A Review of Phase Change Materials as a Heat Storage Medium for Cooling Applications in the Built Environment
Abstract
:1. Introduction
2. PCM Selection Criteria for Hot Climate
3. PCM Cooling Application
3.1. Free Cooling
3.2. Solar Cooling Systems with PCM
3.3. Air Conditioning System with PCM
3.4. Enhanced Evaporative and Radiative Cooling with PCM
4. Heat Transfer Improvements
4.1. Surface Area
4.2. Thermal Conductivity Enhancement
4.2.1. Expanded Graphite Insertion
4.2.2. Copper Foaming
4.2.3. Aluminum Foams
4.2.4. Nickel Foams
4.2.5. Carbon Foams
4.2.6. Graphite Foams
4.3. Nano PCM
5. Thermal Energy Storage (TES) Integration into Built Environment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations Framework Convention on Climate Change. The Paris Agreement. 2015. Available online: https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement (accessed on 27 January 2019).
- Intergovernmental Panel on Climate Change. Global Warming of 1.5 _C. 2018. Available online: https://www.ipcc.ch/sr15/ (accessed on 27 January 2019).
- IEA. Energy Technology Perspectives: Towards Sustainable Urban Energy Systems; IEA: Paris, France, 2016; Volume 14. [Google Scholar]
- Dominkovi’c, D.F. Modelling Energy Supply of Future Smart Cities; Technical University of Denmark: Kongens, Denmark; Lyngby, Denmark, 2018. [Google Scholar]
- Hooftman, N.; Oliveira, L.; Messagie, M.; Coosemans, T.; Van Mierlo, J. Environmental Analysis of Petrol, Diesel and Electric Passenger Cars in a Belgian Urban Setting. Energies 2016, 9, 84. [Google Scholar] [CrossRef]
- IEA. Energy and Air Pollution; IEA: Paris, France, 2016. [Google Scholar]
- Li, D.; Wang, Q.; Lin, P.; Chen, Y. Analysis of the Heat-Flux Characteristics of the Turbulent Boundary Layer in the Trombe Wall. J. Energy Eng. 2021, 147, 04021052. [Google Scholar] [CrossRef]
- Narbuts, J.; Vanaga, R.; Freimanis, R.; Blumberga, A. Laboratory Testing of Small-Scale Active Solar Façade Module. Environ. Clim. Technol. 2021, 25, 455–466. [Google Scholar] [CrossRef]
- Patel, J.H.; Qureshi, M.; Darji, P. Experimental analysis of thermal energy storage by phase change material system for cooling and heating applications. Mater. Today Proc. 2018, 5, 1490–1500. [Google Scholar] [CrossRef]
- Choblet, F.; Gicquel, P.; Schmitz, A.P.; Fang, Y. Le Changement Climatique: Gouvernance Politique et Économique. Climatiques 2007, 80. [Google Scholar]
- Isaac, M.; van Vuuren, D.P. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy 2009, 37, 507–521. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B. Smart Energy Europe: The technical and economic impact of one potential 100% renewable energy scenario for the European Union. Renew. Sustain. Energy Rev. 2016, 60, 1634–1653. [Google Scholar] [CrossRef]
- Kuznik, F.; Virgone, J.; Noel, J. Optimization of a phase change material wallboard for building use. Appl. Therm. Eng. 2008, 28, 1291–1298. [Google Scholar] [CrossRef] [Green Version]
- Kalnæs, S.E.; Jelle, B.P. Phase change materials and products for building applications: A state-of-the-art review and future research opportunities. Energy Build. 2015, 94, 150–176. [Google Scholar] [CrossRef] [Green Version]
- Nazir, H.; Batool, M.; Osorio, F.J.B.; Isaza-Ruiz, M.; Xu, X.; Vignarooban, K.; Phelan, P.; Inamuddin; Kannan, A.M. Recent developments in phase change materials for energy storage applications: A review. Int. J. Heat Mass Transf. 2019, 129, 491–523. [Google Scholar] [CrossRef]
- da Cunha, S.R.L.; de Aguiar, J.L.B. Phase change materials and energy efficiency of buildings: A review of knowledge. J. Energy Storage 2020, 27, 101083. [Google Scholar] [CrossRef]
- Duraković, B.; Hadziabdić, M.; Buyukdagli, O. Building energy demand management strategies and methods. In Building Energy Flexibility and Demand Management; Academic Press: Cambridge, MA, USA, 2023; pp. 63–85. [Google Scholar]
- Ermiş, K.; Findik, F. Thermal energy storage. Sustain. Eng. Innov. 2020, 2, 66–88. [Google Scholar] [CrossRef]
- Duraković, B. PCMs in building structure. In PCM-Based Building Envelope Systems: Innovative Energy Solutions for Passive Design; Springer Nature: Cham, Switzerland, 2020; pp. 63–87. [Google Scholar]
- Duraković, B.; Duraković, B. PCM-based glazing systems and components. In PCM-Based Building Envelope Systems: Innovative Energy Solutions for Passive Design; Springer Nature: Cham, Switzerland, 2020; pp. 89–119. [Google Scholar]
- Duraković, B.; Mešetović, S. Thermal performances of glazed en-ergy storage systems with various storage materials: An experimental study. Sustain. Cities Soc. 2019, 45, 422–430. [Google Scholar] [CrossRef]
- Duraković, B. PCMs in Separate Heat Storage Modules. In PCM-Based Building Envelope Systems: Innovative Energy Solutions for Passive Design; Springer Nature: Cham, Switzerland, 2020; pp. 121–146. [Google Scholar]
- Farhat, N.; Inal, Z. Solar thermal energy storage solutions for building application: State of the art. Herit. Sustain. Dev. 2019, 1, 1–13. [Google Scholar] [CrossRef]
- Zahir, H.; Irshad, K.; Shafiullah; Ibrahim, N.I.; Islam, A.K.; Mohaisen, K.O.; Sulaiman, F.A. Challenges of the application of PCMs to achieve zero energy buildings under hot weather conditions: A review. J. Energy Storage 2023, 64, 107156. [Google Scholar] [CrossRef]
- Huang, Y.; Stonehouse, A.; Abeykoon, C. Encapsulation methods for phase change materials—A critical review. Int. J. Heat Mass Transf. 2023, 200, 123458. [Google Scholar] [CrossRef]
- Karthikeyan, A.; Nimay, K.S.S.; Dinesh, C.H.; Jayaprabakar, J.; Jacob, A. Performance enhancement of solar thermal systems using phase change materials—A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, H.; Fang, G. Review on thermal conductivity improvement of phase change materials with enhanced additives for thermal energy storage. J. Energy Storage 2022, 51, 104568. [Google Scholar] [CrossRef]
