. 2016, 34, 147–159. [Google Scholar] [CrossRef]
- Chancellor, W.; Lu, W. A Regional and Provincial Productivity Analysis of the Chinese Construction Industry: 1995 to 2012. J. Constr. Eng. Manag. 2016, 142, 05016013. [Google Scholar] [CrossRef] [Green Version]
- Huo, T.; Ren, H.; Cai, W.; Feng, W.; Tang, M.; Zhou, N. The total-factor energy productivity growth of China’s construction industry: Evidence from the regional level. Nat. Hazards 2018, 92, 1593–1616. [Google Scholar] [CrossRef]
- Li, Q.; Song, Y. Productivity Growth in Chinese Construction Industry Considering Solid Wastes Generation; Chen, W.Z., Xu, X.P., Dai, P.Q., Chen, Y.L., Eds.; Advanced Manufacturing Technology: Lynchburg, VA, USA, 2012; pp. 3316–3319. [Google Scholar]
- Tong, L.; Chen, Y.; Jin, L.; Zheng, X. Regional Sustainable Performance of Construction Industry in China from the Perspective of Input and Output: Considering Occupational Safety. Buildings 2022, 12, 618. [Google Scholar] [CrossRef]
- Li, Y.; Lin, J.; Cui, Z.; Wang, C.; Li, G. Workforce productivity evaluation of the US construction industry from 2006 to 2016. Eng. Constr. Archit. Manag. 2021, 28, 55–81. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, L.; Zhu, Z. The environmental-adjusted energy efficiency of China’s construction industry: A three-stage undesirable SBM-DEA model. Environ. Sci. Pollut. Res. 2021, 28, 58442–58455. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.S.; Chen, X.H.; Wang, X.Q.; Chen, Y. Analysis on the changing trend and influencing factors of TFP about the regional construction industry in China. Xitong Gongcheng Lilun Yu Shijian/Syst. Eng. Theory Pract. 2013, 33, 1041–1049. [Google Scholar]
- Liao, H.; Long, Y.; Tang, M.; Streimikiene, D.; Lev, B. Early lung cancer screening using double normalization-based multi-aggregation (DNMA) and Delphi methods with hesitant fuzzy information. Comput. Ind. Eng. 2019, 136, 453–463. [Google Scholar] [CrossRef]
- Huang, T.Y.; Chen, W.K.; Nalluri, V.; Huynh-Cam, T.T. Evaluating E-Teaching Adoption Criteria for Indian Educational Organizations Using Fuzzy Delphi-TOPSIS Approach. Mathematics 2022, 10, 2175. [Google Scholar] [CrossRef]
- Zhang, X.F.; Su, J.F.; Herrera-Viedma, E. A decision support model for estimating participation-oriented designs of crowdsourcing platforms based on quality function deployment. Expert Syst. Appl. 2022, 202, 117308. [Google Scholar] [CrossRef]
- Envelope, S. Foundations of Operations Research: From Linear Programming to Data Envelopment Analysis. Eur. J. Oper. Res. 2022, 306, 1069–1080. [Google Scholar] [CrossRef]
- Song, M.-L.; Zhang, L.-L.; Liu, W.; Fisher, R. Bootstrap-DEA analysis of BRICS’ energy efficiency based on small sample data. Appl. Energy 2013, 112, 1049–1055. [Google Scholar] [CrossRef]
