An Analysis of Potential Uses, Limitations and Barriers to Implementation of 3D Scan Data for Construction Management-Related Use—Are the Industry and the Technical Solutions Mature Enough for Adoption?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Previous Uses of Vision-Based Sensing Technologies for Construction Management Purposes
3.2. Advantages, Disadvantages and Barriers to the Implementation of Vision-Based Remote Sensing Technologies
3.2.1. Photogrammetry
3.2.2. Laser Scanning
3.2.3. Use of UAVs
3.3. Potential Uses of 3D Scan Data for Various Construction Work Types
3.3.1. Potential for Use of 3D Scan Data for Progress Monitoring
3.3.2. Potential for Use of 3D Scan Data for Quality Control
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abd Majid, M.Z.; Mustaffar, M.; Memon, Z. A systematic approach for monitoring and evaluating the construction project progress. J. Inst. Eng. 2006, 67, 7. [Google Scholar]
- Arabshahi, M.; Wang, D.; Sun, J.; Rahnamayiezekavat, P.; Tang, W.; Wang, Y.; Wang, X. Review on Sensing Technology Adoption in the Construction Industry. Sensors 2021, 21, 8307. [Google Scholar] [CrossRef] [PubMed]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Publications: New York, NY, USA, 2011. [Google Scholar]
- Maalek, R.; Ruwanpura, J.; Ranaweera, K. Evaluation of the State-of-the-Art Automated Construction Progress Monitoring and Control Systems. In Construction Research Congress 2014; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 1023–1032. [Google Scholar]
- Omar, T.; Nehdi, M.L. Data acquisition technologies for construction progress tracking. Autom. Constr. 2016, 70, 143–155. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, J. Application of Photogrammetry: 3D Modeling of a Historic Building. In Proceedings of the Construction Research Congress 2014; American Society of Civil Engineers: Reston, VA, USA, 2014; pp. 219–228. [Google Scholar]
- Wang, Q.; Kim, M.-K. Applications of 3D point cloud data in the construction industry: A fifteen-year review from 2004 to 2018. Adv. Eng. Inform. 2019, 39, 306–319. [Google Scholar] [CrossRef]
- Motawa, I.A.; Kardakou, A. Unmanned aerial vehicles (UAVs) for inspection in construction and building industry. In Proceedings of the 16th International Operation & Maintenance Conference, Cairo, Egypt, 18–20 November 2018; p. 10. [Google Scholar]
- Aryan, A.; Bosché, F.; Tang, P. Planning for terrestrial laser scanning in construction: A review. Autom. Constr. 2021, 125, 103551. [Google Scholar] [CrossRef]
- Trucco, E.; Kaka, A.P. A framework for automatic progress assessment on construction sites using computer vision. Int. J. IT Archit. Eng. Constr. 2004, 2, 18. [Google Scholar]
- Golparvar-Fard, M.; Bohn, J.; Teizer, J.; Savarese, S.; Peña-Mora, F. Evaluation of image-based modeling and laser scanning accuracy for emerging automated performance monitoring techniques. Autom. Constr. 2011, 20, 1143–1155. [Google Scholar] [CrossRef]
- Akinci, B.; Boukamp, F.; Gordon, C.; Huber, D.; Lyons, C.; Park, K. A formalism for utilization of sensor systems and integrated project models for active construction quality control. Autom. Constr. 2006, 15, 124–138. [Google Scholar] [CrossRef]
- Dadi, G.B.; Goodrum, P.M.; Saidi, K.S.; Brown, C.U.; Betit, J.W. A Case Study of 3D Imaging Productivity Needs to Support Infrastructure Construction. In Construction Research Congress 2012; American Society of Civil Engineers: Reston, VA, USA, 2012; pp. 1052–1062. [Google Scholar]
- Turkan, Y.; Bosche, F.; Haas, C.T.; Haas, R. Automated progress tracking using 4D schedule and 3D sensing technologies. Autom. Constr. 2012, 22, 414–421. [Google Scholar] [CrossRef]
- Park, C.-S.; Lee, D.-Y.; Kwon, O.-S.; Wang, X. A framework for proactive construction defect management using BIM, augmented reality and ontology-based data collection template. Autom. Constr. 2013, 33, 61–71. [Google Scholar] [CrossRef]
- Thomson, C.; Apostolopoulos, G.; Backes, D.; Boehm, J. Mobile Laser Scanning for Indoor Modelling. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2013, II-5/W2, 289–293. [Google Scholar] [CrossRef]
- Bosché, F.; Guillemet, A.; Turkan, Y.; Haas, C.T.; Haas, R. Tracking the Built Status of MEP Works: Assessing the Value of a Scan-vs-BIM System. J. Comput. Civ. Eng. 2014, 28, 05014004. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, P. A divide-and-conquer algorithm for 3D imaging planning in dynamic construction environments. In Proceedings of the ICSC15: The Canadian Society for Civil Engineering 5th International/11th Construction Specialty Conference, Vancouver, BC, Canada, 7–10 June 2015. [Google Scholar]
- Pătrăucean, V.; Armeni, I.; Nahangi, M.; Yeung, J.; Brilakis, I.; Haas, C. State of research in automatic as-built modelling. Adv. Eng. Inform. 2015, 29, 162–171. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.-K.; Cheng, J.C.P.; Sohn, H. Automated quality assessment of precast concrete elements with geometry irregularities using terrestrial laser scanning. Autom. Constr. 2016, 68, 170–182. [Google Scholar] [CrossRef]