- Hamdan, D.M.A.; de Oliveira, F.L. The impact of urban design elements on microclimate in hot arid climatic conditions: Al Ain City, UAE. Energy Build. 2019, 200, 86–103. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. A review on phase change materials for thermal energy storage in buildings: Heating and hybrid applications. J. Energy Storage 2020, 33, 101913. [Google Scholar] [CrossRef]
- Keshteli, A.N.; Sheikholeslami, M. Nanoparticle enhanced PCM applications for intensification of thermal performance in building: A review. J. Mol. Liq. 2018, 274, 516–533. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef] [Green Version]
- Alva, G.; Lin, Y.; Fang, G. An overview of thermal energy storage systems. Energy 2018, 144, 341–378. [Google Scholar] [CrossRef]
- Sharma, S.; Sagara, K. Latent Heat Storage Materials and Systems: A Review. Int. J. Green Energy 2005, 2, 1–56. [Google Scholar] [CrossRef]
- Abhat, A. Low temperature latent heat thermal energy storage: Heat storage materials. Sol. Energy 1983, 30, 313–332. [Google Scholar] [CrossRef]
- Jaguemont, J.; Omar, N.; Van den Bossche, P.; Mierlo, J. Phase-change materials (PCM) for automotive applications: A review. Appl. Therm. Eng. 2018, 132, 308–320. [Google Scholar] [CrossRef]
- Wu, W.; Wu, W.; Wang, S. Form-stable and thermally induced flexible composite phase change material for thermal energy storage and thermal management applications. Appl. Energy 2019, 236, 10–21. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Tang, B.; Lu, R.; Zhang, S. Form-stable phase change materials with high phase change enthalpy from the composite of paraffin and cross-linking phase change structure. Appl. Energy 2016, 184, 241–246. [Google Scholar] [CrossRef]
- Lv, P.; Liu, C.; Rao, Z. Experiment study on the thermal properties of paraffin/kaolin thermal energy storage form-stable phase change materials. Appl. Energy 2016, 182, 475–487. [Google Scholar] [CrossRef]
- Li, Z.; Wu, Y.; Zhuang, B.; Zhao, X.; Tang, Y.; Ding, X.; Chen, K. Preparation of novel copper-powder-sintered frame/paraffin form-stable phase change materials with extremely high thermal conductivity. Appl. Energy 2017, 206, 1147–1157. [Google Scholar] [CrossRef]
- Gulfam, R.; Zhang, P.; Meng, Z. Advanced thermal systems driven by paraffin-based phase change materials—A review. Appl. Energy 2019, 238, 582–611. [Google Scholar] [CrossRef]
- Lawag, R.A.; Ali, H.M. Phase change materials for thermal management and energy storage: A review. J. Energy Storage 2022, 55, 105602. [Google Scholar] [CrossRef]
- Li, C.; Li, Q.; Ding, Y. Investigation on the thermal performance of a high temperature packed bed thermal energy storage system containing carbonate salt based composite phase change materials. Appl. Energy 2019, 247, 374–388. [Google Scholar] [CrossRef]
- Tao, Y.; Lin, C.; He, Y. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers. Manag. 2015, 97, 103–110. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Kuznik, F.; David, D.; Johannes, K.; Roux, J.-J. A review on phase change materials integrated in building walls. Renew. Sustain. Energy Rev. 2010, 15, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; McCormack, S.; Huang, M.; Norton, B. Evaluation of phase change materials for thermal regulation enhancement of building integrated photovoltaics. Sol. Energy 2010, 84, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.; Sarwar, J.; Alnoman, H.; Abdelbaqi, S. Yearly energy performance of a photovoltaic-phase change material (PV-PCM) system in hot climate. Sol. Energy 2017, 146, 417–429. [Google Scholar] [CrossRef]
- Hasan, A.; Alnoman, H.; Rashid, Y. Impact of integrated photovolta-ic-phase change material system on building energy efficiency in hot climate. Energy Build. 2016, 130, 495–505. [Google Scholar] [CrossRef]
- Hasan, A.; McCormack, S.; Huang, M.; Sarwar, J.; Norton, B. Increased photovoltaic performance through temperature regulation by phase change materials: Materials comparison in different climates. Sol. Energy 2015, 115, 264–276. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, N.; Chang, C.; Wang, D.; Yang, S.; Ma, S. A methodological concept for phase change material selection based on multi-criteria decision making (MCDM): A case study. Energy 2018, 165, 1085–1096. [Google Scholar] [CrossRef]
- Artmann, N.; Jensen, R.L.; Manz, H.; Heiselberg, P. Experimental investigation of heat transfer during night-time ventilation. Energy Build. 2010, 42, 366–374. [Google Scholar] [CrossRef]
- Desideri, U.; Proietti, S.; Sdringola, P. Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications. Appl. Energy 2009, 86, 1376–1386. [Google Scholar] [CrossRef]
- Santamouris, M.; Pavlou, K.; Synnefa, A.; Niachou, K.; Kolokotsa, D. Recent progress on passive cooling techniques. Energy Build 2007, 39, 859–866. [Google Scholar] [CrossRef]
- Zalba, B.; Marín, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Telkes, M. Thermal storage for solar heating and cooling. In Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlotteville, VI, USA, 16–18 April 1975. [Google Scholar]
- Lane, G.A. Solar Heat Storage: Latent Heat Material; CRC Press: Boca Raton, FL, USA, 1986; Volume 2. [Google Scholar]
- Barkmann, H.G.; Wessling, F.C. Use of building structural components for thermal storage. In Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlotteville, VI, USA, 16–18 April 1975. [Google Scholar]
- Hawes, D.; Feldman, D.; Banu, D. Latent heat storage in building materials. Energy Build. 1993, 20, 77–86. [Google Scholar] [CrossRef]
- Morikama, Y.; Suzuki, H.; Okagawa, F.; Kanki, K. A development of building element using PCM. In Proceedings of the International Symposium on the Thermal Application of Solar Energy, Hakone, Japan, 8 April 1985. [Google Scholar]
