Roles of Artificial Intelligence and Machine Learning in Enhancing Construction Processes and Sustainable Communities
Abstract
:1. Introduction
2. Methods and Materials
Profile of Publications
3. Roles of AI and ML in Sustainable Communities
3.1. Indoor Environment
3.1.1. Energy Management
3.1.2. Thermal Comfort, Power, and Cooling
3.1.3. Circulation and Automation
3.2. Outdoor Environment
3.2.1. Pollution—Air, Noise, and Waste
- Air pollution
- Waste
- Noise
3.2.2. Real Estate and Prices
3.2.3. Infrastructure Development
3.2.4. Life Cycle Assessment and Rainfall Prediction
3.2.5. Other Applications
4. Roles of AI and ML in Construction Processes
4.1. Pre-Construction Phase
4.1.1. Risk and Cost Estimation
4.1.2. Other Applications
4.2. Construction Phase
4.2.1. Safety Management
- gathering audio data from construction equipment;
- constructing a novel audio-based ML model for the automated identification of collision hazards; and
- performing field trials to assess the system’s efficiency and latency.
4.2.2. Planning, Scheduling, and Construction Equipment
4.2.3. Construction Management, Human Resources, and Conflict Resolution
4.3. Post-Construction Phase
5. Conclusions
5.1. Overview of Current Applications of AI and ML
5.2. Study’s Contribution to Practices and Future Direction
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Source | Number |
---|---|
Automation in Construction | 9 |
Sustainability | 7 |
Energies | 6 |
Journal of Construction Engineering and Management | 6 |
IEEE Access | 5 |
Journal of Computing in Civil Engineering | 4 |
Energy | 3 |
Expert Systems with Applications | 3 |
Sustainable Cities and Society | 3 |
Applied Energy | 2 |
Energy and Buildings | 2 |
Journal of Building Engineering | 2 |
KSCE Journal of Civil Engineering | 2 |
Solar Energy | 2 |
Others | 41 |
Total | 97 |
References
- Ayhan, M.; Dikmen, I.; Talat Birgonul, M. Predicting the Occurrence of Construction Disputes Using Machine Learning Techniques. J. Constr. Eng. Manag. 2021, 147, 04021022. [Google Scholar] [CrossRef]
- Gue, I.H.V.; Lopez, N.S.A.; Chiu, A.S.F.; Ubando, A.T.; Tan, R.R. Predicting waste management system performance from city and country attributes. J. Clean. Prod. 2022, 366, 132951. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, L. Roles of artificial intelligence in construction engineering and management: A critical review and future trends. Autom. Constr. 2021, 122, 103517. [Google Scholar] [CrossRef]
- Naumets, S.; Lu, M. Investigation into Explainable Regression Trees for Construction Engineering Applications. J. Constr. Eng. Manag. 2021, 147, 04021084. [Google Scholar] [CrossRef]
- Pan, M.; Yang, Y.; Zheng, Z.; Pan, W. Artificial Intelligence and Robotics for Prefabricated and Modular Construction: A Systematic Literature Review. J. Constr. Eng. Manag. 2022, 148, 03122004. [Google Scholar] [CrossRef]
- Cheng, M.-Y.; Kusoemo, D.; Gosno, R.A. Text mining-based construction site accident classification using hybrid supervised machine learning. Autom. Constr. 2020, 118, 103265. [Google Scholar] [CrossRef]
- Rahman, A.; Srikumar, V.; Smith, A.D. Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks. Appl. Energy 2018, 212, 372–385. [Google Scholar] [CrossRef]
- Lu, Q.; Parlikad, A.K.; Woodall, P.; Don Ranasinghe, G.; Xie, X.; Liang, Z.; Konstantinou, E.; Heaton, J.; Schooling, J. Developing a Digital Twin at Building and City Levels: Case Study of West Cambridge Campus. J. Manag. Eng. 2020, 36, 05020004. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, F.; Fan, R. Improved thermal comfort modeling for smart buildings: A data analytics study. Int. J. Electr. Power Energy Syst. 2018, 103, 634–643. [Google Scholar] [CrossRef]
