The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures
Abstract
:1. Introduction
2. Numerical Modeling of RC Structures Strengthened with Nano-Modified FRP Sheets
2.1. Concrete Modeling
2.2. Steel Reinforcement Modeling
2.3. Nano-Modified FRP Reinforcement Modeling
3. Calibration of the Bond–Slip Law for the FRP–Concrete Interface Elements
3.1. Numerical Results of the Double Lap Shear Test
4. Analysis of RC Structures Strengthened with Nano-Modified FRP Plate
Numerical Results of the Four-Point Bending Test
5. Conclusions
- The proposed bond–slip law has been carefully calibrated to match the experimental results of a concrete prism reinforced with nano-modified FRP sheets, and then employed to analyze FRP-plated RC beams.
- The numerical results obtained by the simulation of concrete prisms externally reinforced with FRP sheets show an increment of 28% in the bond strength between the concrete and nano-modified FRP system with respect to the standard one.
- Concerning the results obtained by the simulations of nano-modified FRP-plated RC beams, an increment in the peak load and final deflection, of around 5.53% and 26.34%, respectively, is predicted by the CNT-E beam with respect to the N-E beam. Moreover, a reduction in the slip between concrete and FRP, of around 76%, is obtained by the nano-modified FRP-plated beam with respect to the beam without the nanomaterial incorporation, thus highlighting an improvement in the crack pattern.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Demiroglu, S.; Singaravelu, V.; Seydibeyoğlu, M.Ö.; Misra, M.; Mohanty, A.K. The use of nanotechnology for fibre-reinforced polymer composites. In Fiber Technology for Fiber-Reinforced Composites; Elsevier: Amsterdam, The Netherlands, 2017; pp. 277–297. ISBN 978-0-08-101871-2. [Google Scholar]
- Chwał, M.; Muc, A. Design of Reinforcement in Nano- and Microcomposites. Materials 2019, 12, 1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Zhou, J.; Shi, Q. Research progress on enhancement mechanism and mechanical properties of FRP composites reinforced with graphene and carbon nanotubes. Alex. Eng. J. 2023, 64, 541–579. [Google Scholar] [CrossRef]
- Cai, J.; Chen, H.; Li, Y.; Akbarzadeh, A. Lessons from Nature for Carbon-Based Nanoarchitected Metamaterials. Small Sci. 2022, 2, 2200039. [Google Scholar] [CrossRef]
- Greco, F.; Leonetti, L.; Pranno, A.; Rudykh, S. Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach. Compos. Struct. 2020, 223, 111625. [Google Scholar] [CrossRef]
- Yin, S.; Guo, W.; Wang, H.; Huang, Y.; Yang, R.; Hu, Z.; Chen, D.; Xu, J.; Ritchie, R.O. Strong and Tough Bioinspired Additive-Manufactured Dual-Phase Mechanical Metamaterial Composites. J. Mech. Phys. Solids 2021, 149, 104341. [Google Scholar] [CrossRef]
- Pranno, A.; Greco, F.; Leonetti, L.; Lonetti, P.; Luciano, R.; De Maio, U. Band gap tuning through microscopic instabilities of compressively loaded lightened nacre-like composite metamaterials. Compos. Struct. 2022, 282, 115032. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Luciano, R.; Sgambitterra, G.; Pranno, A. Microstructural design for elastic wave attenuation in 3D printed nacre-like bioinspired metamaterials lightened with hollow platelets. Mech. Res. Commun. 2023, 128, 104045. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Pranno, A.; Sgambitterra, G. Nonlinear analysis of microscopic instabilities in fiber-reinforced composite materials. Procedia Struct. Integr. 2020, 25, 400–412. [Google Scholar] [CrossRef]
- Mahaidi, R.; Kalfat, R. Rehabilitation of Concrete Structures with Fiber-Reinforced Polymer; Butterworth-Heinemann: Kidlington, UK, 2018; ISBN 978-0-12-811511-4. [Google Scholar]