- Wijesiri, M.; Vigano, L.; Meoli, M. Efficiency of microfinance institutions in Sri Lanka: A two-stage double bootstrap DEA approach. Econ. Model. 2015, 47, 74–83. [Google Scholar] [CrossRef]
- Banker, R.D.; Cooper, W.W.; Seiford, L.M.; Thrall, R.M.; Zhu, J. Returns to scale in different DEA models. Eur. J. Oper. Res. 2004, 154, 345–362. [Google Scholar] [CrossRef]
- Cheng, M.; Lu, Y.; Zhu, H.; Xiao, J. Measuring CO2 emissions performance of China’s construction industry: A global Malmquist index analysis. Environ. Impact Assess. Rev. 2022, 92, 106673. [Google Scholar] [CrossRef]
- Camanho, A.S.; Stumbriene, D.; Barbosa, F.; Jakaitiene, A. The assessment of performance trends and convergence in education and training systems of European countries. Eur. J. Oper. Res. 2023, 305, 356–372. [Google Scholar] [CrossRef]
- Liu, W.; He, Z.; Chen, H.; Lin, C. Comparative Analysis Chinese Green Buildings’ of Input-Output Effect Based on Data Envelope Analysis. Buildings 2022, 12, 659. [Google Scholar] [CrossRef]
- Fare, R.; Grosskopf, S.; Norris, M.; Zhang, Z. Productivity Growth, Technical Progress, And Efficiency Change in Industrialized Countries. Am. Econ. Rev. 1994, 84, 66–83. [Google Scholar]
- Chen, K.; Song, Y.; Pan, J.; Yang, G. Measuring destocking performance of the Chinese real estate industry: A DEA-Malmquist approach. Socio-Econ. Plan. Sci. 2019, 69, 100691. [Google Scholar] [CrossRef]
- Trafimow, D. Confidence intervals, precision and confounding. New Ideas Psychol. 2018, 50, 48–53. [Google Scholar] [CrossRef]
References | Research Objects | Input Indicators | Output Indicators | Methods |
---|---|---|---|---|
Zhang et al. (2018) [15] | China’s construction industry | Total wages of construction workers, number of engaged persons, total assets, total power of machinery, and equipment owned | Engineering settlement profits, floor space of building, gross output value, and total profits | 3-stage DEA method |
Hu and Liu (2016) [32] | Australian construction industry | Gross value added | Gross operating surplus and mixed income | 2-stage DEA method |
Chancellor and Lu (2016) [33] | China’s construction industry | Number of construction workers and staff at year end, paid-up total capital, total assets, total power of machinery, and equipment owned | Total floor space of buildings completed and total output value of construction | DEA |
Wang et al. (2020) [5] | China’s construction industry | Fixed assets and number of employees | Total value added | Solow residual approach |
Yuan et al. (2020) [14] | China’s construction industry | Number of employed persons, total assets, total capacity of machinery, and equipment owned | Gross product of the construction industry and newly built floor area | Super-efficiency-DEA |