- Zhang, Y.; Teoh, B.K.; Wu, M.; Chen, J.; Zhang, L. Data-driven estimation of building energy consumption and GHG emissions using explainable artificial intelligence. Energy 2023, 262, 125468. [Google Scholar] [CrossRef]
- Elariane, S.A. Location based services APIs for measuring the attractiveness of long-term rental apartment location using machine learning model. Cities 2022, 122, 103588. [Google Scholar] [CrossRef]
- Cakir, M.; Akbulut, A. A Bayesian Deep Neural Network Approach to Seven-Point Thermal Sensation Perception. IEEE Access 2022, 10, 5193–5206. [Google Scholar] [CrossRef]
- Idowu, S.; Saguna, S.; Åhlund, C.; Schelén, O. Applied machine learning: Forecasting heat load in district heating system. Energy Build. 2016, 133, 478–488. [Google Scholar] [CrossRef]
- Renaud, J.; Karam, R.; Salomon, M.; Couturier, R. Deep learning and gradient boosting for urban environmental noise monitoring in smart cities. Expert Syst. Appl. 2023, 218, 119568. [Google Scholar] [CrossRef]
- Soibelman, L.; Kim, H. Data Preparation Process for Construction Knowledge Generation through Knowledge Discovery in Databases. J. Comput. Civ. Eng. 2002, 16, 39–48. [Google Scholar] [CrossRef]
- Poh, C.Q.X.; Ubeynarayana, C.U.; Goh, Y.M. Safety leading indicators for construction sites: A machine learning approach. Autom. Constr. 2018, 93, 375–386. [Google Scholar] [CrossRef]
- Koc, K.; Gurgun, A.P. Scenario-based automated data preprocessing to predict severity of construction accidents. Autom. Constr. 2022, 140, 104351. [Google Scholar] [CrossRef]
- Choi, S.; Choi, S.; Kim, J.; Lee, E.-B. AI and Text-Mining Applications for Analyzing Contractor’s Risk in Invitation to Bid (ITB) and Contracts for Engineering Procurement and Construction (EPC) Projects. Energies 2021, 14, 4632. [Google Scholar] [CrossRef]
- Ali, Z.H.; Burhan, A.M. Hybrid machine learning approach for construction cost estimation: An evaluation of extreme gradient boosting model. Asian J. Civ. Eng. 2023, 13, 1–16. [Google Scholar] [CrossRef]
- Ekici, B.; Kazanasmaz, Z.T.; Turrin, M.; Taşgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. Part 2: Optimisation problems, algorithms, results, and method validation. Sol. Energy 2021, 224, 309–326. [Google Scholar] [CrossRef]
- Panch, T.; Szolovits, P.; Atun, R. Artificial intelligence, machine learning and health systems. J. Glob. Health 2018, 8, 020303. [Google Scholar] [CrossRef] [PubMed]
- Buchlak, Q.D.; Esmaili, N.; Leveque, J.-C.; Bennett, C.; Farrokhi, F.; Piccardi, M. Machine learning applications to neuroimaging for glioma detection and classification: An artificial intelligence augmented systematic review. J. Clin. Neurosci. 2021, 89, 177–198. [Google Scholar] [CrossRef] [PubMed]
- Darko, A.; Chan, A.P.C.; Adabre, M.A.; Edwards, D.J.; Hosseini, M.R.; Ameyaw, E.E. Artificial intelligence in the AEC industry: Scientometric analysis and visualization of research activities. Autom. Constr. 2020, 112, 103081. [Google Scholar] [CrossRef]
- Leung, D.Y.C. Outdoor-indoor air pollution in urban environment: Challenges and opportunity. Front. Environ. Sci. 2015, 2, 69. [Google Scholar] [CrossRef] [Green Version]