- Dering, G.M.; Micklethwaite, S.; Thiele, S.T.; Vollgger, S.A.; Cruden, A.R. Review of drones, photogrammetry and emerging sensor technology for the study of dykes: Best practises and future potential. J. Volcanol. Geotherm. Res. 2019, 373, 148–166. [Google Scholar] [CrossRef]
- Kraus, K. Photogrammetry: Geometry from Images and Laser Scans; De Gruyter: Berlin, Germany, 2007. [Google Scholar]
- Hackl, J.; Adey, B.T.; Woźniak, M.; Schümperlin, O. Use of Unmanned Aerial Vehicle Photogrammetry to Obtain Topographical Information to Improve Bridge Risk Assessment. J. Infrastruct. Syst. 2018, 24, 04017041. [Google Scholar] [CrossRef]
- Baltsavias, E.P. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Tuttas, S.; Braun, A.; Borrmann, A.; Stilla, U. Acquisition and Consecutive Registration of Photogrammetric Point Clouds for Construction Progress Monitoring Using a 4D BIM. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 3–15. [Google Scholar] [CrossRef]
- Bügler, M.; Borrmann, A.; Ogunmakin, G.; Vela, P.A.; Teizer, J. Fusion of Photogrammetry and Video Analysis for Productivity Assessment of Earthwork Processes. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 107–123. [Google Scholar] [CrossRef]
- Bügler, M.; Ongunmakin, G.; Teizer, J.; Vela, P.; Borrmann, A. A Comprehensive Methodology for Vision-Based Progress and Activity Estimation of Excavation Processes for Productivity Assessment. In Proceedings of the EG-ICE Workshop on Intelligent Computing in Engineering, Cardiff, Wales, 16–18 July 2014. [Google Scholar]
- Omar, H.; Mahdjoubi, L.; Kheder, G. Towards an automated photogrammetry-based approach for monitoring and controlling construction site activities. Comput. Ind. 2018, 98, 172–182. [Google Scholar] [CrossRef]
- Dai, F.; Peng, W.B. Reality Capture in Construction Engineering Applications Using Close-Range Photogrammetry. Appl. Mech. Mater. 2013, 353–356, 2795–2798. [Google Scholar] [CrossRef]
- Ordóñez, C.; Martínez, J.; Arias, P.; Armesto, J. Measuring building façades with a low-cost close-range photogrammetry system. Autom. Constr. 2010, 19, 742–749. [Google Scholar] [CrossRef]
- Ordóñez, C.; Arias, P.; Herráez, J.; Rodríguez, J.; Martín, M.T. Two photogrammetric methods for measuring flat elements in buildings under construction. Autom. Constr. 2008, 17, 517–525. [Google Scholar] [CrossRef]
- Riveiro, B.; Jauregui, D.V.; Arias, P.; Armesto, J.; Jiang, R. An innovative method for remote measurement of minimum vertical underclearance in routine bridge inspection. Autom. Constr. 2012, 25, 34–40. [Google Scholar] [CrossRef]
- Karsch, K.; Golparvar-Fard, M.; Forsyth, D. ConstructAide: Analyzing and Visualizing Construction Sites through Photographs and Building Models. ACM Trans. Graph. 2014, 33, 176. [Google Scholar] [CrossRef]
- Feng, Y.; Golparvar-Fard, M. Image-Based Localization for Facilitating Construction Field Reporting on Mobile Devices. In Advances in Informatics and Computing in Civil and Construction Engineering Proceedings of the 35th CIB W78 2018 Conference: IT in Design, Construction, and Management; Springer: Cham, Switzerland, 2019; pp. 585–592. [Google Scholar]
- Moselhi, O.; Bardareh, H.; Zhu, Z. Automated Data Acquisition in Construction with Remote Sensing Technologies. Appl. Sci. 2020, 10, 2846. [Google Scholar] [CrossRef]
- Duarte-Vidal, L.; Herrera, R.F.; Atencio, E.; Muñoz-La Rivera, F. Interoperability of Digital Tools for the Monitoring and Control of Construction Projects. Appl. Sci. 2021, 11, 10370. [Google Scholar] [CrossRef]
- Koch, C.; Jog, G.M.; Brilakis, I. Automated Pothole Distress Assessment Using Asphalt Pavement Video Data. J. Comput. Civ. Eng. 2013, 27, 370–378. [Google Scholar] [CrossRef]
- Zhu, Z.; Brilakis, I. Machine vision-based concrete surface quality assessment. J. Constr. Eng. Manag. 2010, 136, 210–218. [Google Scholar] [CrossRef]
- Brilakis, I.; Lourakis, M.; Sacks, R.; Savarese, S.; Christodoulou, S.; Teizer, J.; Makhmalbaf, A. Toward automated generation of parametric BIMs based on hybrid video and laser scanning data. Adv. Eng. Inform. 2010, 24, 456–465. [Google Scholar] [CrossRef]
- Koch, C.; Brilakis, I. Pothole detection in asphalt pavement images. Adv. Eng. Inform. 2011, 25, 507–515. [Google Scholar] [CrossRef]
- Rao, B.; Gopi, A.G.; Maione, R. The societal impact of commercial drones. Technol. Soc. 2016, 45, 83–90. [Google Scholar] [CrossRef]
- Kwon, S.; Park, J.-W.; Moon, D.; Jung, S.; Park, H. Smart Merging Method for Hybrid Point Cloud Data using UAV and LIDAR in Earthwork Construction. Procedia Eng. 2017, 196, 21–28. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C. Applications of multirotor drone technologies in construction management. Int. J. Constr. Manag. 2019, 19, 401–412. [Google Scholar] [CrossRef]