- Lee, C.H.; Choi, H.K. Crystalline morphology in high-density polyethylene/paraffin blend for thermal energy storage. Polym. Compos. 1998, 19, 704–708. [Google Scholar] [CrossRef]
- Konstantinidou, C.V.; Novoselac, A. Integration of Thermal Energy Storage in Buildings; University of Texas: Austin, TX, USA, 2010. [Google Scholar]
- Wan, Y.; Huang, Z.; Soh, A.; Chua, K.J. On the performance study of a hybrid indirect evaporative cooling and latent-heat thermal energy storage system under commercial operating conditions. Appl. Therm. Eng. 2023, 221, 119902. [Google Scholar] [CrossRef]
- Waqas, A.; Ud Din, Z. Phase change material (PCM) storage for free cooling of buildings—A review. Renew. Sustain. Energy Rev. 2013, 18, 607–625. [Google Scholar] [CrossRef]
- Raj, V.A.A.; Velraj, R. Review on free cooling of buildings using phase change materials. Renew. Sustain. Energy Rev. 2010, 14, 2819–2829. [Google Scholar] [CrossRef]
- Zalba, B.; Marı, J.M.; Cabeza, L.F.; Mehling, H. Free-cooling of buildings with phase change materials. Int. J. Refrig. 2004, 27, 839–849. [Google Scholar] [CrossRef]
- Kamali, S. Review of free cooling system using phase change material for building. Energy Build. 2014, 80, 131–136. [Google Scholar] [CrossRef]
- Mosaffa, A.; Ferreira, C.A.I.; Talati, F.; Rosen, M. Thermal performance of a multiple PCM thermal storage unit for free cooling. Energy Convers. Manag. 2013, 67, 1–7. [Google Scholar] [CrossRef]
- Mosaffa, A.; Ferreira, C.I.; Rosen, M.; Talati, F. Thermal performance optimization of free cooling systems using enhanced latent heat thermal storage unit. Appl. Therm. Eng. 2013, 59, 473–479. [Google Scholar] [CrossRef]
- Anisur, M.R.; Kibria, M.A.; Mahfuz, M.H.; Saidur, R.; Metselaar, I.H.S.C. Cooling of air using heptadecane phase change material in shell and tube arrangement: Analytical and experimental study. Energy Build 2014, 85, 98–106. [Google Scholar] [CrossRef]
- Darzi, A.R.; Moosania, S.; Tan, F.; Farhadi, M. Numerical investigation of free-cooling system using plate type PCM storage. Int. Commun. Heat Mass Transf. 2013, 48, 155–163. [Google Scholar] [CrossRef]
- Rouault, F.; Bruneau, D.; Sebastian, P.; Lopez, J. Numerical modelling of tube bundle thermal energy storage for free-cooling of buildings. Appl. Energy 2013, 111, 1099–1106. [Google Scholar] [CrossRef]
- Lazaro, A.; Dolado, P.; Marín, J.M.; Zalba, B. PCM–air heat exchangers for free-cooling applications in buildings: Experimental results of two real-scale prototypes. Energy Convers. Manag. 2009, 50, 439–443. [Google Scholar] [CrossRef]
- Tan, G.; Zhao, D. Study of a thermoelectric space cooling system integrated with phase change material. Appl. Therm. Eng. 2015, 86, 187–198. [Google Scholar] [CrossRef]
- Panchabikesan, K.; Antony, V.A.A.R.; Ding, Y.; Velraj, R. Enhancement in free cooling potential through PCM based storage system integrated with direct evaporative cooling (DEC) unit. Energy 2018, 144, 443–455. [Google Scholar] [CrossRef] [Green Version]
- Maccarini, A.; Hultmark, G.; Bergsøe, N.C.; Afshari, A. Free cooling potential of a PCM-based heat exchanger coupled with a novel HVAC system for simultaneous heating and cooling of buildings. Sustain. Cities Soc. 2018, 42, 384–395. [Google Scholar] [CrossRef]
- Nagano, K.; Takeda, S.; Mochida, T.; Shimakura, K.; Nakamura, T. Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—Heat response in small scale experiments. Energy Build. 2005, 38, 436–446. [Google Scholar] [CrossRef]
- Nagano, K. 22. Development of the Pcm Floor Supply Air-Conditioning System. In Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design; Springer: Dordrecht, The Netherlands, 2007; Volume 234, p. 367. [Google Scholar]
- Bulut, H.; Aktacir, M.A. Determination of free cooling potential: A case study for Istanbul, Turkey. Appl. Energy 2011, 88, 680–689. [Google Scholar] [CrossRef]
- Jaber, S.; Ajib, S. Novel cooling unit using PCM for residential application. Int. J. Refrig. 2011, 35, 1292–1303. [Google Scholar] [CrossRef]
- Osterman, E.; Tyagi, V.V.; Butala, V.; Rahim, N.A.; Stritih, U. Review of PCM based cooling technologies for buildings. Energy Build. 2012, 49, 37–49. [Google Scholar] [CrossRef]
- Alam, M.; Sanjayan, J.; Zou, P.X.; Ramakrishnan, S.; Wilson, J. Evaluating the passive and free cooling application methods of phase change materials in residential buildings: A comparative study. Energy Build. 2017, 148, 238–256. [Google Scholar] [CrossRef]
- Turnpenny, J.; Etheridge, D.; Reay, D. Novel ventilation cooling system for reducing air conditioning in buildings.: Part I: Testing and theoretical modelling. Appl. Therm. Eng. 2000, 20, 1019–1037. [Google Scholar] [CrossRef]
- Jaworski, M. Thermal performance of building element containing phase change material (PCM) integrated with ventilation system—An experimental study. Appl. Therm. Eng. 2014, 70, 665–674. [Google Scholar] [CrossRef]
- Butala, V.; Stritih, U. Experimental investigation of PCM cold storage. Energy Build. 2008, 41, 354–359. [Google Scholar] [CrossRef]
- Han, X.; Li, Y.; Yuan, L.; Wang, Q.; Zhang, H.; Lian, H.; Zhang, G.; Xiao, L. Experimental study on effect of microencapsulated phase change coating on indoor temperature response and energy consumption. Adv. Mech. Eng. 2017, 9, 168781401770390. [Google Scholar] [CrossRef]
- Jeong, S.-G.; Chang, S.J.; Wi, S.; Kang, Y.; Kim, S. Development and performance evaluation of heat storage paint with MPCM for applying roof materials as basic research. Energy Build. 2016, 112, 62–68. [Google Scholar] [CrossRef]
- Lei, J.; Kumarasamy, K.; Zingre, K.T.; Yang, J.; Wan, M.P.; Yang, E.-H. Cool colored coating and phase change materials as complementary cooling strategies for building cooling load reduction in tropics. Appl. Energy 2017, 190, 57–63. [Google Scholar] [CrossRef]