Yang et al. (2019) [26] | China’s construction industry | Built-up area, total number of employees, capital stock, energy consumption, and total water usage | Industrial solid wastes produced, industrial waste gas emissions, gross domestic product, et al. | DEA and DDFs |
Huo et al. (2018) [34] | China’s construction industry | Labor force, total assets of construction enterprises, total capacity of machinery, equipment owned, and energy | Gross output value in the construction industry and floor space of buildings under construction | Luenberger productivity index and DDFs |
Li and Song (2012) [35] | China’s construction industry | Labor force and assets of construction enterprises | Value added and total solid waste | Malmquist–Luenberger |
Tong et al. (2022) [36] | China’s construction industry | Capital, labor, energy, machinery, material | Total output value, total pretax profit, and floor space of buildings, undesirable environmental outputs | Windows-Super-SBM model |
Li et al. (2021) [37] | US construction industry | Number of workers and managers per year for each state | GDP of the construction industry | DEA-Malmquist |
Chen et al. (2021) [38] | China’s construction industry | Capital, labor, energy, material | Gross output value of construction, total profits, and completed floor area, undesirable environmental outputs | 3-stage SBM-DEA model |
Variable | Coefficient | Variable | Coefficient |
---|---|---|---|
Added | 0.036 ** | Completed | 32.708 |
(0.017) | (13.611) | ||
Enterprise | 208.545 *** | Profit | 0.215 |
(46.282) | (1.582) | ||
Employees | −0.025 | Constant | −141,616.858 |
(0.129) | (118,006.538) | ||
Assets | 0.017 *** | Observations | 248 |
(0.002) | R-squared | 0.900 |
DMU | Average Efficiency | Precorrection Ranking | Corrected Average Efficiency | Revised Ranking | Average Bias | Confidence Interval Lower Limit | Confidence Interval Upper Limit |
---|---|---|---|---|---|---|---|
Beijing | 0.2359 | 28 | 0.2190 | 28 | 0.0169 | 0.1748 | 0.2954 |
Tianjin | 0.2268 | 29 | 0.2079 | 29 | 0.0189 | 0.1546 | 0.2099 |
Hebei | 0.4827 | 15 | 0.4543 | 14 | 0.0283 | 0.2386 | 0.3817 |
Shanxi | 0.2032 | 31 | 0.1856 | 31 | 0.0176 | 0.1257 | 0.1668 |
Inner Mongolia | 0.4629 | 17 | 0.4427 | 15 | 0.0203 | 0.2026 | 0.2815 |
Liaoning | 0.3724 | 23 | 0.3296 | 23 | 0.0428 | 0.1186 | 0.1622 |
Jilin | 0.4296 | 19 | 0.4228 | 17 | 0.0068 | 0.1959 | 0.2688 |
Heilongjiang | 0.3290 | 26 | 0.3228 | 25 | 0.0061 | 0.1572 | 0.2123 |
Shanghai | 0.2464 | 27 | 0.2268 | 27 | 0.0196 | 0.1872 | 0.2844 |
Jiang Su | 1.0000 | 1 | 0.6741 | 6 | 0.3259 | 0.3992 | 0.9531 |
Zhejiang | 1.0000 | 1 | 0.6477 | 8 | 0.3523 | 0.4126 | 0.9425 |
Anhui | 0.5932 | 10 | 0.5403 | 9 | 0.0528 | 0.2447 | 0.5007 |
Fujian | 1.0000 | 1 | 0.9365 | 1 | 0.0598 | 0.6947 | 1.3249 |
Jiangxi | 0.8204 | 6 | 0.7625 | 4 | 0.0401 | 0.3238 | 0.6434 |
Shandong | 0.4476 | 18 | 0.3534 | 22 | 0.0941 | 0.1475 | 0.3765 |