- Pučko, Z.; Šuman, N.; Rebolj, D. Automated continuous construction progress monitoring using multiple workplace real time 3D scans. Adv. Eng. Inform. 2018, 38, 27–40. [Google Scholar] [CrossRef]
- Escorcia, V.; Dávila, M.A.; Golparvar-Fard, M.; Niebles, J.C. Automated Vision-Based Recognition of Construction Worker Actions for Building Interior Construction Operations Using RGBD Cameras. In Proceedings of the Construction Research Congress 2012, West Lafayette, IN, USA, 21–23 May 2012; pp. 879–888. [Google Scholar]
- Li, L. Time-of-Flight Camera—An Introduction; Technical White Paper; Texas Instruments: Dallas, TX, USA, 2014. [Google Scholar]
- Cui, Y.; Schuon, S.; Chan, D.; Thrun, S.; Theobalt, C. 3D shape scanning with a time-of-flight camera. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1173–1180. [Google Scholar]
- Martinez, P.; Al-Hussein, M.; Ahmad, R. A scientometric analysis and critical review of computer vision applications for construction. Autom. Constr. 2019, 107, 102947. [Google Scholar] [CrossRef]
- Alaloul, W.S.; Alzubi, K.M.; Malkawi, A.B.; Al Salaheen, M.; Musarat, M.A. Productivity monitoring in building construction projects: A systematic review. Eng. Constr. Archit. Manag. 2022, 29, 2760–2785. [Google Scholar] [CrossRef]
- Kopsida, M.; Brilakis, I.K.; Vela, P.A. A Review of Automated Construction Progress Monitoring and Inspection Methods. In Proceedings of the 32nd CIB W78 Conference on Construction IT, Eindhoven, The Netherlands, 26–29 October 2015. [Google Scholar]
- Vick, S.M.; Brilakis, I. A review of linear transportation construction progress monitoring techniques. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering, Osaka, Japan, 6–8 July 2016; p. 8. [Google Scholar]
- Golizadeh, H.; Hosseini, M.R.; Martek, I.; Edwards, D.; Gheisari, M.; Banihashemi, S.; Zhang, J. Scientometric analysis of research on “remotely piloted aircraft”. Eng. Constr. Archit. Manag. 2020, 27, 634–657. [Google Scholar] [CrossRef]
- Sanchez, J. Applications of Drone Technology with BIM to Increase Productivity; California Polytechnic State University: San Luis Obispo, CA, USA, 2019. [Google Scholar]
- Mihić, M. Incorporation of Health and Safety into Building Information Modelling through Hazard Integration System. Ph.D. Thesis, University of Zagreb Faculty of Civil Engineering, Zagreb, Croatia, 2018. [Google Scholar]
- Bayrak, T.; Kaka, A. Evaluation of digital photogrammetry and 3d cad modelling applications in construction management. In Proceedings of the 20th Annual ARCOM Conference, Edinburgh, UK, 1–3 September 2004; pp. 613–619. [Google Scholar]
- Riyanto, F.; Setyandito, O.; Pramudya, A. Realtime monitoring study for highway construction using Unmanned Aerial Vehicle (UAV) technology. IOP Conf. Ser. Earth Environ. Sci. 2021, 729, 012040. [Google Scholar]
- Pushkar, A.; Senthilvel, M.; Varghese, K. Automated Progress Monitoring of Masonry Activity Using Photogrammetric Point Cloud. In Proceedings of the 35th International Symposium on Automation and Robotics in Construction (ISARC), Berlin, Germany, 20–25 July 2018; pp. 897–903. [Google Scholar]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models. J. Comput. Civ. Eng. 2015, 29, 04014025. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Monitoring changes of 3D building elements from unordered photo collections. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), Barcelona, Spain, 6–13 November 2011; pp. 249–256. [Google Scholar]
- Ahmed, M.; Haas, C.T.; Haas, R. Using digital photogrammetry for pipe-works progress tracking. Can. J. Civ. Eng. 2012, 39, 1062–1071. [Google Scholar] [CrossRef]
- Kim, C.; Son, H.; Kim, C. The Effective Acquisition and Processing of 3D Photogrammetric Data from Digital Photogrammetry for Construction Progress Measurement. In Computing in Civil Engineering; American Society of Civil Engineers: Miami, FL, USA, 2011; pp. 178–185. [Google Scholar] [CrossRef]
- Marzouk, M.; Zaher, M. Tracking construction projects progress using mobile hand-held devices. In Proceedings of the ICSC15: The Canadian Society for Civil Engineering 5th International/11th Construction Specialty Conference, Vancouver, BC, Canada, 7–10 June 2015. [Google Scholar]
- Kim, C.; Son, H.; Kim, C. Fully automated registration of 3D data to a 3D CAD model for project progress monitoring. Autom. Constr. 2013, 35, 587–594. [Google Scholar] [CrossRef]
- Ahmed, M.; Haas, C.; Haas, R. Toward Low-Cost 3D Automatic Pavement Distress Surveying: The Close Range Photogrammetry Approach. Can. J. Civ. Eng. 2011, 38, 1301–1313. [Google Scholar] [CrossRef]
- Bhatla, A.; Choe, S.Y.; Fierro, O.; Leite, F. Evaluation of accuracy of as-built 3D modeling from photos taken by handheld digital cameras. Autom. Constr. 2012, 28, 116–127. [Google Scholar] [CrossRef]