- Soudian, S.; Berardi, U.; Laschuk, N. Development and thermal-optical characterization of a cementitious plaster with phase change materials and thermochromic paint. Sol. Energy 2020, 205, 282–291. [Google Scholar] [CrossRef]
- Baskar, I.; Chellapandian, M.; Jaswanth, S.S.H. Development of a novel composite phase change material based paints and mortar for energy storage applications in buildings. J. Energy Storage 2022, 55, 105829. [Google Scholar] [CrossRef]
- Ma, E.; Wei, Z.; Lian, C.; Zhou, Y.; Gan, S.; Xu, B. Preparation of colored microcapsule phase change materials with colored SiO2 shell for thermal energy storage and their application in latex paint coating. Materials 2021, 14, 4012. [Google Scholar] [CrossRef]
- Ali, U.N.N.; Nor, N.M.; Misnon, N.A.; Noor, S.A.M.; Othman, M.; Alias, M.A.A.; Syamsir, A. Integration of PCM as an external wall layer in reducing excessive heat of building walls. Funct. Compos. Struct. 2022, 4, 035005. [Google Scholar] [CrossRef]
- Ong, P.J.; Lum, Y.Y.; Soo, X.Y.D.; Wang, S.; Wang, P.; Chi, D.; Liu, H.; Kai, D.; Lee, C.-L.K.; Yan, Q.; et al. Integration of phase change material and thermal insulation material as a passive strategy for building cooling in the tropics. Constr. Build. Mater. 2023, 386, 131583. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, Y.; Zhao, Y.; Torres, J.F.; Wang, X. PCM-based ceiling panels for passive cooling in buildings: A CFD modelling. Energy Build. 2023, 285, 112898. [Google Scholar] [CrossRef]
- Roy, A.; Shaikh, U.I.; Kale, S.; Sur, A. Performance Analysis of an Energy-Efficient PCM-Based Room Cooling System. Front. Heat Mass Transf. 2023, 20, 28. [Google Scholar] [CrossRef]
- Baskar, I.; Chellapandian, M. Experimental and finite element analysis on the developed real-time form stable PCM based roof system for thermal energy storage applications. Energy Build. 2022, 276, 112514. [Google Scholar] [CrossRef]
- Gallardo, A.; Berardi, U. Experimental evaluation of the cooling performance of radiant ceiling panels with thermal energy storage. Energy Build. 2022, 262, 112021. [Google Scholar] [CrossRef]
- Zhao, K.; Wang, J.; Xie, H.; Guo, Z. Microencapsulated phase change n-Octadecane with high heat storage for application in building energy conservation. Appl. Energy 2023, 329, 120284. [Google Scholar] [CrossRef]
- Singh, A.K.; Rathore, P.K.S.; Sharma, R.; Gupta, N.K.; Kumar, R. Experimental evaluation of composite concrete incorporated with thermal energy storage material for improved thermal behavior of buildings. Energy 2023, 263, 125701. [Google Scholar] [CrossRef]
- Duraković, B. PCM-Based Building Envelope Systems: Innovative Energy Solutions for Passive Design; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Labat, M.; Virgone, J.; David, D.; Kuznik, Z. Experimental assessment of a PCM to air heat exchanger storage system for building ventilation application. Appl. Therm. Eng. 2014, 66, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Helm, M.; Keil, C.; Hiebler, S.; Mehling, H.; Schweigler, C. Solar heating andcooling system with absorption chiller and low-temperature latent heatstorage: Energetic performance and operational experience. Int. J. Refrig. 2009, 32, 596–606. [Google Scholar] [CrossRef]
- Velmurugan, K.; Elavarasan, R.M.; De, P.V.; Karthikeyan, V.; Korukonda, T.B.; Dhanraj, J.A.; Emsaeng, K.; Chowdhury, M.S.; Techato, K.; El Khier, B.S.A.; et al. A review of heat batteries based PV module cooling—case studies on performance enhancement of large-scale solar PV system. Sustainability 2022, 14, 1963. [Google Scholar] [CrossRef]
- Kabeel, A.; Abdelgaied, M. Solar energy assisted desiccant air conditioning system with PCM as a thermal storage medium. Renew. Energy 2018, 122, 632–642. [Google Scholar] [CrossRef]
- Stropnik, R.; Koželj, R.; Zavrl, E.; Stritih, U. Improved thermal energy storage for nearly zero energy buildings with PCM integration. Sol. Energy 2019, 190, 420–426. [Google Scholar] [CrossRef]
- Chinnasamy, V.; Appukuttan, S. A real-time experimental investigation of building integrated thermal energy storage with air-conditioning system for indoor temperature regulation. Energy Storage 2019, 1, e43. [Google Scholar] [CrossRef] [Green Version]
- Zheng, L.; Zhang, W.; Xie, L.; Wang, W.; Tian, H.; Chen, M. Experimental study on the thermal performance of solar air conditioning system with MEPCM cooling storage. Int. J. Low-Carbon Technol. 2019, 14, 83–88. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Deepak, K.; Kalaiselvam, S. Thermal energy storage behavior of composite using hybrid nanomaterials as PCM for solar heating systems. J. Therm. Anal. Calorim. 2014, 115, 1563–1571. [Google Scholar] [CrossRef]
- Stritih, U.; Charvat, P.; Klimes, L.; Osterman, E.; Ostry, M.; Butala, V. PCM thermal energy storage in solar heating of ventilation air—Experimental and numerical investigations. Sustain. Cities Soc. 2018, 37, 104–115. [Google Scholar] [CrossRef]
- Belmonte, J.; Izquierdo-Barrientos, M.; Eguía, P.; Molina, A.; Almendros-Ibáñez, J. PCM in the heat rejection loops of absorption chillers. A feasibility study for the residential sector in Spain. Energy Build. 2014, 80, 331–351. [Google Scholar] [CrossRef]
- Henning, H.-M. Solar assisted air conditioning of buildings—An overview. Appl. Therm. Eng. 2007, 27, 1734–1749. [Google Scholar] [CrossRef]
- Helm, M.; Hagel, K.; Pfeffer, W.; Hiebler, S.; Schweigler, C. Solar Heating and Cooling System with Absorption Chiller and Latent Heat Storage—A Research Project Summary. Energy Procedia 2014, 48, 837–849. [Google Scholar] [CrossRef] [Green Version]
- Gil, A.; Barreneche, C.; Moreno, P.; Solé, C.; Fernández, A.I.; Cabeza, L.F. Thermal behaviour of d-mannitol when used as PCM: Comparison of results obtained by DSC and in a thermal energy storage unit at pilot plant scale. Appl. Energy 2013, 111, 1107–1113. [Google Scholar] [CrossRef]