- Jabar, I.l.; Ismail, F.; Mustafa, A.A. Issues in Managing Construction Phase of IBS Projects. Procedia Soc. Behav. Sci. 2013, 101, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Olawumi, T.O.; Chan, D.W.M.; Ojo, S.; Yam, M.C.H. Automating the modular construction process: A review of digital technologies and future directions with blockchain technology. J. Build. Eng. 2022, 46, 103720. [Google Scholar] [CrossRef]
- Stern, C.; Lizarondo, L.; Carrier, J.; Godfrey, C.; Rieger, K.; Salmond, S.; Apóstolo, J.; Kirkpatrick, P.; Loveday, H. Methodological guidance for the conduct of mixed methods systematic reviews. JBI Evid. Synth. 2020, 18, 2108–2118. [Google Scholar] [CrossRef]
- Zhou, S.; Gheisari, M. Unmanned aerial system applications in construction: A systematic review. Constr. Innov. 2018, 18, 453–468. [Google Scholar] [CrossRef]
- Kachouie, R.; Sedighadeli, S.; Khosla, R.; Chu, M.-T. Socially Assistive Robots in Elderly Care: A Mixed-Method Systematic Literature Review. Int. J. Hum. Comput. Interact. 2014, 30, 369–393. [Google Scholar] [CrossRef]
- Tsafnat, G.; Glasziou, P.; Choong, M.K.; Dunn, A.; Galgani, F.; Coiera, E. Systematic review automation technologies. Syst. Rev. 2014, 3, 74. [Google Scholar] [CrossRef]
- Gharbia, M.; Chang-Richards, A.; Lu, Y.; Zhong, R.Y.; Li, H. Robotic technologies for on-site building construction: A systematic review. J. Build. Eng. 2020, 32, 101584. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Hussein, M.; Zayed, T. Crane operations and planning in modular integrated construction: Mixed review of literature. Autom. Constr. 2021, 122, 103466. [Google Scholar] [CrossRef]
- Abdirad, H.; Dossick, C.S. BIM curriculum design in architecture, engineering, and construction education: A systematic review. J. Inf. Technol. Constr. 2016, 21, 250–271. [Google Scholar]
- Olawumi, T.O.; Chan, D.W.M. A scientometric review of global research on sustainability and sustainable development. J. Clean. Prod. 2018, 183, 231–250. [Google Scholar] [CrossRef]
- Kumar, S.; Rahaman, M.S. Research Performance in the Field of Big Data in India: A Scientometric Analysis Based on Scopus Database. Libr. Philos. Pract. 2019, 1, 1–24. Available online: https://digitalcommons.unl.edu/libphilprac/3736/ (accessed on 21 May 2023).
- Weber, R.P. Basic Content Analysis, 2nd ed.; Sage: Newbury Park, CA, USA, 1990; ISBN 978-0-8039-3863-2. [Google Scholar]
- Ekici, B.; Turkcan, O.F.S.F.; Turrin, M.; Sariyildiz, I.S.; Tasgetiren, M.F. Optimising High-Rise Buildings for Self-Sufficiency in Energy Consumption and Food Production Using Artificial Intelligence: Case of Europoint Complex in Rotterdam. Energies 2022, 15, 660. [Google Scholar] [CrossRef]
- Huang, J.; Kaewunruen, S. Forecasting Energy Consumption of a Public Building Using Transformer and Support Vector Regression. Energies 2023, 16, 966. [Google Scholar] [CrossRef]
- Chui, K.T.; Lytras, M.D.; Visvizi, A. Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption. Energies 2018, 11, 2869. [Google Scholar] [CrossRef] [Green Version]
- Sheik Mohideen Shah, S.; Meganathan, S. Machine learning approach for power consumption model based on monsoon data for smart cities applications. Comput. Intell. 2021, 37, 1309–1321. [Google Scholar] [CrossRef]
- Giglio, E.; Luzzani, G.; Terranova, V.; Trivigno, G.; Niccolai, A.; Grimaccia, F. An Efficient Artificial Intelligence Energy Management System for Urban Building Integrating Photovoltaic and Storage. IEEE Access 2023, 11, 18673–18688. [Google Scholar] [CrossRef]