- Siddika, A.; Shojib, H.H.; Hossain, M.; Hossain, I.; Mamun, A.A.; Alyousef, R.; Amran, Y.H.M. Flexural performance of wire mesh and geotextile-strengthened reinforced concrete beam. SN Appl. Sci. 2019, 1, 1324. [Google Scholar] [CrossRef] [Green Version]
- Lee, L.S.; Jain, R. The role of FRP composites in a sustainable world. Clean Techn. Environ. Policy 2009, 11, 247–249. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Shehadah, M.E. Shear behavior of flexural CFRP-strengthened RC beams with crack-induced delamination: Experimental investigation and strength model. Compos. Struct. 2021, 268, 113894. [Google Scholar] [CrossRef]
- Aram, M.R.; Czaderski, C.; Motavalli, M. Debonding failure modes of flexural FRP-strengthened RC beams. Compos. Part B Eng. 2008, 39, 826–841. [Google Scholar] [CrossRef]
- Smith, S.T.; Teng, J.G. FRP-strengthened RC beams. I: Review of debonding strength models. Eng. Struct. 2002, 24, 385–395. [Google Scholar] [CrossRef]
- Bruno, D.; Greco, F. Delamination in composite plates: Influence of shear deformability on interfacial debonding. Cem. Concr. Compos. 2001, 23, 33–45. [Google Scholar] [CrossRef]
- Funari, M.F.; Lonetti, P. Initiation and evolution of debonding phenomena in layered structures. Theor. Appl. Fract. Mech. 2017, 92, 133–145. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Nevone Blasi, P.; Pranno, A. An investigation about debonding mechanisms in FRP-strengthened RC structural elements by using a cohesive/volumetric modeling technique. Theor. Appl. Fract. Mech. 2022, 117, 103199. [Google Scholar] [CrossRef]
- Wattanapanich, C.; Imjai, T.; Garcia, R.; Rahim, N.L.; Abdullah, M.M.A.B.; Sandu, A.V.; Vizureanu, P.; Matasaru, P.D.; Thomas, B.S. Computer Simulations of End-Tapering Anchorages of EBR FRP-Strengthened Prestressed Concrete Slabs at Service Conditions. Materials 2023, 16, 851. [Google Scholar] [CrossRef]
- Imjai, T.; Guadagnini, M.; Garcia, R.; Pilakoutas, K. A practical method for determining shear crack induced deformation in FRP RC beams. Eng. Struct. 2016, 126, 353–364. [Google Scholar] [CrossRef]
- Imjai, T.; Setkit, M.; Figueiredo, F.P.; Garcia, R.; Sae-Long, W.; Limkatanyu, S. Experimental and numerical investigation on low-strength RC beams strengthened with side or bottom near surface mounted FRP rods. Struct. Infrastruct. Eng. 2022, 1–16. [Google Scholar] [CrossRef]
- Diab, H.M.; Farghal, O.A. Bond strength and effective bond length of FRP sheets/plates bonded to concrete considering the type of adhesive layer. Compos. Part B Eng. 2014, 58, 618–624. [Google Scholar] [CrossRef]
- Mukhtar, F.M.; Jawdhari, A.; Peiris, A. Mixed-Mode FRP–Concrete Bond Failure Analysis Using a Novel Test Apparatus and 3D Nonlinear FEM. J. Compos. Constr. 2022, 26, 04022082. [Google Scholar] [CrossRef]
- Ha, S.K.; Na, S.; Lee, H.K. Bond characteristics of sprayed FRP composites bonded to concrete substrate considering various concrete surface conditions. Compos. Struct. 2013, 100, 270–279. [Google Scholar] [CrossRef]
- Wang, F.; Li, M.; Hu, S. Bond behavior of roughing FRP sheet bonded to concrete substrate. Constr. Build. Mater. 2014, 73, 145–152. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Huang, Y. Hybrid Bonding of FRP to Reinforced Concrete Structures. J. Compos. Constr. 2008, 12, 266–273. [Google Scholar] [CrossRef]
- Bank, L.C.; Arora, D. Analysis of RC beams strengthened with mechanically fastened FRP (MF-FRP) strips. Compos. Struct. 2007, 79, 180–191. [Google Scholar] [CrossRef]
- Yuan, C.; Chen, W.; Pham, T.M.; Hao, H.; Chen, L.; Zhang, M. New epoxy anchor for better bonding between FRP sheets and concrete. Constr. Build. Mater. 2020, 248, 118628. [Google Scholar] [CrossRef]
- Chuah, S.; Pan, Z.; Sanjayan, J.G.; Wang, C.M.; Duan, W.H. Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr. Build. Mater. 2014, 73, 113–124. [Google Scholar] [CrossRef]