- Jacob-Loyola, N.; Muñoz-La Rivera, F.; Herrera, R.F.; Atencio, E. Unmanned Aerial Vehicles (UAVs) for Physical Progress Monitoring of Construction. Sensors 2021, 21, 4227. [Google Scholar] [CrossRef]
- Takahashi, N.; Wakutsu, R.; Kato, T.; Wakaizumi, T.; Ooishi, T.; Matsuoka, R. Experiment on uav photogrammetry and terrestrial laser scanning for ict-integrated construction. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 2017, XLII-2/W6, 371–377. [Google Scholar] [CrossRef]
- Siebert, S.; Teizer, J. Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 2014, 41, 1–14. [Google Scholar] [CrossRef]
- Brilakis, I.; Fathi, H.; Rashidi, A. Progressive 3D reconstruction of infrastructure with videogrammetry. Autom. Constr. 2011, 20, 884–895. [Google Scholar] [CrossRef]
- Rashidi, A.; Karan, E. Video to BrIM: Automated 3D As-Built Documentation of Bridges. J. Perform. Constr. Facil. 2018, 32, 04018026. [Google Scholar] [CrossRef]
- Bosché, F.; Ahmed, M.; Turkan, Y.; Haas, C.T.; Haas, R. The value of integrating Scan-to-BIM and Scan-vs-BIM techniques for construction monitoring using laser scanning and BIM: The case of cylindrical MEP components. Autom. Constr. 2015, 49, 201–213. [Google Scholar] [CrossRef]
- Puri, N.; Turkan, Y. Bridge construction progress monitoring using lidar and 4D design models. Autom. Constr. 2020, 109, 102961. [Google Scholar] [CrossRef]
- Turkan, Y.; Bosché, F.; Haas, C.T.; Haas, R.C.G. Automated Progress Tracking of Erection of Concrete Structures. In Proceedings of the 3rd International/9th Construction Specialty Conference, Ottawa, ON, USA, 14–17 June 2011. [Google Scholar]
- Mengiste, E.; García de Soto, B. Using the Rate of Color Evolution of a Point Cloud to Monitor the Performance of Construction Trades. In Proceedings of the 18th International Conference on Construction Applications of Virtual Reality (CONVR2018), Auckland, New Zealand, 21–23 November 2018; pp. 345–354. [Google Scholar]
- Shahi, A.; Safa, M.; Haas, C.T.; West, J.S. Data Fusion Process Management for Automated Construction Progress Estimation. J. Comput. Civ. Eng. 2015, 29, 04014098. [Google Scholar] [CrossRef]
- Bosche, F.; Haas, C.T. Automated retrieval of 3D CAD model objects in construction range images. Autom. Constr. 2008, 17, 499–512. [Google Scholar] [CrossRef]
- Maalek, R.; Lichti, D.D.; Ruwanpura, J. Robust classification and segmentation of planar and linear features for construction site progress monitoring and structural dimension compliance control. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, II-3/W5, 129–136. [Google Scholar] [CrossRef]
- Bosche, F.; Haas, C.T.; Akinci, B. Automated Recognition of 3D CAD Objects in Site Laser Scans for Project 3D Status Visualization and Performance Control. J. Comput. Civ. Eng. 2009, 23, 311–318. [Google Scholar] [CrossRef]
- Shih, N.-J.; Huang, S.-T. 3D Scan Information Management System for Construction Management. J. Constr. Eng. Manag. 2006, 132, 134–142. [Google Scholar] [CrossRef]
- Shih, N.J.; Wang, P.H. Point-cloud-based comparison between construction schedule and as-built progress: Long-range three-dimensional laser scanner’s approach. J. Archit. Eng. 2004, 10, 98–102. [Google Scholar] [CrossRef]
- El-Omari, S.; Moselhi, O. Integrating 3D laser scanning and photogrammetry for progress measurement of construction work. Autom. Constr. 2008, 18, 1–9. [Google Scholar] [CrossRef]
- Kim, C.; Son, H.; Kim, C. Automated construction progress measurement using a 4D building information model and 3D data. Autom. Constr. 2013, 31, 75–82. [Google Scholar] [CrossRef]
- Turkan, Y.; Bosché, F.; Haas, C.T.; Haas, R. Toward Automated Earned Value Tracking Using 3D Imaging Tools. J. Constr. Eng. Manag. 2013, 139, 423–433. [Google Scholar] [CrossRef]
- Zhang, C.; Arditi, D. Automated progress control using laser scanning technology. Autom. Constr. 2013, 36, 108–116. [Google Scholar] [CrossRef]
- Turkan, Y.; Bosché, F.; Haas, C.T.; Haas, R. Tracking of secondary and temporary objects in structural concrete work. Constr. Innov. 2014, 14, 145–167. [Google Scholar] [CrossRef]
- Kim, M.-K.; Sohn, H.; Chang, C.-C. Automated dimensional quality assessment of precast concrete panels using terrestrial laser scanning. Autom. Constr. 2014, 45, 163–177. [Google Scholar] [CrossRef]
- Kim, M.-K.; Wang, Q.; Park, J.-W.; Cheng, J.C.P.; Sohn, H.; Chang, C.-C. Automated dimensional quality assurance of full-scale precast concrete elements using laser scanning and BIM. Autom. Constr. 2016, 72, 102–114. [Google Scholar] [CrossRef]
- Nahangi, M.; Haas, C.T. Skeleton-based discrepancy feedback for automated realignment of industrial assemblies. Autom. Constr. 2016, 61, 147–161. [Google Scholar] [CrossRef]
- Nahangi, M.; Haas, C.T. Automated 3D compliance checking in pipe spool fabrication. Adv. Eng. Inform. 2014, 28, 360–369. [Google Scholar] [CrossRef]