- Gil, A.; Oró, E.; Castell, A.; Cabeza, L.F. Experimental analysis of the effectiveness of a high temperature thermal storage tank for solar cooling applications. Appl. Therm. Eng. 2013, 54, 521–527. [Google Scholar] [CrossRef]
- Gil, A.; Oró, E.; Miró, L.; Peiró, G.; Ruiz, Á.; Salmerón, J.M.; Cabeza, L.F. Experimental analysis of hydroquinone used as phase change material(PCM) to be applied in solar cooling refrigeration. Int. J. Refrig. 2014, 39, 95–103. [Google Scholar] [CrossRef]
- Agyenim, F.; Knight, I.; Rhodes, M. Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Sol. Energy 2010, 84, 735–744. [Google Scholar] [CrossRef]
- Fang, G.; Wu, S.; Liu, X. Experimental study on cool storage air-conditioning system with spherical capsules packed bed. Energy Build. 2010, 42, 1056–1062. [Google Scholar] [CrossRef]
- Allouche, Y.; Varga, S.; Bouden, C.; Oliveira, A.C. Dynamic simulation of an integrated solar-driven ejector based air conditioning system with PCM cold storage. Appl. Energy 2017, 190, 600–611. [Google Scholar] [CrossRef]
- Chaiyat, N. Energy and economic analysis of a building air-conditioner with a phase change material (PCM). Energy Convers. Manag. 2015, 94, 150–158. [Google Scholar] [CrossRef]
- Zhao, D.; Tan, G. Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application. Appl. Energy 2015, 138, 381–392. [Google Scholar] [CrossRef]
- Haggag, M.; Hassan, A.; Abdelbaqi, S. Phase Change Material to Reduce Cooling Load of Buildings in Hot Climate. Key Eng. Mater. 2019, 801, 416–423. [Google Scholar] [CrossRef]
- Shen, D.; Yu, C.; Wang, W. Investigation on the thermal performance of the novel phase change materials wall with radiative cooling. Appl. Therm. Eng. 2020, 176, 115479. [Google Scholar] [CrossRef]
- El Loubani, M.; Ghaddar, N.; Ghali, K.; Itani, M. Hybrid cooling system integrating PCM-desiccant dehumidification and personal evaporative cooling for hot and humid climates. J. Build. Eng. 2021, 33, 101580. [Google Scholar] [CrossRef]
- Yu, C.; Shen, D.; He, W.; Hu, Z.; Zhang, S.; Chu, W. Parametric analysis of the phase change material wall combining with micro-channel heat pipe and sky radiative cooling technology. Renew. Energy 2020, 178, 1057–1069. [Google Scholar] [CrossRef]
- He, W.; Yu, C.; Yang, J.; Yu, B.; Hu, Z.; Shen, D.; Liu, X.; Qin, M.; Chen, H. Experimental study on the performance of a novel RC-PCM-wall. Energy Build. 2019, 199, 297–310. [Google Scholar] [CrossRef]
- Wang, X.; Niu, J.; van Paassen, A. Raising evaporative cooling potentials using combined cooled ceiling and MPCM slurry storage. Energy Build. 2008, 40, 1691–1698. [Google Scholar] [CrossRef]
- Durakovic, B.; Torlak, M. Experimental and numerical study of a PCM window model as a thermal energy storage unit. Int. J. Low-Carbon Technol. 2017, 12, 272–280. [Google Scholar] [CrossRef]
- Fan, L.; Khodadadi, J.M. Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renew. Sustain. Energy Rev. 2011, 15, 24–46. [Google Scholar] [CrossRef]
- Lin, Y.; Jia, Y.; Alva, G.; Fang, G. Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage. Renew. Sustain. Energy Rev. 2018, 82, 2730–2742. [Google Scholar] [CrossRef]
- Zhang, P.; Xiao, X.; Ma, Z.W. A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Appl. Energy 2016, 165, 472–510. [Google Scholar] [CrossRef]
- Akeiber, H.; Nejat, P.; Majid, M.Z.A.; Wahid, M.A.; Jomehzadeh, F.; Famileh, I.Z.; Calautit, J.K.; Hughes, B.R.; Zaki, S.A. A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renew. Sustain. Energy Rev. 2016, 60, 1470–1497. [Google Scholar] [CrossRef]
- Rufuss, D.D.W.; Suganthi, L.; Iniyan, S.; Davies, P. Effects of nanoparticle-enhanced phase change material (NPCM) on solar still productivity. J. Clean. Prod. 2018, 192, 9–29. [Google Scholar] [CrossRef] [Green Version]
- Faraji, H.; El Alami, M.; Arshad, A. Investigating the effect of single and hybrid nanoparticles on melting of phase change material in a rectangular enclosure with finite heat source. Int. J. Energy Res. 2021, 45, 4314–4330. [Google Scholar] [CrossRef]
- Patel, J.H.; Darji, P.H.; Qureshi, M.N. Phase Change Material with Thermal Energy Storage System and its Applications: A Systematic Review. Indian J. Sci. Technol. 2017, 10, 1–10. [Google Scholar] [CrossRef]
- Yang, L.; Jin, X.; Zhang, Y.; Du, K. Recent development on heat transfer and various applications of phase-change materials. J. Clean. Prod. 2021, 287, 124432. [Google Scholar] [CrossRef]
- Ghosh, D.; Guha, C. Numerical simulation of paraffin wax melting in a rectangular cavity using CFD. Indian Chem. Eng. 2020, 62, 314–328. [Google Scholar] [CrossRef]
- Jiang, H.; Yu, X.; Xu, N.; Wang, D.; Yang, J.; Chu, H. Effect of T-shaped micro-fins on pool boiling heat transfer performance of surfaces. Exp. Therm. Fluid Sci. 2022, 136, 110663. [Google Scholar] [CrossRef]
- Liang, D.; Bai, W.; Chen, W.; Chyu, M.K. Investigating the effect of element shape of the face-centered cubic lattice structure on the flow and endwall heat transfer characteristics in a rectangular channel. Int. J. Heat Mass Transf. 2020, 153, 119579. [Google Scholar] [CrossRef]
- Krishnaswamy, K.; Sivan, S. Improvement in thermal hydraulic performance by using continuous v and W-shaped rib turbulators in gas turbine blade cooling application. Case Stud. Therm. Eng. 2021, 24, 100857. [Google Scholar] [CrossRef]
- Aldoori, W.H. The effect of fin height on forced convection heat transfer from rectangular fin array. Mater. Today Proc. 2021, 80, 3181–3188. [Google Scholar] [CrossRef]
- Singh, P.; Zhang, M.; Ahmed, S.; Ramakrishnan, K.R.; Ekkad, S. Effect of micro- roughness shapes on jet impingement heat transfer and fin-effectiveness. Int. J. Heat Mass Transf. 2019, 132, 80–95. [Google Scholar] [CrossRef]
- Krishnaswamy, K.; Sivan, S.; Ali, H.M. Influence of narrow rectangular channel (AR=1:4) on heat transfer and friction for V- and W-shaped ribs in turbine blade applications. Int. J. Photoenergy 2021, 2021, 5581081. [Google Scholar] [CrossRef]