Henan | 0.5195 | 14 | 0.4410 | 16 | 0.0786 | 0.2070 | 0.4734 |
Hubei | 0.6174 | 9 | 0.4885 | 13 | 0.1288 | 0.2936 | 0.6240 |
Hunan | 0.7891 | 7 | 0.6949 | 5 | 0.0941 | 0.4516 | 0.7580 |
Guangdong | 0.3602 | 24 | 0.2955 | 26 | 0.0646 | 0.1197 | 0.3420 |
Guangxi | 0.6828 | 8 | 0.6561 | 7 | 0.0266 | 0.4665 | 0.7671 |
Hainan | 1.0000 | 1 | 0.8005 | 2 | 0.1995 | 0.5478 | 2.0721 |
Chongqing | 0.5715 | 11 | 0.5127 | 12 | 0.0587 | 0.3093 | 0.5700 |
Sichuan | 0.4767 | 16 | 0.4184 | 18 | 0.0583 | 0.1656 | 0.4173 |
Guizhou | 0.3979 | 22 | 0.3854 | 21 | 0.0124 | 0.3051 | 0.4324 |
Yunnan | 0.3400 | 25 | 0.3273 | 24 | 0.0127 | 0.2074 | 0.3047 |
Tibet | 0.9143 | 5 | 0.7720 | 3 | 0.0950 | 0.0723 | 0.5560 |
Shaanxi | 0.5619 | 12 | 0.5361 | 10 | 0.0462 | 0.2129 | 0.3388 |
Gansu | 0.4292 | 20 | 0.4184 | 18 | 0.0108 | 0.2284 | 0.3059 |
Qinghai | 0.2191 | 30 | 0.1919 | 30 | 0.0272 | 0.1100 | 0.2266 |
Ningxia | 0.4016 | 21 | 0.3980 | 20 | 0.0037 | 0.1583 | 0.2520 |
Xinjiang | 0.5466 | 13 | 0.5267 | 11 | 0.0200 | 0.2964 | 0.4034 |
DMU | 2010 | 2011 | 2012 | … | 2018 | 2019 | 2020 | AE | Rank |
---|---|---|---|---|---|---|---|---|---|
Beijing | 0.1749 | 0.1823 | 0.2119 | … | 0.2414 | 0.0356 | 0.1046 | 0.1940 | 30 |
Tianjin | 0.2127 | 0.2139 | 0.1987 | … | 0.3542 | 0.4171 | 0.4515 | 0.2624 | 27 |
Hebei | 0.5308 | 0.5688 | 0.4996 | … | 0.2846 | 0.4455 | 0.4832 | 0.4407 | 14 |
Shanxi | 0.2249 | 0.1910 | 0.1980 | … | 0.1203 | 0.1211 | 0.2396 | 0.1787 | 31 |
Inner Mongolia | 0.6596 | 0.6158 | 0.4674 | … | 0.2246 | 0.3120 | 0.4083 | 0.4078 | 17 |
Liaoning | 0.4647 | 0.4763 | 0.3980 | … | 0.1048 | 0.1718 | 0.2785 | 0.2902 | 26 |
Jilin | 0.6666 | 0.5908 | 0.4552 | … | 0.2600 | 0.3257 | 0.3893 | 0.3962 | 19 |
Heilongjiang | 0.5316 | 0.4024 | 0.3495 | … | 0.1906 | 0.2210 | 0.2481 | 0.2948 | 25 |
Shanghai | 0.2396 | 0.2238 | 0.2161 | … | 0.2358 | 0.2009 | 0.1499 | 0.2183 | 29 |
Jiangsu | 0.7283 | 0.7286 | 0.6904 | … | 0.5494 | 0.4729 | 0.3786 | 0.6176 | 7 |
Zhejiang | 0.6702 | 0.6754 | 0.6417 | … | 0.6063 | 0.6035 | 0.5929 | 0.6350 | 6 |
Anhui | 0.6126 | 0.6203 | 0.5556 | … | 0.3954 | 0.3703 | 0.4761 | 0.5059 | 10 |
Fujian | 1.000 | 0.9526 | 0.9146 | … | 0.8064 | 0.6360 | 0.5470 | 0.8620 | 2 |
Jiangxi | 0.6601 | 1.000 | 1.000 | … | 0.5484 | 0.6831 | 0.7783 | 0.7372 | 3 |
Shandong | 0.3956 | 0.3861 | 0.3628 | … | 0.3181 | 0.3639 | 0.5050 | 0.3650 | 21 |
Henan | 0.5114 | 0.5019 | 0.4552 | … | 0.5586 | 0.6121 | 0.6952 | 0.4903 | 12 |
Hubei | 0.4721 | 0.5206 | 0.4863 | … | 0.4394 | 0.4523 | 0.4632 | 0.4785 | 13 |
Hunan | 0.7132 | 0.7058 | 0.6542 | … | 0.6053 | 0.6101 | 0.6292 | 0.6731 | 4 |
Guangdong | 0.3004 | 0.3275 | 0.3184 | … | 0.2751 | 0.2968 | 0.3300 | 0.2969 | 24 |
Guangxi | 0.6508 | 0.6521 | 0.5781 | … | 0.6616 | 0.6714 | 0.6864 | 0.6607 | 5 |
Hainan | 0.7022 | 0.7447 | 0.7027 | … | 0.9970 | 1.0447 | 1.1144 | 0.8691 | 1 |
