Cooling Energy Benefits of Increased Green Infrastructure in Subtropical Urban Building Environments
Abstract
:1. Introduction
2. Geography and Climatic Conditions in Dubai
3. Materials and Methods
3.1. CitySim Configuration for Energy Simulations
3.2. Simulation Process
3.2.1. CitySim Data from SketchUp and WRF
3.2.2. Building Energy Simulation by CitySim
4. Results and Discussion
4.1. WRF Model Evaluation and Validation
4.2. Effects of Increased Urban Vegetation on Building Cooling Loads
5. Comparison of Cooling Benefits: Green Infrastructure and Cool Materials
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, C.; Hien, W.N. Thermal benefits of city parks. Energy Build. 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Santamouris, M. Recent progress on urban overheating and heat island research. Integrated assessment of the energy, environmental, vulnerability and health impact. Synergies with the global climate change. Energy Build. 2020, 207, 109482. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the buildings–past, present and future. Energy Build. 2016, 128, 617–638. [Google Scholar] [CrossRef]
- Kolokotroni, M.; Ren, X.; Davies, M.; Mavrogianni, A. London’s urban heat island: Impact on current and future energy consumption in office buildings. Energy Build. 2012, 47, 302–311. [Google Scholar] [CrossRef]
- Santamouris, M.; Cartalis, C.; Synnefa, A.; Kolokotsa, D. On the impact of urban heat island and global warming on the power demand and electricity consumption of buildings—A review. Energy Build. 2015, 98, 119–124. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. Modeling the effect of climate change on building energy demand in Los Angeles county by using a GIS-based high spatial-and temporal-resolution approach. Energy 2019, 176, 641–655. [Google Scholar] [CrossRef]
- Santamouris, M. On the energy impact of urban heat island and global warming on buildings. Energy Build. 2014, 82, 100–113. [Google Scholar] [CrossRef]
- Lipson, M.J.; Thatcher, M.; Hart, M.A.; Pitman, A.J.E.R.L. Climate change impact on energy demand in building-urban-atmosphere simulations through the 21st century. Environ. Res. Lett. 2019, 14, 125014. [Google Scholar] [CrossRef]
- Bilardo, M.; Ferrara, M.; Fabrizio, E. Resilient optimal design of multi-family buildings in future climate scenarios. E3S Web Conf. 2019, 111, 06006. [Google Scholar] [CrossRef]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local climate change and urban heat island mitigation techniques–the state of the art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Pisello, A.L.; Saliari, M.; Vasilakopoulou, K.; Hadad, S.; Santamouris, M. Facing the urban overheating: Recent developments. Mitigation potential and sensitivity of the main technologies. Wiley Interdiscip. Rev. Energy Environ. 2018, 7, e294. [Google Scholar] [CrossRef]
- Santamouris, M.; Vasilakopoulou, K. Recent progress on urban heat mitigation technologies. Sci. Talks 2022, 5, 100105. [Google Scholar] [CrossRef]
- O’Malley, C.; Piroozfar, P.; Farr, E.R.; Pomponi, F. Urban Heat Island (UHI) mitigating strategies: A case-based comparative analysis. Sustain. Cities Soc. 2015, 19, 222–235. [Google Scholar] [CrossRef]