- Rausch, C.; Nahangi, M.; Haas, C.; West, J. Kinematics chain based dimensional variation analysis of construction assemblies using building information models and 3D point clouds. Autom. Constr. 2017, 75, 33–44. [Google Scholar] [CrossRef]
- Bosché, F. Automated recognition of 3D CAD model objects in laser scans and calculation of as-built dimensions for dimensional compliance control in construction. Adv. Eng. Inform. 2010, 24, 107–118. [Google Scholar] [CrossRef]
- Wang, Q.; Cheng, J.C.P.; Sohn, H. Automated Estimation of Reinforced Precast Concrete Rebar Positions Using Colored Laser Scan Data. Comput. Aided Civ. Infrastruct. Eng. 2017, 32, 787–802. [Google Scholar] [CrossRef]
- Kashani, A.G.; Crawford, P.S.; Biswas, S.K.; Graettinger, A.J.; Grau, D. Automated Tornado Damage Assessment and Wind Speed Estimation Based on Terrestrial Laser Scanning. J. Comput. Civ. Eng. 2015, 29, 04014051. [Google Scholar] [CrossRef]
- Zhou, Z.; Gong, J.; Guo, M. Image-Based 3D Reconstruction for Posthurricane Residential Building Damage Assessment. J. Comput. Civ. Eng. 2016, 30, 04015015. [Google Scholar] [CrossRef]
- Kashani, A.G.; Graettinger, A.J. Cluster-Based Roof Covering Damage Detection in Ground-Based Lidar Data. Autom. Constr. 2015, 58, 19–27. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Del Pozo, S.; Ramos, L.F.; Arce, A.; Fernandes, F.M. Heritage site preservation with combined radiometric and geometric analysis of TLS data. Autom. Constr. 2018, 85, 24–39. [Google Scholar] [CrossRef]
- Teza, G.; Galgaro, A.; Moro, F. Contactless recognition of concrete surface damage from laser scanning and curvature computation. NDT E Int. 2009, 42, 240–249. [Google Scholar] [CrossRef]
- Kim, M.-K.; Sohn, H.; Chang, C.-C. Localization and Quantification of Concrete Spalling Defects Using Terrestrial Laser Scanning. J. Comput. Civ. Eng. 2015, 29, 04014086. [Google Scholar] [CrossRef]
- Mizoguchi, T.; Koda, Y.; Iwaki, I.; Wakabayashi, H.; Kobayashi, Y.; Shirai, K.; Hara, Y.; Lee, H.-S. Quantitative scaling evaluation of concrete structures based on terrestrial laser scanning. Autom. Constr. 2013, 35, 263–274. [Google Scholar] [CrossRef]
- Tang, P.; Huber, D.; Akinci, B. Characterization of Laser Scanners and Algorithms for Detecting Flatness Defects on Concrete Surfaces. J. Comput. Civ. Eng. 2011, 25, 31–42. [Google Scholar] [CrossRef]
- Olsen, M.J.; Kuester, F.; Chang, B.J.; Hutchinson, T.C. Terrestrial Laser Scanning-Based Structural Damage Assessment. J. Comput. Civ. Eng. 2010, 24, 264–272. [Google Scholar] [CrossRef]
- Wang, Q.; Kim, M.-K.; Sohn, H.; Cheng, J.C.P. Surface flatness and distortion inspection of precast concrete elements using laser scanning technology. Smart Struct. Syst. 2016, 18, 601–623. [Google Scholar] [CrossRef]
- Nuttens, T.; Stal, C.; De Backer, H.; Schotte, K.; Van Bogaert, P.; De Wulf, A. Methodology for the ovalization monitoring of newly built circular train tunnels based on laser scanning: Liefkenshoek Rail Link (Belgium). Autom. Constr. 2014, 43, 1–9. [Google Scholar] [CrossRef]
- Monserrat, O.; Crosetto, M. Deformation measurement using terrestrial laser scanning data and least squares 3D surface matching. ISPRS J. Photogramm. Remote Sens. 2008, 63, 142–154. [Google Scholar] [CrossRef]
- Oskouie, P.; Becerik-Gerber, B.; Soibelman, L. Automated measurement of highway retaining wall displacements using terrestrial laser scanners. Autom. Constr. 2016, 65, 86–101. [Google Scholar] [CrossRef]
- González-Aguilera, D.; Gómez-Lahoz, J.; Sánchez, J. A New Approach for Structural Monitoring of Large Dams with a Three-Dimensional Laser Scanner. Sensors 2008, 8, 5866–5883. [Google Scholar] [CrossRef] [PubMed]
- Riveiro, B.; González-Jorge, H.; Varela, M.; Jauregui, D.V. Validation of terrestrial laser scanning and photogrammetry techniques for the measurement of vertical underclearance and beam geometry in structural inspection of bridges. Measurement 2013, 46, 784–794. [Google Scholar] [CrossRef]
- Teza, G.; Galgaro, A.; Zaltron, N.; Genevois, R. Terrestrial laser scanner to detect landslide displacement fields: A new approach. Int. J. Remote Sens. 2007, 28, 3425–3446. [Google Scholar] [CrossRef]
- Park, H.S.; Lee, H.M.; Adeli, H.; Lee, I. A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning. Comput. Aided Civ. Infrastruct. Eng. 2007, 22, 19–30. [Google Scholar] [CrossRef]
- Bu, L.; Zhang, Z. Application of point clouds from terrestrial 3D laser scanner for deformation measurements. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, 37, 545–548. [Google Scholar]
- Tang, P.; Anil, E.B.; Akinci, B.; Huber, D. Efficient and Effective Quality Assessment of As-Is Building Information Models and 3D Laser-Scanned Data. In Computing in Civil Engineering; American Society of Civil Engineers: Reston, VA, USA, 2011; pp. 486–493. [Google Scholar]
- Wang, Q.; Sohn, H.; Cheng, J.C.P. Automatic As-Built BIM Creation of Precast Concrete Bridge Deck Panels Using Laser Scan Data. J. Comput. Civ. Eng. 2018, 32, 04018011. [Google Scholar] [CrossRef]