- Lacroix, M. Study of the heat transfer behavior of a latent heat thermal energy storage unit with a finned tube. Int. J. Heat Mass Transf. 1993, 36, 2083–2092. [Google Scholar] [CrossRef]
- Shin, D.H.; Park, J.; Choi, S.H.; Ko, H.S.; Karng, S.W.; Shin, Y. A new type of heat storage system using the motion of phase change materials in an elliptical-shaped capsule. Energy Convers. Manag. 2019, 182, 508–519. [Google Scholar] [CrossRef]
- Fadl, M.; Eames, P.C. Numerical investigation of the influence of mushy zone parameter Amush on heat transfer characteristics in vertically and horizontally oriented thermal energy storage systems. Appl. Therm. Eng. 2019, 151, 90–99. [Google Scholar] [CrossRef]
- Liu, S.; Peng, H.; Hu, Z.; Ling, X.; Huang, J. Solidification performance of a latent heat storage unit with innovative longitudinal triangular fins. Int. J. Heat Mass Transf. 2019, 138, 667–676. [Google Scholar] [CrossRef]
- Ge, R.; Humbert, G.; Martinez, R.; Attallah, M.M.; Sciacovelli, A. Additive manufacturing of a topology-optimised multi-tube energy storage device: Experimental tests and numerical analysis. Appl. Therm. Eng. 2020, 180, 115878. [Google Scholar] [CrossRef]
- Pu, L.; Zhang, S.; Xu, L.; Li, Y. Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit. Appl. Therm. Eng. 2020, 166, 114753. [Google Scholar] [CrossRef]
- Tiari, S.; Hockins, A.; Mahdavi, M. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Stud. Therm. Eng. 2021, 25, 100999. [Google Scholar] [CrossRef]
- Taghavi, M.; Poikelispää; M; Agrawal, V.; Syrjälä; S; Joronen, T. Numerical investigation of a plate heat exchanger thermal energy storage system with phase change material. J. Energy Storage 2023, 61, 106785. [Google Scholar] [CrossRef]
- Aly, K.A.; El-Lathy, A.R.; Fouad, M.A. Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. J. Energy Storage 2019, 24, 100785. [Google Scholar] [CrossRef]
- Raj, P.R.; Midhun, M.P.; Prakash, D. Computational simulation and experimental validation of an engineering problem: A case study on heat transfer in cylindrical fin with phase-change material. Comput. Appl. Eng. Educ. 2020, 28, 167–177. [Google Scholar] [CrossRef]
- Asgari, M.; Javidan, M.; Nozari, M.; Asgari, A.; Ganji, D.D. Simulation of solidification process of phase change materials in a heat exchanger using branch- shaped fins. Case Stud. Therm. Eng. 2021, 25, 100835. [Google Scholar] [CrossRef]
- Yan, T.; Luo, Y.; Xu, T.; Wu, H.; Xu, X.; Li, J. Experimental study of the coupled wall system of pipe-encapsulated PCM wall and nocturnal sky radiator for self- activated heat removal. Energy Build. 2021, 241, 110964. [Google Scholar] [CrossRef]
- Yan, T.; Gao, J.; Xu, X.; Xu, T.; Ling, Z.; Yu, J. Dynamic simplified PCM models for the pipe-encapsulated PCM wall system for self activated heat removal. Int. J. Therm. Sci. 2019, 144, 27–41. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Y.; Liu, C.; Li, H. Heat transfer characteristics of an expanded graphite/paraffin PCM-heat exchanger used in an instantaneous heat pump water heater. Appl. Therm. Eng. 2018, 142, 644–655. [Google Scholar] [CrossRef]
- Zou, T.; Liang, X.; Wang, S.; Gao, X.; Zhang, Z.; Fang, Y. Effect of expanded graphite size on performances of modified CaCl2·6H2O phase change material for cold energy storage. Microporous Mesoporous Mater. 2020, 305, 110403. [Google Scholar] [CrossRef]
- Meng, X.; Yan, L.; He, F. Filling copper foam partly on thermal behavior of phase-change material in a rectangular enclosure. J. Energy Storage 2020, 32, 101867. [Google Scholar] [CrossRef]
- Zheng, X.; Gao, X.; Huang, Z.; Li, Z.; Fang, Y.; Zhang, Z. Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage. Sol. Energy Mater. Sol. Cells 2021, 226, 111083. [Google Scholar] [CrossRef]
- Xiao, Y.-Y.; Bai, D.-Y.; Xie, Z.-P.; Yang, Z.-Y.; Yang, J.-H.; Qi, X.-D.; Wang, Y. Flexible copper foam-based phase change materials with good stiffness-toughness balance, electro-to-thermal conversion ability and shape memory function for intelligent thermal management. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106420. [Google Scholar] [CrossRef]
- Meng, X.; Liu, S.; Zou, J.; Liu, F.; Wang, J. Inclination angles on the thermal behavior of Phase-Change Material (PCM) in a cavity filled with copper foam partly. Case Stud. Therm. Eng. 2021, 25, 100944. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, F.; Wang, J.; Ye, W.; Meng, X. Influence of the copper foam shape on thermal performance of phase-change material. J. Energy Storage 2021, 36, 102416. [Google Scholar] [CrossRef]
- Pu, L.; Zhang, S.; Xu, L.; Ma, Z.; Wang, X. Numerical study on the performance of shell-and-tube thermal energy storage using multiple PCMs and gradient copper foam. Renew. Energy 2021, 174, 573–589. [Google Scholar] [CrossRef]
- Zhang, Z.; Cheng, J.; He, X. Numerical simulation of flow and heat transfer in composite PCM on the basis of two different models of open-cell metal foam skeletons. Int. J. Heat Mass Transf. 2017, 112, 959–971. [Google Scholar] [CrossRef]
- Buonomo, B.; Celik, H.; Ercole, D.; Manca, O.; Mobedi, M. Numerical study on latent thermal energy storage systems with aluminum foam in local thermal equilibrium. Appl. Therm. Eng. 2019, 159, 113980. [Google Scholar] [CrossRef]
- Caliano, M.; Bianco, N.; Graditi, G.; Mongibello, L. Analysis of a phase change material-based unit and of an aluminum foam/phase change material composite-based unit for cold thermal energy storage by numerical simulation. Appl. Energy 2019, 256, 113921. [Google Scholar] [CrossRef]
- Moussa, M.; Idi, E.L.; Karkri, M.; Kraiem, M. Preparation and effective thermal conductivity of a Paraffin/Metal Foam composite. J. Energy Storage 2021, 33, 102077. [Google Scholar] [CrossRef]