- Loughner, C.P.; Allen, D.J.; Zhang, D.-L.; Pickering, K.E.; Dickerson, R.R.; Landry, L. Roles of urban tree canopy and buildings in urban heat island effects: Parameterization and preliminary results. J. Appl. Meteorol. Climatol. 2012, 51, 1775–1793. [Google Scholar] [CrossRef]
- Jacobs, S.J.; Gallant, A.J.; Tapper, N.J.; Li, D. Use of cool roofs and vegetation to mitigate urban heat and improve human thermal stress in Melbourne, Australia. J. Appl. Meteorol. Climatol. 2018, 57, 1747–1764. [Google Scholar] [CrossRef]
- Coutts, A.M.; White, E.C.; Tapper, N.J.; Beringer, J.; Livesley, S.J. Temperature and human thermal comfort effects of street trees across three contrasting street canyon environments. Theor. Appl. Climatol. 2016, 124, 55–68. [Google Scholar] [CrossRef]
- Santamouris, M.; Osmond, P. Increasing Green Infrastructure in Cities-Impact on Ambient Temperature. Air Qual. Heat Relat. Mortal. Morb. Buildi 2020, 10, 233. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities–a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Santamouris, M.; Ding, L.; Fiorito, F.; Oldfield, P.; Osmond, P.; Paolini, R.; Prasad, D.; Synnefa, A. Passive and active cooling for the outdoor built environment–Analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Sol. Energy 2017, 154, 14–33. [Google Scholar] [CrossRef]
- Haddad, S.; Paolini, R.; Ulpiani, G.; Synnefa, A.; Hatvani-Kovacs, G.; Garshasbi, S.; Fox, J.; Vasilakopoulou, K.; Nield, L.; Santamouris, M. Holistic approach to assess co-benefits of local climate mitigation in a hot humid region of Australia. Sci. Rep. 2020, 10, 14216. [Google Scholar] [CrossRef]
- Khan, H.S.; Paolini, R.; Caccetta, P.; Santamouris, M. On the combined impact of local, regional, and global climatic changes on the urban energy performance and indoor thermal comfort—The energy potential of adaptation measures. Energy Build. 2022, 267, 112152. [Google Scholar] [CrossRef]
- Falasca, S.; Zinzi, M.; Ding, L.; Curci, G.; Santamouris, M. Society. On the mitigation potential of higher urban albedo in a temperate oceanic metropolis. Sustain. Cities Soc. 2022, 81, 103850. [Google Scholar] [CrossRef]
- Mohammed, A.; Khan, A.; Santamouris, M. On the mitigation potential and climatic impact of modified urban albedo on a subtropical desert city. Build. Environ. 2021, 206, 108276. [Google Scholar] [CrossRef]
- Akbari, H.; Pomerantz, M.; Taha, H. Cool surfaces and shade trees to reduce energy use and improve air quality in urban areas. Sol. Energy 2001, 70, 295–310. [Google Scholar] [CrossRef]
- Kolokotsa, D.D.; Giannariakis, G.; Gobakis, K.; Giannarakis, G.; Synnefa, A.; Santamouris, M. Cool roofs and cool pavements application in Acharnes, Greece. Sustain. Cities Soc. 2018, 37, 466–474. [Google Scholar] [CrossRef]
- Andersson, E.; Langemeyer, J.; Borgström, S.; McPhearson, T.; Haase, D.; Kronenberg, J.; Barton, D.N.; Davis, M.; Naumann, S.; Röschel, L.J.B. Enabling green and blue infrastructure to improve contributions to human well-being and equity in urban systems. BioScience 2019, 69, 566–574. [Google Scholar] [CrossRef]