- Sangireddy, S.A.R.; Bhatia, A.; Garg, V. Development of a surrogate model by extracting top characteristic feature vectors for building energy prediction. J. Build. Eng. 2019, 23, 38–52. [Google Scholar] [CrossRef]
- Ghadami, N.; Gheibi, M.; Kian, Z.; Faramarz, M.G.; Naghedi, R.; Eftekhari, M.; Fathollahi-Fard, A.M.; Dulebenets, M.A.; Tian, G. Implementation of solar energy in smart cities using an integration of artificial neural network, photovoltaic system and classical Delphi methods. Sustain. Cities Soc. 2021, 74, 103149. [Google Scholar] [CrossRef]
- Abdel-Razek, S.A.; Marie, H.S.; Alshehri, A.; Elzeki, O.M. Energy Efficiency through the Implementation of an AI Model to Predict Room Occupancy Based on Thermal Comfort Parameters. Sustainability 2022, 14, 7734. [Google Scholar] [CrossRef]
- Shahsavar, M.M.; Akrami, M.; Gheibi, M.; Kavianpour, B.; Fathollahi-Fard, A.M.; Behzadian, K. Constructing a smart framework for supplying the biogas energy in green buildings using an integration of response surface methodology, artificial intelligence and petri net modelling. Energy Convers. Manag. 2021, 248, 114794. [Google Scholar] [CrossRef]
- Vázquez-Canteli, J.R.; Ulyanin, S.; Kämpf, J.; Nagy, Z. Fusing TensorFlow with building energy simulation for intelligent energy management in smart cities. Sustain. Cities Soc. 2019, 45, 243–257. [Google Scholar] [CrossRef]
- Tran, D.-H.; Luong, D.-L.; Chou, J.-S. Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings. Energy 2020, 191, 116552. [Google Scholar] [CrossRef]
- Zhang, W.; Robinson, C.; Guhathakurta, S.; Garikapati, V.M.; Dilkina, B.; Brown, M.A.; Pendyala, R.M. Estimating residential energy consumption in metropolitan areas: A microsimulation approach. Energy 2018, 155, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Li, Z.; Rahman, S.M.M.; Vega, R. A hybrid model approach for forecasting future residential electricity consumption. Energy Build. 2016, 117, 341–351. [Google Scholar] [CrossRef]
- Nutkiewicz, A.; Yang, Z.; Jain, R.K. Data-driven Urban Energy Simulation (DUE-S): A framework for integrating engineering simulation and machine learning methods in a multi-scale urban energy modeling workflow. Appl. Energy 2018, 225, 1176–1189. [Google Scholar] [CrossRef]
- Chou, J.; Hsu, S. Automated prediction system of household energy consumption in cities using web crawler and optimized artificial intelligence. Int. J. Energy Res. 2022, 46, 319–339. [Google Scholar] [CrossRef]
- Moayedi, H.; Mosavi, A. Suggesting a Stochastic Fractal Search Paradigm in Combination with Artificial Neural Network for Early Prediction of Cooling Load in Residential Buildings. Energies 2021, 14, 1649. [Google Scholar] [CrossRef]
- Kumar, S.; Nisha, Z.; Singh, J.; Sharma, A.K. Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 3048–3061. [Google Scholar] [CrossRef]
- Bapin, Y.; Zarikas, V. Smart Building’s Elevator with Intelligent Control Algorithm based on Bayesian Networks. Int. J. Adv. Comput. Sci. Appl. 2019, 10, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Nasir, M.; Muhammad, K.; Ullah, A.; Ahmad, J.; Wook Baik, S.; Sajjad, M. Enabling automation and edge intelligence over resource constraint IoT devices for smart home. Neurocomputing 2022, 491, 494–506. [Google Scholar] [CrossRef]
- Mo, X.; Zhang, L.; Li, H.; Qu, Z. A Novel Air Quality Early-Warning System Based on Artificial Intelligence. Int. J. Environ. Res. Public Health 2019, 16, 3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashayeri, M.; Abbasabadi, N.; Heidarinejad, M.; Stephens, B. Predicting intraurban PM2.5 concentrations using enhanced machine learning approaches and incorporating human activity patterns. Environ. Res. 2021, 196, 110423. [Google Scholar] [CrossRef]