Chongqing | 0.5530 | 0.5059 | 0.4936 | … | 0.4597 | 0.4382 | 0.4213 | 0.4928 | 11 |
Sichuan | 0.4565 | 0.4348 | 0.4416 | … | 0.3202 | 0.3189 | 0.4499 | 0.4033 | 18 |
Guizhou | 0.3743 | 0.4104 | 0.3743 | … | 0.3195 | 0.1846 | 0.1146 | 0.3366 | 23 |
Yunnan | 0.3594 | 0.3371 | 0.3509 | … | 0.3168 | 0.3917 | 0.4862 | 0.3467 | 22 |
Tibet | 1.000 | 0.8557 | 0.8324 | … | 0.2204 | 0.0829 | 0.1170 | 0.5997 | 8 |
Shaanxi | 1.000 | 1.0000 | 0.4348 | … | 0.4379 | 0.5795 | 0.6836 | 0.5445 | 9 |
Gansu | 0.5023 | 0.5485 | 0.4146 | … | 0.3477 | 0.4729 | 0.5592 | 0.4297 | 16 |
Qinghai | 0.1989 | 0.2265 | 0.1833 | … | 0.2889 | 0.3939 | 0.4265 | 0.2404 | 28 |
Ningxia | 0.4806 | 0.5906 | 0.4673 | … | 0.2482 | 0.3776 | 0.4863 | 0.3905 | 20 |
Xinjiang | 0.5337 | 0.5673 | 0.5656 | … | 0.2305 | 0.1830 | 0.1238 | 0.4319 | 15 |
Eastern | 0.4927 | 0.4982 | 0.4686 | … | 0.4339 | 0.4262 | 0.4487 | 0.4592 | 2 |
Central | 0.5491 | 0.5666 | 0.5192 | … | 0.3898 | 0.4245 | 0.4899 | 0.4693 | 1 |
Western | 0.5641 | 0.5621 | 0.4670 | … | 0.3397 | 0.3672 | 0.4136 | 0.4404 | 3 |
Year | Technical Efficiency Change | Technological Progress Index | Pure Technical Efficiency Change | Scale Efficiency Index | MI Index |
---|---|---|---|---|---|
2010–2011 | 1.0450 | 1.0570 | 1.0490 | 0.9960 | 1.1050 |
2011–2012 | 0.9640 | 1.1420 | 0.9630 | 1.0010 | 1.1000 |
2012–2013 | 1.0620 | 1.0690 | 1.0860 | 0.9780 | 1.1350 |
2013–2014 | 0.9330 | 1.0760 | 0.9580 | 0.9740 | 1.0040 |
2014–2015 | 0.9950 | 1.0030 | 0.9910 | 1.0040 | 0.9980 |
2015–2016 | 0.9880 | 1.0110 | 0.9880 | 1.0000 | 0.9990 |
2016–2017 | 0.9400 | 1.0180 | 0.9330 | 1.0070 | 0.9570 |
2017–2018 | 0.9320 | 1.0093 | 0.9251 | 0.9984 | 0.9489 |
2018–2019 | 0.9427 | 0.9647 | 0.9427 | 0.9542 | 0.9532 |
2019–2020 | 0.9305 | 0.9380 | 0.9267 | 0.9389 | 0.9333 |
Average value | 0.9732 | 1.0288 | 0.9763 | 0.9852 | 1.0133 |
DMU | 2010 | 2011 | 2012 | … | 2018 | 2019 | 2020 | AE | Rank |
---|---|---|---|---|---|---|---|---|---|
Beijing | 0.3399 | 0.4036 | 0.4621 | … | 0.8244 | 0.9048 | 1.0932 | 0.6522 | 14 |
Tianjin | 0.3702 | 0.4193 | 0.4302 | … | 0.5367 | 0.5278 | 0.5192 | 0.4956 | 24 |
Hebei | 0.6246 | 0.6979 | 0.6554 | … | 0.4224 | 0.5440 | 0.5618 | 0.5725 | 21 |
Shanxi | 0.3799 | 0.3410 | 0.3554 | … | 0.2971 | 0.3210 | 0.4279 | 0.3474 | 31 |
Inner Mongolia | 0.7277 | 0.7084 | 0.5739 | … | 0.3110 | 0.3624 | 0.4124 | 0.4875 | 26 |
Liaoning | 0.5718 | 0.5961 | 0.5540 | … | 0.1759 | 0.2237 | 0.2844 | 0.3946 | 29 |
Jilin | 0.7333 | 0.6736 | 0.5252 | … | 0.2903 | 0.3274 | 0.3693 | 0.4412 | 27 |
Heilongjiang | 0.6253 | 0.4587 | 0.4294 | … | 0.2493 | 0.2772 | 0.3081 | 0.3674 | 30 |
Shanghai | 0.3917 | 0.4057 | 0.4129 | … | 0.5698 | 0.6065 | 0.6456 | 0.4916 | 25 |
Jiangsu | 0.7827 | 0.8341 | 0.8590 | … | 0.9726 | 0.9826 | 0.9926 | 0.9201 | 2 |