- Infrastructure, E.G.; Cohesion, T. The Concept of Green Infrastructure and Its Integration into Policies Using Monitoring Systems; European Environmental Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- Connop, S.; Vandergert, P.; Eisenberg, B.; Collier, M.J.; Nash, C.; Clough, J.; Newport, D. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environ. Sci. Policy 2016, 62, 99–111. [Google Scholar] [CrossRef]
- Tan, Z.; Lau, K.K.-L.; Ng, E. Planning strategies for roadside tree planting and outdoor comfort enhancement in subtropical high-density urban areas. Build. Environ. 2017, 120, 93–109. [Google Scholar] [CrossRef]
- Goussous, J.; Siam, H.; Alzoubi, H. Prospects of green roof technology for energy and thermal benefits in buildings: Case of Jordan. Sustain. Cities Soc. 2015, 14, 425–440. [Google Scholar] [CrossRef]
- Hsieh, C.-M.; Li, J.-J.; Zhang, L.; Schwegler, B. Effects of tree shading and transpiration on building cooling energy use. Energy Build. 2018, 159, 382–397. [Google Scholar]
- Mohammed, A.; Khan, A.; Santamouris, M. Numerical Evaluation of Enhanced Green Infrastructures for Mitigating Urban Heat in a Desert Urban Setting. In Building Simulation; Tsinghua University Press: Beijing, China, 2022. [Google Scholar]
- Huang, Y.; Akbari, H.; Taha, H.; Rosenfeld, A.H. The potential of vegetation in reducing summer cooling loads in residential buildings. J. Appl. Meteorol. Climatol. 1987, 26, 1103–1116. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Kong, L.; Lau, K.K.-L.; Yuan, C.; Ng, E.J.B. A study on the impact of shadow-cast and tree species on in-canyon and neighborhood’s thermal comfort. Build. Environ. 2017, 115, 1–17. [Google Scholar] [CrossRef]
- Wang, C.; Li, Q.; Wang, Z.-H. Quantifying the impact of urban trees on passive pollutant dispersion using a coupled large-eddy simulation–Lagrangian stochastic model. Build. Environ. 2018, 145, 33–49. [Google Scholar] [CrossRef]
- Parker, J.H. Landscaping to reduce the energy used in cooling buildings. J. For. 1983, 81, 82–105. [Google Scholar]
- Chagolla, M.; Alvarez, G.; Simá, E.; Tovar, R.; Huelsz, G. Effect of tree shading on the thermal load of a house in a warm climate zone in Mexico. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 9–15 November 2012; pp. 761–768. [Google Scholar] [CrossRef]
- Santamouris, M.; Ban-Weiss, G.; Osmond, P.; Paolini, R.; Synnefa, A.; Cartalis, C.; Muscio, A.; Zinzi, M.; Morakinyo, T.E.; Edward, N. Progress in urban greenery mitigation science–assessment methodologies advanced technologies and impact on cities. J. Civ. Eng. Manag. 2018, 24, 638–671. [Google Scholar] [CrossRef]
- Taleb, H. Effect of Adding Vegetation and Applying a Plants Buffer on Urban Community in Dubai. Spaces Flows Int. J. Urban Extra Urban Stud. 2016, 7, 34–79. [Google Scholar] [CrossRef]
- Shashua-Bar, L.; Hoffman, M.E.J.E.; Buildings. Vegetation as a climatic component in the design of an urban street: An empirical model for predicting the cooling effect of urban green areas with trees. Energy Build. 2000, 31, 221–235. [Google Scholar] [CrossRef]
- Jan, F.-C.; Hsieh, C.-M.; Ishikawa, M.; Sun, Y.-H. Influence of street tree density on transpiration in a subtropical climate. Environ. Nat. Resour. Res. 2012, 2, 84. [Google Scholar] [CrossRef]
- Hitchin, R.; Knight, I. Daily energy consumption signatures and control charts for air-conditioned buildings. Energy Build. 2016, 112, 101–109. [Google Scholar] [CrossRef]