- Lin, Y.; Zhao, L.; Li, H.; Sun, Y. Air quality forecasting based on cloud model granulation. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 106. [Google Scholar] [CrossRef] [Green Version]
- Bashir Shaban, K.; Kadri, A.; Rezk, E. Urban Air Pollution Monitoring System With Forecasting Models. IEEE Sens. J. 2016, 16, 2598–2606. [Google Scholar] [CrossRef]
- Huang, G.; Ge, C.; Xiong, T.; Song, S.; Yang, L.; Liu, B.; Yin, W.; Wu, C. Large scale air pollution prediction with deep convolutional networks. Sci. China Inf. Sci. 2021, 64, 192107. [Google Scholar] [CrossRef]
- Kleine Deters, J.; Zalakeviciute, R.; Gonzalez, M.; Rybarczyk, Y. Modeling PM 2.5 Urban Pollution Using Machine Learning and Selected Meteorological Parameters. J. Electr. Comput. Eng. 2017, 2017, 5106045. [Google Scholar] [CrossRef] [Green Version]
- Babu Saheer, L.; Bhasy, A.; Maktabdar, M.; Zarrin, J. Data-Driven Framework for Understanding and Predicting Air Quality in Urban Areas. Front. Big Data 2022, 5, 822573. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; De, S.; Ewa, G.; Perera, C.; Moessner, K. Data-Driven Air Quality Characterization for Urban Environments: A Case Study. IEEE Access 2018, 6, 77996–78006. [Google Scholar] [CrossRef]
- Suárez Sánchez, A.; García Nieto, P.J.; Iglesias-Rodríguez, F.J.; Vilán Vilán, J.A. Nonlinear Air Quality Modeling Using Support Vector Machines in Gijón Urban Area (Northern Spain) at Local Scale. Int. J. Nonlinear Sci. Numer. Simul. 2013, 14, 291–305. [Google Scholar] [CrossRef]
- Yeganeh, B.; Motlagh, M.S.P.; Rashidi, Y.; Kamalan, H. Prediction of CO concentrations based on a hybrid Partial Least Square and Support Vector Machine model. Atmos. Environ. 2012, 55, 357–365. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Abdallah, M.; Shanableh, A.; Alani, S.; Obaid, L.; Gibril, M.B.A. Waste to energy spatial suitability analysis using hybrid multi-criteria machine learning approach. Environ. Sci. Pollut. Res. 2022, 29, 2613–2628. [Google Scholar] [CrossRef] [PubMed]
- Solano Meza, J.K.; Orjuela Yepes, D.; Rodrigo-Ilarri, J.; Cassiraga, E. Predictive analysis of urban waste generation for the city of Bogotá, Colombia, through the implementation of decision trees-based machine learning, support vector machines and artificial neural networks. Heliyon 2019, 5, e02810. [Google Scholar] [CrossRef]
- Chou, J.-S.; Fleshman, D.-B.; Truong, D.-N. Comparison of machine learning models to provide preliminary forecasts of real estate prices. J. Hous. Built Environ. 2022, 37, 2079–2114. [Google Scholar] [CrossRef]
- Tchuente, D.; Nyawa, S. Real estate price estimation in French cities using geocoding and machine learning. Ann. Oper. Res. 2022, 308, 571–608. [Google Scholar] [CrossRef]
- Pinter, G.; Mosavi, A.; Felde, I. Artificial Intelligence for Modeling Real Estate Price Using Call Detail Records and Hybrid Machine Learning Approach. Entropy 2020, 22, 1421. [Google Scholar] [CrossRef]
- Rampini, L.; Re Cecconi, F. Artificial intelligence algorithms to predict Italian real estate market prices. J. Prop. Invest. Financ. 2022, 40, 588–611. [Google Scholar] [CrossRef]
- Rafiei, M.H.; Adeli, H. A Novel Machine Learning Model for Estimation of Sale Prices of Real Estate Units. J. Constr. Eng. Manag. 2016, 142, 04015066. [Google Scholar] [CrossRef]