- Kim, M.-K.; Cheng, J.C.P.; Sohn, H.; Chang, C.-C. A framework for dimensional and surface quality assessment of precast concrete elements using BIM and 3D laser scanning. Autom. Constr. 2015, 49, 225–238. [Google Scholar] [CrossRef]
- Yoon, S.; Wang, Q.; Sohn, H. Optimal placement of precast bridge deck slabs with respect to precast girders using 3D laser scanning. Autom. Constr. 2018, 86, 81–98. [Google Scholar] [CrossRef]
- Guo, Y.; Wan, J.; Lu, M.; Niu, W. A parts-based method for articulated target recognition in laser radar data. Opt. Int. J. Light Electron Opt. 2013, 124, 2727–2733. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E.; Lim, S.; Shirowzhan, S.; Kim, Y.M.; Nadoushani, Z.M. Utilisation of a New Terrestrial Scanner for Reconstruction of As-built Models: A Comparative Study. In Proceedings of the ISARC. International Symposium on Automation and Robotics in Construction, Oulu, Finland, 15–18 June 2015; pp. 1–9. [Google Scholar]
- Rabbani, T.; Dijkman, S.; van den Heuvel, F.; Vosselman, G. An integrated approach for modelling and global registration of point clouds. ISPRS J. Photogramm. Remote Sens. 2007, 61, 355–370. [Google Scholar] [CrossRef]
- Ahmed, M.F.; Haas, C.T.; Haas, R. Automatic Detection of Cylindrical Objects in Built Facilities. J. Comput. Civ. Eng. 2014, 28, 04014009. [Google Scholar] [CrossRef]
- Lee, J.; Son, H.; Kim, C.; Kim, C. Skeleton-based 3D reconstruction of as-built pipelines from laser-scan data. Autom. Constr. 2013, 35, 199–207. [Google Scholar] [CrossRef]
- Valero, E.; Adán, A.; Cerrada, C. Automatic Method for Building Indoor Boundary Models from Dense Point Clouds Collected by Laser Scanners. Sensors 2012, 12, 16099–16115. [Google Scholar] [CrossRef]
- Jacobsen, E.L.; Teizer, J. Real-time LiDAR for Monitoring Construction Worker Presence Near Hazards and in Work Areas in a Virtual Reality Environment. In Proceedings of the EG-ICE 2021 Workshop on Intelligent Computing in Engineering, Berlin, Germany, 30 June–2 July 2021; pp. 592–602. [Google Scholar]
- Wang, J.; Zhang, S.; Teizer, J. Geotechnical and safety protective equipment planning using range point cloud data and rule checking in building information modeling. Autom. Constr. 2015, 49, 250–261. [Google Scholar] [CrossRef]
- Ray, S.J.; Teizer, J. Computing 3D blind spots of construction equipment: Implementation and evaluation of an automated measurement and visualization method utilizing range point cloud data. Autom. Constr. 2013, 36, 95–107. [Google Scholar] [CrossRef]
- Marks, E.D.; Cheng, T.; Teizer, J. Laser scanning for safe equipment design that increases operator visibility by measuring blind spots. J. Constr. Eng. Manag. 2013, 139, 1006–1014. [Google Scholar] [CrossRef]
- Cheng, T.; Teizer, J. Real-time resource location data collection and visualization technology for construction safety and activity monitoring applications. Autom. Constr. 2013, 34, 3–15. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, Y.K.; Chen, J. A framework for real-time pro-active safety assistance for mobile crane lifting operations. Autom. Constr. 2016, 72, 367–379. [Google Scholar] [CrossRef]
- Vosselman, G.; Dijkman, S. 3D building model reconstruction from point clouds and ground plans. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2001, 34, 37–44. [Google Scholar]
- Chen, C.; Zhu, Z.; Hammad, A. Automated excavators activity recognition and productivity analysis from construction site surveillance videos. Autom. Constr. 2020, 110, 103045. [Google Scholar] [CrossRef]
- Memarzadeh, M.; Golparvar-Fard, M.; Niebles, J.C. Automated 2D detection of construction equipment and workers from site video streams using histograms of oriented gradients and colors. Autom. Constr. 2013, 32, 24–37. [Google Scholar] [CrossRef]
- Gong, J.; Caldas, C.H. An object recognition, tracking, and contextual reasoning-based video interpretation method for rapid productivity analysis of construction operations. Autom. Constr. 2011, 20, 1211–1226. [Google Scholar] [CrossRef]
- Rebolj, D.; Babič, N.Č.; Magdič, A.; Podbreznik, P.; Pšunder, M. Automated construction activity monitoring system. Adv. Eng. Inform. 2008, 22, 493–503. [Google Scholar] [CrossRef]
- Kim, C.; Kim, B.; Kim, H. 4D CAD model updating using image processing-based construction progress monitoring. Autom. Constr. 2013, 35, 44–52. [Google Scholar] [CrossRef]
- Yang, J.; Arif, O.; Vela, P.A.; Teizer, J.; Shi, Z. Tracking multiple workers on construction sites using video cameras. Adv. Eng. Inform. 2010, 24, 428–434. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Arboleda, C.A.; Lee, S. Visualization of Construction Progress Monitoring with 4D Simulation Model Overlaid on Time-Lapsed Photographs. J. Comput. Civ. Eng. 2009, 23, 391–404. [Google Scholar] [CrossRef]
- Iglesias, C.; Martínez, J.; Taboada, J. Automated vision system for quality inspection of slate slabs. Comput. Ind. 2018, 99, 119–129. [Google Scholar] [CrossRef]