- Tsoka, S.; Leduc, T.; Rodler, A. Assessing the effects of urban street trees on building cooling energy needs: The role of foliage density and planting pattern. Sustain. Cities Soc. 2021, 65, 102633. [Google Scholar] [CrossRef]
- Lin, M.; Afshari, A.; Azar, E. A data-driven analysis of building energy use with emphasis on operation and maintenance: A case study from the UAE. J. Clean. Prod. 2018, 192, 169–178. [Google Scholar] [CrossRef]
- Shanks, K. Energy performance resilience of UAE buildings to climate change. Int. J. Environ. Sustain. 2018, 7, 90–97. [Google Scholar] [CrossRef]
- Al-Sallal, K.A.; Al-Rais, L. Outdoor airflow analysis and potential for passive cooling in the modern urban context of Dubai. Renew. Energy 2012, 38, 40–49. [Google Scholar] [CrossRef]
- Haddad, S.; Barker, A.; Yang, J.; Kumar, D.I.M.; Garshasbi, S.; Paolini, R.; Santamouris, M. On the potential of building adaptation measures to counterbalance the impact of climatic change in the tropics. Energy Build. 2020, 229, 110494. [Google Scholar] [CrossRef]
- Pyrgou, A.; Castaldo, V.L.; Pisello, A.L.; Cotana, F.; Santamouris, M. On the effect of summer heatwaves and urban overheating on building thermal-energy performance in central Italy. Sustain. Cities Soc. 2017, 28, 187–200. [Google Scholar] [CrossRef]
- Hong, T.; Chen, Y.; Luo, X.; Luo, N.; Lee, S.H. Ten questions on urban building energy modeling. Build. Environ. 2020, 168, 106508. [Google Scholar] [CrossRef]
- Sola, A.; Corchero, C.; Salom, J.; Sanmarti, M. Multi-domain urban-scale energy modelling tools: A review. Sustain. Cities Soc. 2020, 54, 101872. [Google Scholar] [CrossRef]
- Robinson, D.; Haldi, F.; Leroux, P.; Perez, D.; Rasheed, A.; Wilke, U. CitySim: Comprehensive micro-simulation of resource flows for sustainable urban planning. In Proceedings of the Eleventh International IBPSA Conference, Glasgow, Scotland, 27–30 July 2009; pp. 1083–1090. [Google Scholar]
- Judkoff, R.; Neymark, J. International Energy Agency Building Energy Simulation Test (BESTEST) and Diagnostic Method; National Renewable Energy Lab. (NREL): Golden, CO, USA, 1995. [Google Scholar] [CrossRef]
- Walter, E.; Kämpf, J.H. A verification of CitySim results using the BESTEST and monitored consumption values. In Proceedings of the 2nd Building Simulation Applications Conference, Bozen-Bolzano, Italy, 4–6 February 2015; pp. 215–222. [Google Scholar]
- Mohammed, A.; Pignatta, G.; Topriska, E.; Santamouris, M. Canopy urban heat island and its association with climate conditions in Dubai, UAE. Climate 2020, 8, 81. [Google Scholar] [CrossRef]
- Misni, A.; Allan, P. Sustainable residential building issues in urban heat islands–the potential of albedo and vegetation. In Proceedings of the Sustainable Building New Zealand Conference (SB10), Wellington, New Zealand, 26–28 May 2010. [Google Scholar]
- Aktacir, M.A.; Büyükalaca, O.; Yılmaz, T. A case study for influence of building thermal insulation on cooling load and air-conditioning system in the hot and humid regions. Appl. Energy 2010, 87, 599–607. [Google Scholar] [CrossRef]