- Park, B.; Bae, J.K. Using machine learning algorithms for housing price prediction: The case of Fairfax County, Virginia housing data. Expert Syst. Appl. 2015, 42, 2928–2934. [Google Scholar] [CrossRef]
- Sousa, C.; Teixeira, D.; Carneiro, D.; Nunes, D.; Novais, P. Knowledge-based decision intelligence in street lighting management. Integr. Comput. Aided. Eng. 2022, 29, 189–207. [Google Scholar] [CrossRef]
- Yu, K.H.; Zhang, Y.; Li, D.; Montenegro-Marin, C.E.; Kumar, P.M. Environmental planning based on reduce, reuse, recycle and recover using artificial intelligence. Environ. Impact Assess. Rev. 2021, 86, 106492. [Google Scholar] [CrossRef]
- Zou, H.; Ge, J.; Liu, R.; He, L. Feature Recognition of Regional Architecture Forms Based on Machine Learning: A Case Study of Architecture Heritage in Hubei Province, China. Sustainability 2023, 15, 3504. [Google Scholar] [CrossRef]
- Xu, X.; Qiu, W.; Li, W.; Liu, X.; Zhang, Z.; Li, X.; Luo, D. Associations between Street-View Perceptions and Housing Prices: Subjective vs. Objective Measures Using Computer Vision and Machine Learning Techniques. Remote Sens. 2022, 14, 891. [Google Scholar] [CrossRef]
- Cassottana, B.; Biswas, P.P.; Balakrishnan, S.; Ng, B.; Mashima, D.; Sansavini, G. Predicting Resilience of Interdependent Urban Infrastructure Systems. IEEE Access 2022, 10, 116432–116442. [Google Scholar] [CrossRef]
- Cha, G.-W.; Hong, W.-H.; Kim, Y.-C. Performance Improvement of Machine Learning Model Using Autoencoder to Predict Demolition Waste Generation Rate. Sustainability 2023, 15, 3691. [Google Scholar] [CrossRef]
- Zhu, B.; Zhou, J. Virtual design of urban planning based on GIS big data and machine learning. J. Intell. Fuzzy Syst. 2021, 40, 6263–6273. [Google Scholar] [CrossRef]
- Ekici, B.; Kazanasmaz, Z.T.; Turrin, M.; Taşgetiren, M.F.; Sariyildiz, I.S. Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. Part 1: Background, methodology, setup, and machine learning results. Sol. Energy 2021, 224, 373–389. [Google Scholar] [CrossRef]
- Koyamparambath, A.; Adibi, N.; Szablewski, C.; Adibi, S.A.; Sonnemann, G. Implementing Artificial Intelligence Techniques to Predict Environmental Impacts: Case of Construction Products. Sustainability 2022, 14, 3699. [Google Scholar] [CrossRef]
- Al Duhayyim, M.; Mohamed, H.G.; Alzahrani, J.S.; Alabdan, R.; Mousa, M.; Zamani, A.S.; Yaseen, I.; Alsaid, M.I. Modeling of Fuzzy Cognitive Maps with a Metaheuristics-Based Rainfall Prediction System. Sustainability 2022, 15, 25. [Google Scholar] [CrossRef]
- Tien Bui, D.; Nhu, V.-H.; Hoang, N.-D. Prediction of soil compression coefficient for urban housing project using novel integration machine learning approach of swarm intelligence and Multi-layer Perceptron Neural Network. Adv. Eng. Inform. 2018, 38, 593–604. [Google Scholar] [CrossRef]
- Krupnova, T.G.; Rakova, O.V.; Bondarenko, K.A.; Tretyakova, V.D. Environmental Justice and the Use of Artificial Intelligence in Urban Air Pollution Monitoring. Big Data Cogn. Comput. 2022, 6, 75. [Google Scholar] [CrossRef]
- Abdou, N.; El Mghouchi, Y.; Jraida, K.; Hamdaoui, S.; Hajou, A.; Mouqallid, M. Prediction and optimization of heating and cooling loads for low energy buildings in Morocco: An application of hybrid machine learning methods. J. Build. Eng. 2022, 61, 105332. [Google Scholar] [CrossRef]