Zhejiang | 0.7361 | 0.7618 | 0.7605 | … | 0.7622 | 0.7512 | 0.7404 | 0.7689 | 7 |
Anhui | 0.6901 | 0.7286 | 0.6943 | … | 0.5865 | 0.5488 | 0.6135 | 0.6726 | 12 |
Fujian | 1.0000 | 0.9969 | 1.0188 | … | 1.0571 | 1.0547 | 1.0523 | 1.0473 | 1 |
Jiangxi | 0.7281 | 1.0320 | 1.0649 | … | 0.6042 | 0.6375 | 0.6782 | 0.8145 | 5 |
Shandong | 0.5165 | 0.5359 | 0.5547 | … | 0.5690 | 0.5525 | 0.6364 | 0.5893 | 18 |
Henan | 0.6091 | 0.6119 | 0.5903 | … | 0.6441 | 0.6404 | 0.6867 | 0.6366 | 15 |
Hubei | 0.5777 | 0.6911 | 0.7156 | … | 0.7146 | 0.6855 | 0.6576 | 0.7165 | 10 |
Hunan | 0.7706 | 0.7828 | 0.7699 | … | 0.7731 | 0.7360 | 0.7007 | 0.8139 | 6 |
Guangdong | 0.4403 | 0.5002 | 0.5665 | … | 0.6378 | 0.6369 | 0.6359 | 0.5960 | 17 |
Guangxi | 0.7206 | 0.7418 | 0.6983 | … | 0.8861 | 0.8685 | 0.8513 | 0.8362 | 4 |
Hainan | 0.7618 | 0.7929 | 0.8389 | … | 0.9997 | 1.0212 | 1.0663 | 0.9083 | 3 |
Chongqing | 0.6424 | 0.6241 | 0.6345 | … | 0.8142 | 0.8014 | 0.7888 | 0.7591 | 8 |
Sichuan | 0.5652 | 0.5876 | 0.6406 | … | 0.4837 | 0.4300 | 0.4922 | 0.5829 | 19 |
Guizhou | 0.4995 | 0.5879 | 0.5961 | … | 0.7379 | 0.7838 | 0.8325 | 0.6693 | 13 |
Yunnan | 0.4875 | 0.4837 | 0.5529 | … | 0.5948 | 0.6039 | 0.6132 | 0.5772 | 20 |
Tibet | 1.0000 | 0.8428 | 0.8101 | … | 0.4507 | 0.4566 | 0.5822 | 0.7083 | 11 |
Shaanxi | 1.0000 | 0.9954 | 0.4989 | … | 0.5121 | 0.6312 | 0.7228 | 0.6099 | 16 |
Gansu | 0.6018 | 0.6602 | 0.5635 | … | 0.4671 | 0.5182 | 0.5749 | 0.5576 | 22 |
Qinghai | 0.3591 | 0.3930 | 0.4133 | … | 0.4291 | 0.4243 | 0.4196 | 0.4246 | 28 |
Ningxia | 0.5845 | 0.7209 | 0.6329 | … | 0.3027 | 0.3547 | 0.4158 | 0.5012 | 23 |
Xinjiang | 0.6269 | 0.7120 | 0.7636 | … | 0.5951 | 0.6544 | 0.7197 | 0.7269 | 9 |
Eastern | 0.5941 | 0.6313 | 0.6466 | … | 0.6843 | 0.7096 | 0.7480 | 0.6760 | 1 |
Central | 0.6393 | 0.6650 | 0.6431 | … | 0.5199 | 0.5217 | 0.5552 | 0.6013 | 3 |
Western | 0.6513 | 0.6715 | 0.6149 | … | 0.5487 | 0.5741 | 0.6188 | 0.6201 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, A.; Yin, X. Measuring Comprehensive Production Efficiency of the Chinese Construction Industry: A Bootstrap-DEA-Malmquist Approach. Buildings 2023, 13, 834. https://doi.org/10.3390/buildings13030834
Yue A, Yin X. Measuring Comprehensive Production Efficiency of the Chinese Construction Industry: A Bootstrap-DEA-Malmquist Approach. Buildings. 2023; 13(3):834. https://doi.org/10.3390/buildings13030834
Chicago/Turabian StyleYue, Aobo, and Xupeng Yin. 2023. "Measuring Comprehensive Production Efficiency of the Chinese Construction Industry: A Bootstrap-DEA-Malmquist Approach" Buildings 13, no. 3: 834. https://doi.org/10.3390/buildings13030834
APA StyleYue, A., & Yin, X. (2023). Measuring Comprehensive Production Efficiency of the Chinese Construction Industry: A Bootstrap-DEA-Malmquist Approach. Buildings, 13(3), 834. https://doi.org/10.3390/buildings13030834