- Hussain, A.; Abidi, I.H.; Tso, C.Y.; Chan, K.C.; Luo, Z.; Chao, C.Y.H. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int. J. Therm. Sci. 2018, 124, 23–35. [Google Scholar] [CrossRef]
- Wang, C.; Wang, T.; Hu, Z.; Cai, Z. Facile synthesis and thermal performance of cety palmitate / nickel foam composite phase change materials for thermal energy storage. J. Energy Storage 2020, 28, 101179. [Google Scholar] [CrossRef]
- Huang, X.; Lin, Y.; Alva, G.; Fang, G. Thermal properties and thermal conductivity enhancement of composite phase change materials using myristyl alcohol/metal foam for solar thermal storage. Sol. Energy Mater. Sol. Cells 2017, 170, 68–76. [Google Scholar] [CrossRef]
- Alshaer, W.G.; Nada, S.A.; Rady, M.A.; Palomo Del Barrio, E.; Sommier, A. Thermal management of electronic devices using carbon foam and PCM/nano-composite. Int. J. Therm. Sci. 2015, 89, 79–86. [Google Scholar] [CrossRef]
- Nada, S.A.; Alshaer, W.G. Comprehensive parametric study of using carbon foam structures saturated with PCMs in thermal management of electronic systems. Energy Convers Manag. 2015, 105, 93–102. [Google Scholar] [CrossRef]
- Tao, Y.; You, Y.; He, Y. Lattice Boltzmann simulation on phase change heat transfer in metal foams/paraffin composite phase change material. Appl. Therm. Eng. 2016, 93, 476–485. [Google Scholar] [CrossRef]
- Fukai, J.; Hamada, Y.; Morozumi, Y.; Miyatake, O. Effect of carbon-fiber brushes on conductive heat transfer in phase change materials. Int. J. Heat Mass Transf. 2002, 45, 4781–4792. [Google Scholar] [CrossRef]
- Sedeh, M.M.; Khodadadi, J. Thermal conductivity improvement of phase change materials/graphite foam composites. Carbon 2013, 60, 117–128. [Google Scholar] [CrossRef]
- Lan, H.; Dutta, S.; Vahedi, N.; Neti, S.; Romero, C.E.; Oztekin, A.; Nappa, M.; Ruales, R. Graphite foam infiltration with mixed chloride salts as PCM for high-temperature latent heat storage applications. Sol. Energy 2020, 209, 505–514. [Google Scholar] [CrossRef]
- Karthik, M.; Faik, A.; D’Aguanno, B. Graphite foam as interpenetrating matrices for phase change paraffin wax: A candidate composite for low temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 2017, 172, 324–334. [Google Scholar] [CrossRef]
- Fethi, A.; Mohamed, L.; Mustapha, K.; Ameurtarek, B.; Sassi, B.N. Investigation of a graphite/paraffin phase change composite. Int. J. Therm. Sci. 2015, 88, 128–135. [Google Scholar] [CrossRef]
- Qiu, Z.; Li, L. Experimental and numerical investigation of laminar heat transfer of microencapsulated phase change material slurry (MPCMS) in a circular tube with constant heat flux. Sustain. Cities Soc. 2020, 52, 101786. [Google Scholar] [CrossRef]
- Yang, L.; Ji, W.; Mao, M.; Huang, J.-N. An updated review on the properties, fabrication and application of hybrid-nanofluids along with their environmental effects. J. Clean. Prod. 2020, 257, 120408. [Google Scholar] [CrossRef]
- Arıcı, M.; Tütüncü, E.; Yıldız, Ç.; Li, D. Enhancement of PCM melting rate via internal fin and nanoparticles. Int. J. Heat Mass Transf. 2020, 156, 119845. [Google Scholar] [CrossRef]
- Zeng, J.L.; Sun, L.X.; Xu, F.; Tan, Z.C.; Zhang, Z.H.; Zhang, J.; Zhang, T. Study of a PCM based energy storage system containing Ag nanoparticles. J. Therm. Anal. Calorim. 2007, 87, 371–375. [Google Scholar] [CrossRef]
- Nitsas, M.; Koronaki, I. Performance analysis of nanoparticles-enhanced PCM: An experimental approach. Therm. Sci. Eng. Prog. 2021, 25, 100963. [Google Scholar] [CrossRef]
- Liang, W.; Wang, L.; Zhu, H.; Pan, Y.; Zhu, Z.; Sun, H.; Ma, C.; Li, A. Enhanced thermal conductivity of phase change material nanocomposites based on MnO2 nanowires and nanotubes for energy storage. Sol. Energy Mater. Sol. Cells 2018, 180, 158–167. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Castell, A.; Barreneche, C.; de Gracia, A.; Fernández, A.I. Materialsused as PCM in thermal energy storage in buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1675–1695. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Buddhi, D. PCM thermal storage in buildings: A state of art. Renew. Sustain. Energy Rev. 2007, 11, 1146–1166. [Google Scholar] [CrossRef]
- Morovat, N.; Athienitis, A.K.; Candanedo, J.A.; Dermardiros, V. Simulation and performance analysis of an active PCM-heat exchanger intended for building operation optimization. Energy Build. 2019, 199, 47–61. [Google Scholar] [CrossRef]
- Oelert, G.; Behret, H.; Friedel, W.; Hennemann, B.; Hodgett, D. Thermochemical heat storage: State-of-the-art report. NASA STI/Recon Tech. Rep. N 1982, 83, 11610. [Google Scholar]
- van Essen, V.M.; Zondag, H.A.; Gores, J.C.; Bleijendaal, L.P.J.; Bakker, M.; Schuitema, R.; van Helden, W.G.J.; He, Z.; Rindt, C.C.M. Characterization of MgSO4 Hydrate for Thermochemical Seasonal Heat Storage. J. Sol. Energy Eng. 2009, 131, 041014. [Google Scholar] [CrossRef]
- Bauer, D.; Marx, R.; Nußbicker-Lux, J.; Ochs, F.; Heidemann, W.; Müller-Steinhagen, H. German central solar heating plants with seasonal heat storage. Sol. Energy 2010, 84, 612–623. [Google Scholar] [CrossRef]
- Morofsky, E. History of thermal energy storage. In Thermal Energy Storage for Sustainable Energy Consumption; Springer: Berlin/Heidelberg, Germany, 2007; pp. 3–22. [Google Scholar]
- Paksoy, H.Ö. Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Sardari, P.T.; Babaei-Mahani, R.; Giddings, D.; Yasseri, S.; Moghimi, M.A.; Bahai, H. Energy recovery from domestic radiators using a compact composite metal Foam/PCM latent heat storage. J. Clean. Prod. 2020, 257, 120504. [Google Scholar] [CrossRef]
- Mourid, A.; El Alami, M.; Kuznik, F. Experimental investigation on thermal behavior and reduction of energy consumption in a real scale building by using phase change materials on its envelope. Sustain. Cities Soc. 2018, 41, 35–43. [Google Scholar] [CrossRef]