- Cho, S.-H.; Lee, K.-T.; Kim, S.-H.; Kim, J.-H. Image Processing for Sustainable Remodeling: Introduction to Real-time Quality Inspection System of External Wall Insulation Works. Sustainability 2019, 11, 1081. [Google Scholar] [CrossRef]
- Kazemian, A.; Yuan, X.; Davtalab, O.; Khoshnevis, B. Computer vision for real-time extrusion quality monitoring and control in robotic construction. Autom. Constr. 2019, 101, 92–98. [Google Scholar] [CrossRef]
- Martinez, P.; Ahmad, R.; Al-Hussein, M. A vision-based system for pre-inspection of steel frame manufacturing. Autom. Constr. 2019, 97, 151–163. [Google Scholar] [CrossRef]
- Liu, Y.-F.; Cho, S.; Spencer, B.F.; Fan, J.-S. Concrete Crack Assessment Using Digital Image Processing and 3D Scene Reconstruction. J. Comput. Civ. Eng. 2016, 30, 04014124. [Google Scholar] [CrossRef]
- Chi, S.; Caldas, C.H. Image-Based Safety Assessment: Automated Spatial Safety Risk Identification of Earthmoving and Surface Mining Activities. J. Constr. Eng. Manag. 2012, 138, 341–351. [Google Scholar] [CrossRef]
- Sami Ur Rehman, M.; Shafiq, M.T.; Ullah, F. Automated Computer Vision-Based Construction Progress Monitoring: A Systematic Review. Buildings 2022, 12, 1037. [Google Scholar] [CrossRef]
- Son, H.; Kim, C. 3D structural component recognition and modeling method using color and 3D data for construction progress monitoring. Autom. Constr. 2010, 19, 844–854. [Google Scholar] [CrossRef]
- Nahangi, M.; Czerniawski, T.; Haas, C.T.; Walbridge, S. Pipe radius estimation using Kinect range cameras. Autom. Constr. 2019, 99, 197–205. [Google Scholar] [CrossRef]
- Teizer, J. 3D range imaging camera sensing for active safety in construction. Electron. J. Inf. Technol. Constr. 2008, 13, 103–117. [Google Scholar]
- Patel, T.; Guo, B.H.W.; Zou, Y. A scientometric review of construction progress monitoring studies. Eng. Constr. Archit. Manag. 2022, 29, 3237–3266. [Google Scholar] [CrossRef]
- Arashpour, M.; Heidarpour, A.; Akbar Nezhad, A.; Hosseinifard, Z.; Chileshe, N.; Hosseini, R. Performance-based control of variability and tolerance in off-site manufacture and assembly: Optimization of penalty on poor production quality. Constr. Manag. Econ. 2020, 38, 502–514. [Google Scholar] [CrossRef]
- Siddiqui, H. UWB RTLS for Construction Equipment Localization: Experimental Performance Analysis and Fusion with Video Data. Master’s Thesis, Concordia University, Montréal, QC, Canada, 2014. [Google Scholar]
- Maalek, R.; Sadeghpour, F. Accuracy assessment of Ultra-Wide Band technology in tracking static resources in indoor construction scenarios. Autom. Constr. 2013, 30, 170–183. [Google Scholar] [CrossRef]
- Li, H.; Chan, G.; Skitmore, M. Integrating real time positioning systems to improve blind lifting and loading crane operations. Constr. Manag. Econ. 2013, 31, 596–605. [Google Scholar] [CrossRef]
- Su, X.; Li, S.; Yuan, C.; Cai, H.; Kamat, V.R. Enhanced Boundary Condition-Based Approach for Construction Location Sensing Using RFID and RTK GPS. J. Constr. Eng. Manag. 2014, 140, 04014048. [Google Scholar] [CrossRef]
- Montaser, A.; Moselhi, O. RFID indoor location identification for construction projects. Autom. Constr. 2014, 39, 167–179. [Google Scholar] [CrossRef]
- Costin, A.; Teizer, J.; Schoner, B. RFID and bim-enabled worker location tracking to support real-time building protocol control and data visualization. ITcon 2015, 20, 495–517. [Google Scholar]
- Moeini, S.; Oudjehane, A.; Baker, T.; Hawkins, W. Application of an interrelated UAS—BIM system for construction. progress monitoring, inspection and project management. PM World J. 2017, 6, 13. [Google Scholar]
- Zhang, C.; Kalasapudi, V.S.; Tang, P. Rapid data quality oriented laser scan planning for dynamic construction environments. Adv. Eng. Inform. 2016, 30, 218–232. [Google Scholar] [CrossRef]
- Tang, P.; Alaswad, F.S. Sensor Modeling of Laser Scanners for Automated Scan Planning on Construction Jobsites. In Proceedings of the Construction Research Congress 2012: Construction Challenges in a Flat World, West Lafayette, IN, USA, 21–23 May 2012; pp. 1021–1031. [Google Scholar]
- Ibrahim, Y.M.; Lukins, T.C.; Zhang, X.; Trucco, E.; Kaka, A.P. Towards automated progress assessment of workpackage components in construction projects using computer vision. Adv. Eng. Inform. 2009, 23, 93–103. [Google Scholar] [CrossRef]
- Ellenberg, A.; Kontsos, A.; Moon, F.; Bartoli, I. Bridge related damage quantification using unmanned aerial vehicle imagery. Struct. Control. Health Monit. 2016, 23, 1168–1179. [Google Scholar] [CrossRef]
- Irizarry, J.; Gheisari, M.; Walker, B.N. Usability Assessment of Drone Technology as Safety Inspection Tools. Electron. J. Inf. Technol. Constr. 2012, 17, 194–212. [Google Scholar]
Remote Sensing Technology | Progress Monitoring | Quality Control | 3D Model Creation | H&S | Object Detection/Recognition | Location Tracking | Review |