- Choi, S.-W.; Lee, E.-B.; Kim, J.-H. The Engineering Machine-Learning Automation Platform (EMAP): A Big-Data-Driven AI Tool for Contractors’ Sustainable Management Solutions for Plant Projects. Sustainability 2021, 13, 10384. [Google Scholar] [CrossRef]
- Ashtari, M.A.; Ansari, R.; Hassannayebi, E.; Jeong, J. Cost Overrun Risk Assessment and Prediction in Construction Projects: A Bayesian Network Classifier Approach. Buildings 2022, 12, 1660. [Google Scholar] [CrossRef]
- Okudan, O.; Budayan, C.; Dikmen, I. A knowledge-based risk management tool for construction projects using case-based reasoning. Expert Syst. Appl. 2021, 173, 114776. [Google Scholar] [CrossRef]
- Rashidi, A.; Sigari, M.H.; Maghiar, M.; Citrin, D. An analogy between various machine-learning techniques for detecting construction materials in digital images. KSCE J. Civ. Eng. 2016, 20, 1178–1188. [Google Scholar] [CrossRef]
- Płoszaj-Mazurek, M.; Ryńska, E.; Grochulska-Salak, M. Methods to Optimize Carbon Footprint of Buildings in Regenerative Architectural Design with the Use of Machine Learning, Convolutional Neural Network, and Parametric Design. Energies 2020, 13, 5289. [Google Scholar] [CrossRef]
- Chaganti, R.; Rustam, F.; Daghriri, T.; Díez, I.d.l.T.; Mazón, J.L.V.; Rodríguez, C.L.; Ashraf, I. Building Heating and Cooling Load Prediction Using Ensemble Machine Learning Model. Sensors 2022, 22, 7692. [Google Scholar] [CrossRef] [PubMed]
- Honcharenko, T.; Akselrod, R.; Shpakov, A.; Khomenko, O. Information system based on multi-value classification of fully connected neural network for construction management. IAES Int. J. Artif. Intell. 2023, 12, 593. [Google Scholar] [CrossRef]
- Karki, S.; Hadikusumo, B. Machine learning for the identification of competent project managers for construction projects in Nepal. Constr. Innov. 2023, 23, 1–18. [Google Scholar] [CrossRef]
- Seong, H.; Son, H.; Kim, C. A Comparative Study of Machine Learning Classification for Color-based Safety Vest Detection on Construction-Site Images. KSCE J. Civ. Eng. 2018, 22, 4254–4262. [Google Scholar] [CrossRef]
- Elelu, K.; Le, T.; Le, C. Collision Hazard Detection for Construction Worker Safety Using Audio Surveillance. J. Constr. Eng. Manag. 2023, 149, 04022159. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Gurgun, A.P. Prediction of construction accident outcomes based on an imbalanced dataset through integrated resampling techniques and machine learning methods. Eng. Constr. Archit. Manag. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Baker, H.; Hallowell, M.R.; Tixier, A.J.P. AI-based prediction of independent construction safety outcomes from universal attributes. Autom. Constr. 2020, 118, 103146. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Gurgun, A.P. Developing a National Data-Driven Construction Safety Management Framework with Interpretable Fatal Accident Prediction. J. Constr. Eng. Manag. 2023, 149, 04023010. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Gurgun, A.P. Integrating feature engineering, genetic algorithm and tree-based machine learning methods to predict the post-accident disability status of construction workers. Autom. Constr. 2021, 131, 103896. [Google Scholar] [CrossRef]
- Alkaissy, M.; Arashpour, M.; Golafshani, E.M.; Hosseini, M.R.; Khanmohammadi, S.; Bai, Y.; Feng, H. Enhancing construction safety: Machine learning-based classification of injury types. Saf. Sci. 2023, 162, 106102. [Google Scholar] [CrossRef]
- Koc, K.; Ekmekcioğlu, Ö.; Gurgun, A.P. Accident prediction in construction using hybrid wavelet-machine learning. Autom. Constr. 2022, 133, 103987. [Google Scholar] [CrossRef]