- Yinping, Z.; Zhou, G.; Yang, R.; Lin, K. Our research on shape-stabilized PCM in energy-efficient buildings. In Proceedings of the 10th Ecostock, Stockton, NJ, USA, 31 May–2 June 2006; pp. 1–9. [Google Scholar]
- Karim, L.; Barbeon, F.; Gegout, P.; Bontemps, A.; Royon, L. New phase-change material components for thermal management of the light weight envelope of buildings. Energy Build. 2014, 68, 703–706. [Google Scholar] [CrossRef]
- Kant, K.; Shukla, A.; Sharma, A. Heat transfer studies of building brick containing phase change materials. Sol. Energy 2017, 155, 1233–1242. [Google Scholar] [CrossRef]
- Leang, E.; Tittelein, P.; Zalewski, L.; Lassue, S. Numerical study of a composite Trombe solar wall integrating microencapsulated PCM. Energy Procedia 2017, 122, 1009–1014. [Google Scholar] [CrossRef]
- Maleki, M.; Sharifi, N.; Karimian, H.; Ahmadi, R.; Aminizadeh, P.; Sanadgol, R.; Valanezhad, A. Electro-driven carbon foam/PCMs nanocomposites for sustainable energy management. J. Energy Storage 2023, 67, 107599. [Google Scholar] [CrossRef]
- Yu, K.; Jia, M.; Liu, Y.; Yang, Y. Binary decanoic acid/polyethylene glycol as a novel phase change material for thermal energy storage: Eutectic behaviors and energy conservation evaluation. J. Energy Storage 2023, 68, 107663. [Google Scholar] [CrossRef]
- Gencel, O.; Bayram, M.; Subaşı, S.; Hekimoğlu, G.; Sarı, A.; Ustaoglu, A.; Marasli, M.; Ozbakkaloglu, T. Microencapsulated phase change material incorporated light transmitting gypsum composite for thermal energy saving in buildings. J. Energy Storage 2023, 67, 107457. [Google Scholar] [CrossRef]
- Sarcinella, A.; de Aguiar, J.L.B.; Jesus, C.; Frigione, M. Thermal properties of PEG-based form-stable Phase Change Materials (PCMs) incorporated in mortars for energy efficiency of buildings. J. Energy Storage 2023, 67, 107545. [Google Scholar] [CrossRef]
- Gupta, M.K.; Rathore, P.K.S.; Kumar, R.; Gupta, N.K. Experimental analysis of clay bricks incorporated with phase change material for enhanced thermal energy storage in buildings. J. Energy Storage 2023, 64, 107248. [Google Scholar] [CrossRef]
- Al-Gunaid, T.; Sobolčiak, P.; Chriaa, I.; Karkri, M.; Mrlik, M.; Ilčíková, M.; Sedláček, T.; Popelka, A.; Krupa, I. Phase change materials designed from Tetra Pak waste and paraffin wax as unique thermal energy storage systems. J. Energy Storage 2023, 64, 107173. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, N.; Yuan, Y.; Phelan, P.E.; Attia, S. Thermal performance of a dynamic insulation-phase change material system and its application in multilayer hollow walls. J. Energy Storage 2023, 62, 106912. [Google Scholar] [CrossRef]
- Alawadhi, E.M. Thermal analysis of a building brick containing phase change material. Energy Build. 2008, 40, 351–357. [Google Scholar] [CrossRef]
- Hasan, A.; Al-Sallal, K.A.; Alnoman, H.; Rashid, Y.; Abdelbaqi, S. Effect of Phase Change Materials (PCMs) Integrated into a Concrete Block on Heat Gain Prevention in a Hot Climate. Sustainability 2016, 8, 1009. [Google Scholar] [CrossRef] [Green Version]
- Elnajjar, E. Using PCM embedded in building material for thermal management: Performance assessment study. Energy Build. 2017, 151, 28–34. [Google Scholar] [CrossRef]
- Thiele, A.M.; Jamet, A.; Sant, G.; Pilon, L. Annual energy analysis of concrete containing phase change materials for building envelopes. Energy Convers. Manag. 2015, 103, 374–386. [Google Scholar] [CrossRef]
- Ghazal Abdallah, M.; Zurigat, Y. Numerical simulation of integrating PCM in multilayer wall construction in UAE. In Proceedings of the 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, United Arab Emirates, 4–6 April 2017; pp. 1–5. [Google Scholar]
- Piselli, C.; Castaldo, V.L.; Pisello, A.L. How to enhance thermal energy storage effect of PCM in roofs with varying solar reflectance: Experimental and numerical assessment of a new roof system for passive cooling in different climate conditions. Sol. Energy 2019, 192, 106–119. [Google Scholar] [CrossRef]
- Kumar, V.V. Energy Conservation of Residential Buildings in Extreme Climates with Phase Change Material-Aluminum Radiation Reflector Cool Roof. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 9703–9715. [Google Scholar] [CrossRef]
Abbreviation | Meaning |
---|---|
PCMs | Phase change materials |
TES | Thermal energy storage |
LHTES | Latent heat thermal energy storage |
TCMs | Thermochemical heat storage |
COP | Coefficient of performance |
MEPCM | Microencapsulated phase change material |
GB | Glass bubble |
RC | Reinforced concrete |
RCP | Radiant ceiling panels |
SSCPCM | Shape Stabilized Composite Phase Change Material |
PTES | Plate-type thermal energy storage system |
MWCNTs | Multi-walled carbon nanotubes |
PEG | Polyethylene glycol |
CF | carbon foams |
DA-PEG | Decanoic acid/polyethylene glycol |
LS | Lecce Stone |
DIS | Dynamic insulation system |
HTF | Heat transfer fluid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masood, U.; Haggag, M.; Hassan, A.; Laghari, M. A Review of Phase Change Materials as a Heat Storage Medium for Cooling Applications in the Built Environment. Buildings 2023, 13, 1595. https://doi.org/10.3390/buildings13071595
Masood U, Haggag M, Hassan A, Laghari M. A Review of Phase Change Materials as a Heat Storage Medium for Cooling Applications in the Built Environment. Buildings. 2023; 13(7):1595. https://doi.org/10.3390/buildings13071595
Chicago/Turabian StyleMasood, Usman, Mahmoud Haggag, Ahmed Hassan, and Mohammad Laghari. 2023. "A Review of Phase Change Materials as a Heat Storage Medium for Cooling Applications in the Built Environment" Buildings 13, no. 7: 1595. https://doi.org/10.3390/buildings13071595
APA StyleMasood, U., Haggag, M., Hassan, A., & Laghari, M. (2023). A Review of Phase Change Materials as a Heat Storage Medium for Cooling Applications in the Built Environment. Buildings, 13(7), 1595. https://doi.org/10.3390/buildings13071595