- Pan, Y.; Yu, C.; Mao, J.; Long, W.; Chen, W. A study of Shanghai residential morphology and microclimate at a neighborhood scale based on energy consumption. In Proceedings of the 14th Conference of International Building Performance Simulation Association, Hyderabad, India, 7–9 December 2015; pp. 7–9. [Google Scholar]
- Takakura, T.; Kitade, S.; Goto, E. Cooling effect of greenery cover over a building. Energy Build. 2000, 31, 1–6. [Google Scholar] [CrossRef]
- Barbera, G.; Pecorella, G.; Silvestrini, G. Reduction of Cooling Loads and CO2 Emissions through the Use of Vegetation in Italian Urban Area; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Garshasbi, S.; Haddad, S.; Paolini, R.; Santamouris, M.; Papangelis, G.; Dandou, A.; Methymaki, G.; Portalakis, P.; Tombrou, M. Urban mitigation and building adaptation to minimize the future cooling energy needs. Sol. Energy 2020, 204, 708–719. [Google Scholar] [CrossRef]
- Erell, E.; Zhou, B. The effect of increasing surface cover vegetation on urban microclimate and energy demand for building heating and cooling. Build. Environ. 2022, 213, 108867. [Google Scholar] [CrossRef]
- Santamouris, M.; Haddad, S.; Saliari, M.; Vasilakopoulou, K.; Synnefa, A.; Paolini, R.; Ulpiani, G.; Garshasbi, S.; Fiorito, F. On the energy impact of urban heat island in Sydney: Climate and energy potential of mitigation technologies. Energy Build. 2018, 166, 154–164. [Google Scholar] [CrossRef]
Input Parameters | Data | ||||||
---|---|---|---|---|---|---|---|
Temperatures | Commercial buildings: 19.0–24.0 °C | ||||||
Residential buildings: 20.0–26.0 °C | |||||||
Infiltration | 1.0 | ||||||
Shading device [λ] | 0.2 | ||||||
Glazing U-value | Insulation: 1.6, 1.9, and 2.1 W/m2K | ||||||
Without insulation: 5.8 W/m2K | |||||||
Cut-off irradiance | 100 (W/m2) | ||||||
Glazing g-value | 0.85 | ||||||
Surface reflectance | 0.2 | ||||||
Openable fraction | 0.5 | ||||||
Commercial | Residential | ||||||
Gym | Office | Auditorium | Shopping Mall | Restaurant | |||
Occupant density (m2/P) | 10 | 9.3 | 1 | 5 | 1.4 | 18.6 | |
Internal gains (W/P) | Sensible loads | 388 | 246 | 84 | 268 | 103 | 90 |
Latent loads | 315 | 55 | 35 | 55 | 80 | 45 |
Building Type | Height [m] | Area [m2] | WWR [%] | No. of Storey | Category |
---|---|---|---|---|---|
B01—Residential | 56.0 | 46,665.0 | 50.0 | 16.0 | H |
B02—Residential | 192.0 | 61,008.0 | 75.0 | 48.0 | H |
B03—Residential | 151.0 | 44,650.0 | 60.0 | 37.0 | H |
B04—Residential | 190.0 | 352,800.0 | 65.0 | 46.0 | H |
B05—Shopping Mall | 25.0 | 1,013,379.0 | 35.0 | 4.0 | L |
B06—Residential | 266.0 | 200,087.0 | 70.0 | 62.0 | H |
B07—Residential | 158.0 | 53,760.0 | 60.0 | 42.0 | H |
B08—Residential | 171.0 | 35,244.0 | 50.0 | 41.0 | H |
B09—Shopping Mall | 25.0 | 126,367.0 | 50.0 | 4.0 | L |
B10—Offices | 50.0 | 36,150.0 | 65.0 | 13.0 | H |
B11—Gym | 16.0 | 5683.0 | 60.0 | 4.0 | L |
B12—Residential | 67.0 | 24,842.0 | 50.0 | 18.0 | H |
B13—Residential | 605.0 | 259,748.0 | 95.0 | 162.0 | H |
B14—Restaurant | 12.0 | 1248.0 | 25.0 | 3.0 | L |
B15—Shopping Mall | 25.0 | 178,594.0 | 40.0 | 5.0 | L |
B16—Residential | 22.0 | 236,924.0 | 40.0 | 6.0 | L |
B17—Residential | 184.0 | 51,905.0 | 65.0 | 51.0 | H |
B18—Residential | 76.0 | 36,549.0 | 40.0 | 20.0 | H |
B19—Residential | 80.0 | 11,856.0 | 60.0 | 20.0 | H |