- Hong, Y.; Xie, H.; Bhumbra, G.; Brilakis, I. Comparing Natural Language Processing Methods to Cluster Construction Schedules. J. Constr. Eng. Manag. 2021, 147, 04021136. [Google Scholar] [CrossRef]
- Chen, J.; Fang, Y.; Cho, Y.K.; Kim, C. Principal Axes Descriptor for Automated Construction-Equipment Classification from Point Clouds. J. Comput. Civ. Eng. 2017, 31, 04016058. [Google Scholar] [CrossRef]
- Amer, F.; Jung, Y.; Golparvar-Fard, M. Transformer machine learning language model for auto-alignment of long-term and short-term plans in construction. Autom. Constr. 2021, 132, 103929. [Google Scholar] [CrossRef]
- Wu, C.; Li, X.; Jiang, R.; Guo, Y.; Wang, J.; Yang, Z. Graph-based deep learning model for knowledge base completion in constraint management of construction projects. Comput. Civ. Infrastruct. Eng. 2023, 38, 702–719. [Google Scholar] [CrossRef]
- Zhou, P.; El-Gohary, N. Ontology-Based Multilabel Text Classification of Construction Regulatory Documents. J. Comput. Civ. Eng. 2016, 30, 04015058. [Google Scholar] [CrossRef]
- Golparvar-Fard, M.; Peña-Mora, F.; Savarese, S. Automated Progress Monitoring Using Unordered Daily Construction Photographs and IFC-Based Building Information Models. J. Comput. Civ. Eng. 2015, 29, 04014025. [Google Scholar] [CrossRef]
- Oliveira, B.A.S.; De Faria Neto, A.P.; Fernandino, R.M.A.; Carvalho, R.F.; Fernandes, A.L.; Guimaraes, F.G. Automated Monitoring of Construction Sites of Electric Power Substations Using Deep Learning. IEEE Access 2021, 9, 19195–19207. [Google Scholar] [CrossRef]
- Akhavian, R.; Behzadan, A.H. Smartphone-based construction workers’ activity recognition and classification. Autom. Constr. 2016, 71, 198–209. [Google Scholar] [CrossRef]
- Liu, Y.; Ojha, A.; Shayesteh, S.; Jebelli, H.; Lee, S. Human-centric robotic manipulation in construction: Generative adversarial networks based physiological computing mechanism to enable robots to perceive workers’ cognitive load. Can. J. Civ. Eng. 2023, 50, 224–238. [Google Scholar] [CrossRef]
- Mulero-Palencia, S.; Álvarez-Díaz, S.; Andrés-Chicote, M. Machine Learning for the Improvement of Deep Renovation Building Projects Using As-Built BIM Models. Sustainability 2021, 13, 6576. [Google Scholar] [CrossRef]
- Shen, J.; Li, Y.; Lin, H.; Li, H.; Lv, J.; Feng, S.; Ci, J. Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning. Constr. Build. Mater. 2022, 360, 129600. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazeem, K.O.; Olawumi, T.O.; Osunsanmi, T. Roles of Artificial Intelligence and Machine Learning in Enhancing Construction Processes and Sustainable Communities. Buildings 2023, 13, 2061. https://doi.org/10.3390/buildings13082061
Kazeem KO, Olawumi TO, Osunsanmi T. Roles of Artificial Intelligence and Machine Learning in Enhancing Construction Processes and Sustainable Communities. Buildings. 2023; 13(8):2061. https://doi.org/10.3390/buildings13082061
Chicago/Turabian StyleKazeem, Kayode O., Timothy O. Olawumi, and Temidayo Osunsanmi. 2023. "Roles of Artificial Intelligence and Machine Learning in Enhancing Construction Processes and Sustainable Communities" Buildings 13, no. 8: 2061. https://doi.org/10.3390/buildings13082061
APA StyleKazeem, K. O., Olawumi, T. O., & Osunsanmi, T. (2023). Roles of Artificial Intelligence and Machine Learning in Enhancing Construction Processes and Sustainable Communities. Buildings, 13(8), 2061. https://doi.org/10.3390/buildings13082061