- De Maio, U.; Fantuzzi, N.; Greco, F.; Leonetti, L.; Pranno, A. Failure Analysis of Ultra High-Performance Fiber-Reinforced Concrete Structures Enhanced with Nanomaterials by Using a Diffuse Cohesive Interface Approach. Nanomaterials 2020, 10, 1792. [Google Scholar] [CrossRef]
- Casati, R.; Vedani, M. Metal Matrix Composites Reinforced by Nano-Particles—A Review. Metals 2014, 4, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, M.; Xue, H.; Cong, F.; Li, X.; Zhao, C.; Su, W. Nano-silica reinforced epoxy resin/nano-rubber composite material with a balance of stiffness and toughness. High Perform. Polym. 2021, 33, 685–694. [Google Scholar] [CrossRef]
- Hu, N.; Li, Y.; Nakamura, T.; Katsumata, T.; Koshikawa, T.; Arai, M. Reinforcement effects of MWCNT and VGCF in bulk composites and interlayer of CFRP laminates. Compos. Part B Eng. 2012, 43, 3–9. [Google Scholar] [CrossRef]
- Kamae, T.; Drzal, L.T. Carbon fiber/epoxy composite property enhancement through incorporation of carbon nanotubes at the fiber–matrix interphase—Part I: The development of carbon nanotube coated carbon fibers and the evaluation of their adhesion. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1569–1577. [Google Scholar] [CrossRef]
- Li, M.; Gu, Y.; Liu, Y.; Li, Y.; Zhang, Z. Interfacial improvement of carbon fiber/epoxy composites using a simple process for depositing commercially functionalized carbon nanotubes on the fibers. Carbon 2013, 52, 109–121. [Google Scholar] [CrossRef]
- Rousakis, T.C.; Kouravelou, K.B.; Karachalios, T.K. Effects of carbon nanotube enrichment of epoxy resins on hybrid FRP–FR confinement of concrete. Compos. Part B Eng. 2014, 57, 210–218. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Li, J. Experimental Study of Retrofitted Cracked Concrete with FRP and Nanomodified Epoxy Resin. J. Mater. Civ. Eng. 2017, 29, 04016275. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Saleh, M.H.; Almashagbeh, H. Effect of carbon nanotubes on strengthening of RC beams retrofitted with carbon fiber/epoxy composites. Mater. Des. 2016, 89, 225–234. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Saleh, M.H.; Al-Shoubaki, M. Using carbon nanotubes to improve strengthening efficiency of carbon fiber/epoxy composites confined RC columns. Compos. Struct. 2015, 134, 523–532. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Saleh, M.H. Effect of using carbon nanotube modified epoxy on bond–slip behavior between concrete and FRP sheets. Constr. Build. Mater. 2016, 105, 511–518. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Luciano, R.; Nevone Blasi, P.; Vantadori, S. A refined diffuse cohesive approach for the failure analysis in quasibrittle materials—Part I: Theoretical formulation and numerical calibration. Fatigue Fract. Eng. Mater. Struct. 2020, 43, 221–241. [Google Scholar] [CrossRef]
- De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Pranno, A. The damage effect on the dynamic characteristics of FRP-strengthened reinforced concrete structures. Compos. Struct. 2023, 309, 116731. [Google Scholar] [CrossRef]
- Gaetano, D.; Greco, F.; Leonetti, L.; Lonetti, P.; Pascuzzo, A.; Ronchei, C. An interface-based detailed micro-model for the failure simulation of masonry structures. Eng. Fail. Anal. 2022, 142, 106753. [Google Scholar] [CrossRef]
- Campilho, R.D.S.G.; Banea, M.D.; Neto, J.A.B.P.; da Silva, L.F.M. Modelling adhesive joints with cohesive zone models: Effect of the cohesive law shape of the adhesive layer. Int. J. Adhes. Adhes. 2013, 44, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Ammendolea, D.; Greco, F.; Lonetti, P.; Luciano, R.; Pascuzzo, A. Crack propagation modeling in functionally graded materials using Moving Mesh technique and interaction integral approach. Compos. Struct. 2021, 269, 114005. [Google Scholar] [CrossRef]