---|---|---|---|---|---|---|---|
Photogrammetry | [8,12,27,28,29,30,49,56,57,58,59,60,61,62,63] | [31,32,33,64,65,66] | [7,30,34] | -/- | -/- | -/- | [5,8] |
UAV Photogrammetry | [26,67] | -/- | [43,68,69] | -/- | -/- | -/- | [44] |
Videogrammetry | -/- | -/- | [40,70,71] | -/- | [72] | -/- | |
UAV Videogrammetry | -/- | -/- | -/- | -/- | -/- | -/- | [9,44,54] |
Laser Scanning | [12,15,18,73,74,75,76,77,78,79,80,81,82,83,84,85,86] | [13,21,78,79,80,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116] | [40,43,68,117,118,119,120,121] | [122,123,124,125,126,127] | [77] | -/- | [5,8] |
UAV Laser Scanning | -/- | -/- | [69,128] | -/- | -/- | -/- | [9,54] |
Computer vision | [11,27,28,129,130,131,132,133,134,135] | [136,137,138,139,140] | [40] | [141] | -/- | -/- | [49,142] |
Depth camera | [45,46,143] | [144] | [48] | [145] | -/- | -/- | [5,47] |
All sensing technologies | -/- | -/- | -/- | -/- | -/- | -/- | [2,6,36,37,50,51,146] |
All vision-based sensing technologies | -/- | [147] | -/- | -/- | -/- | -/- | [52] |
UWB | [76] | -/- | -/- | -/- | -/- | [148,149] | -/- |
RFID | -/- | -/- | -/- | [150] | -/- | [151,152,153] | -/- |
GPS | -/- | -/- | -/- | [150] | -/- | [151] | -/- |
Type of Construction Works | Photogrammetry | Laser Scanning | UAV Photogrammetry | UAV LIDAR |
---|---|---|---|---|
Earthworks | ||||
Excavation | Yes | Yes | Yes | Yes |
Backfilling | Yes | Yes | Yes | Yes |
Embankments | Yes | Yes | Yes | Yes |
Subterranean geotechnical works | No | No | No | No |
Pile foundations | No | No | No | No |
Tunnelling | Yes | Yes | No | No |
Formwork | ||||
Scaffolding | Yes * | Yes * | Yes * | No |
Wall and column formwork | Yes * | Yes * | Yes * | No |
Slab and beam formwork | Yes * | Yes * | No | No |
Reinforcement work | ||||
Wall and column rebar | Yes * | Yes * | Yes * | No |
Slab and beam rebar | Yes * | Yes * | Yes * | No |
Concreting | ||||
Wall and column concrete pouring | No | No | No | No |
Slab and beam concrete pouring | Yes | Yes | Yes | No |
Masonry work | ||||
Bricklaying | Yes | Yes | Yes ** | No |
Rough plastering | Yes *** | Yes *** | No | No |
Assembly works | ||||
Steel elements | Yes | Yes | Yes ** | No |
Wooden elements | Yes | Yes | Yes ** | No |
Prefabricated elements montage | ||||
Steel elements | Yes | Yes | Yes ** | No |
Wooden elements | Yes | Yes | Yes ** | No |
Reinforced concrete elements | Yes | Yes | Yes ** | No |
Façade | ||||
Modern facade systems | Yes | Yes | Yes | No |
Traditional facade systems | Yes *** | Yes *** | Yes *** | No |
Insulation | ||||
Thermal insulation | Yes *** | Yes *** | Yes *** | No |
Waterproofing | No | No | No | No |
Interior finishing works | ||||
Tiling | No | No | No | No |
Flooring | No | No | No | No |
Plastering | No | No | No | No |
Painting | No | No | No | No |
Drywall ceilings | Yes | Yes | No | No |
Drywall partition walls | Yes | Yes | No | No |
Sanitary facilities | Yes | Yes | No | No |
Windows | Yes | Yes | Yes | No |
Doors | Yes | Yes | Yes ** | No |
MEP | ||||
Mechanical installations | Yes *** | Yes *** | No | No |
Electrical installations | Yes *** | Yes *** | No | No |
Plumbing | Yes *** | Yes *** | No | No |
Landscaping | ||||
Paving | Yes | Yes | Yes | No * |
Horticulture | Yes | Yes | Yes | No * |
Road and utilities construction | ||||
Road base course | Yes | Yes | Yes | No |
Road paving | Yes *** | Yes *** | Yes *** | No |
Pipe and cable laying | Yes *** | Yes *** | Yes *** | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihić, M.; Sigmund, Z.; Završki, I.; Butković, L.L. An Analysis of Potential Uses, Limitations and Barriers to Implementation of 3D Scan Data for Construction Management-Related Use—Are the Industry and the Technical Solutions Mature Enough for Adoption? Buildings 2023, 13, 1184. https://doi.org/10.3390/buildings13051184
Mihić M, Sigmund Z, Završki I, Butković LL. An Analysis of Potential Uses, Limitations and Barriers to Implementation of 3D Scan Data for Construction Management-Related Use—Are the Industry and the Technical Solutions Mature Enough for Adoption? Buildings. 2023; 13(5):1184. https://doi.org/10.3390/buildings13051184
Chicago/Turabian StyleMihić, Matej, Zvonko Sigmund, Ivica Završki, and Lana Lovrenčić Butković. 2023. "An Analysis of Potential Uses, Limitations and Barriers to Implementation of 3D Scan Data for Construction Management-Related Use—Are the Industry and the Technical Solutions Mature Enough for Adoption?" Buildings 13, no. 5: 1184. https://doi.org/10.3390/buildings13051184
APA StyleMihić, M., Sigmund, Z., Završki, I., & Butković, L. L. (2023). An Analysis of Potential Uses, Limitations and Barriers to Implementation of 3D Scan Data for Construction Management-Related Use—Are the Industry and the Technical Solutions Mature Enough for Adoption? Buildings, 13(5), 1184. https://doi.org/10.3390/buildings13051184