- Pascuzzo, A.; Greco, F.; Lonetti, P.; Ammendolea, D. Dynamic fracture analysis in quasi-brittle materials via a finite element approach based on the combination of the ALE formulation and M−integral method. Eng. Fail. Anal. 2022, 141, 106627. [Google Scholar] [CrossRef]
- Greco, F.; Lonetti, P.; Pascuzzo, A. A moving mesh FE methodology for vehicle–bridge interaction modeling. Mech. Adv. Mater. Struct. 2020, 27, 1256–1268. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Nevone Blasi, P.; Pranno, A. A cohesive fracture model for predicting crack spacing and crack width in reinforced concrete structures. Eng. Fail. Anal. 2022, 139, 106452. [Google Scholar] [CrossRef]
- Pranno, A.; Greco, F.; Lonetti, P.; Luciano, R.; De Maio, U. An improved fracture approach to investigate the degradation of vibration characteristics for reinforced concrete beams under progressive damage. Int. J. Fatigue 2022, 163, 107032. [Google Scholar] [CrossRef]
- New Model Code Fib Special Activity Group; Taerwe, L.; Matthys, S. Fib Model Code for Concrete Structures 2010; Ernst & Sohn: Berlin, Germany, 2013. [Google Scholar]
- Kononova, O.; Krasnikovs, A.; Stonys, R.; Sahmenko, G.; Vitols, R. Investigation of Influence of Nano-Reinforcement on the Mechanical Properties of Composite Materials. J. Civ. Eng. Manag. 2016, 22, 425–433. [Google Scholar] [CrossRef]
- Meng, W.; Khayat, K.H. Mechanical properties of ultra-high-performance concrete enhanced with graphite nanoplatelets and carbon nanofibers. Compos. Part B Eng. 2016, 107, 113–122. [Google Scholar] [CrossRef]
- He, J.; Xian, G.; Zhang, Y.X. Numerical modelling of bond behaviour between steel and CFRP laminates with a ductile adhesive. Int. J. Adhes. Adhes. 2021, 104, 102753. [Google Scholar] [CrossRef]
- De Maio, U.; Greco, F.; Leonetti, L.; Luciano, R.; Nevone Blasi, P.; Vantadori, S. A refined diffuse cohesive approach for the failure analysis in quasibrittle materials—Part II: Application to plain and reinforced concrete structures. Fatigue Fract. Eng. Mater. Struct. 2019, 42, 2764–2781. [Google Scholar] [CrossRef]
- Greco, F. Homogenized mechanical behavior of composite micro-structures including micro-cracking and contact evolution. Eng. Fract. Mech. 2009, 76, 182–208. [Google Scholar] [CrossRef]
- Greco, F.; Leonetti, L.; Nevone Blasi, P. Adaptive multiscale modeling of fiber-reinforced composite materials subjected to transverse microcracking. Compos. Struct. 2014, 113, 249–263. [Google Scholar] [CrossRef]
Epoxy Resin | [N/m] | ||||
---|---|---|---|---|---|
Neat | 0.01 | 0.34 | 0.35 | 2 | 680 |
CNT-modified | 0.01 | 0.695 | 0.705 | 3.6 | 2500 |
Peak Load [kN] | Failure Deflection [mm] | |||
---|---|---|---|---|
Model | Experiment | Model | Experiment | |
N-E beam | 57.3 | 60.6 | 20.3 | 19.8 |
CNT-E beam | 60.4 | 62.7 | 25.6 | 26.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Maio, U.; Gaetano, D.; Greco, F.; Lonetti, P.; Nevone Blasi, P.; Pranno, A. The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures. Buildings 2023, 13, 1139. https://doi.org/10.3390/buildings13051139
De Maio U, Gaetano D, Greco F, Lonetti P, Nevone Blasi P, Pranno A. The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures. Buildings. 2023; 13(5):1139. https://doi.org/10.3390/buildings13051139
Chicago/Turabian StyleDe Maio, Umberto, Daniele Gaetano, Fabrizio Greco, Paolo Lonetti, Paolo Nevone Blasi, and Andrea Pranno. 2023. "The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures" Buildings 13, no. 5: 1139. https://doi.org/10.3390/buildings13051139
APA StyleDe Maio, U., Gaetano, D., Greco, F., Lonetti, P., Nevone Blasi, P., & Pranno, A. (2023). The Reinforcing Effect of Nano-Modified Epoxy Resin on the Failure Behavior of FRP-Plated RC Structures. Buildings, 13(5), 1139. https://doi.org/10.3390/buildings13051139