B20—Office | 18.0 | 1738.0 | 40.0 | 5.0 | L |
B21—Residential | 115.0 | 18,301.0 | 60.0 | 33.0 | H |
B22—Residential | 70.0 | 42,580.0 | 40.0 | 17.0 | H |
B23—Office | 17.0 | 5787.0 | 40.0 | 5.0 | L |
B24—Residential | 119.0 | 21,280.0 | 70.0 | 34.0 | H |
B25—Residential | 115.0 | 22,095.0 | 70.0 | 33.0 | H |
B26—Residential | 112.0 | 22,107.0 | 65.0 | 34.0 | H |
B27—Residential | 96.0 | 21,588.0 | 70.0 | 29.0 | H |
B28—Residential | 115.0 | 18,445.0 | 70.0 | 33.0 | H |
B29—Residential | 69.0 | 15,673.0 | 70.0 | 19.0 | H |
B30—Residential | 88.0 | 15,237.0 | 70.0 | 25.0 | H |
B31—Residential | 142.0 | 89,334.0 | 60.0 | 39.0 | H |
B32—Residential | 73.0 | 43,498.0 | 60.0 | 19.0 | H |
B33—Residential | 124.0 | 49,011.0 | 40.0 | 34.0 | H |
B34—Offices | 89.0 | 99,106.0 | 90.0 | 21.0 | H |
B35—Offices | 28.0 | 42,182.0 | 80.0 | 6.0 | M |
B36—Auditorium | 44.0 | 37,688.0 | 95.0 | 7.0 | M |
B37—Residential | 119.0 | 97,767.0 | 60.0 | 34.0 | H |
B38—Residential | 98.0 | 38,039.0 | 55.0 | 28.0 | H |
B39—Residential | 56.0 | 26,771.0 | 30.0 | 16.0 | H |
B40—Residential | 76.0 | 21,066.0 | 30.0 | 19.0 | H |
B41—Residential | 68.0 | 26,820.0 | 30.0 | 17.0 | H |
Layers | Features | |
---|---|---|
Insulated Structure | Non-Insulated Structure | |
Wall | External mortar-cement and sand; cement block; rockwool board/slab; cement board; internal mortar; plaster (U-value: 0.32 W/m2K) | External mortar-cement and sand; cement block; internal mortar; plaster (U-value: 2.53 W/m2K) |
Glass (U-value 1.6, 1.9, 2.1 W/m2K) | Glass (U-value 5.8 W/m2K) | |
Roof | Concrete tiles; polyurethane (PUR); light weight concrete; bitumen layer; concrete (for residential 0.2 m and for commercial 0.3 m); plaster. U-value—residential: 0.34 W/m2K; U-value—commercial: 0.33 W/m2K. | Concrete tiles; light weight concrete; bitumen layer; concrete (for residential 0.2 m and for commercial 0.3 m); plaster. U-value—residential: 2.34 W/m2K; U-value—commercial: 1.91 W/m2K. |
Roof metal (steel sheet; expanded polystyrene) U-value: 2.11 W/m2K | Roof metal (steel sheet; expanded polystyrene U-value: 2.11 W/m2K | |
Floor | Ceramic tiles; light weight mortar; concrete; U-value: 3.27 W/m2K. | Ceramic tiles; light weight mortar; concrete U-value: 3.27 W/m2K. |
Climatic Elements | Units |
---|---|
Day | - |
Month | - |
Hour | - |
Beam normal irradiance | W/m2 |
Air temperature | °C |
Ground surface temperature | °C |
Precipitation | mm |
Nebulosity | Octas |
Ambient temperature | °C |
Relative humidity | % |
Wind speed | m/s |
Wind direction | degree |
Global horizontal radiation | W/m2 |
Diffuse horizontal irradiance | W/m2 |
Solar normal irradiance | W/m2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, A.; Khan, A.; Khan, H.S.; Santamouris, M. Cooling Energy Benefits of Increased Green Infrastructure in Subtropical Urban Building Environments. Buildings 2023, 13, 2257. https://doi.org/10.3390/buildings13092257
Mohammed A, Khan A, Khan HS, Santamouris M. Cooling Energy Benefits of Increased Green Infrastructure in Subtropical Urban Building Environments. Buildings. 2023; 13(9):2257. https://doi.org/10.3390/buildings13092257
Chicago/Turabian StyleMohammed, Afifa, Ansar Khan, Hassan Saeed Khan, and Mattheos Santamouris. 2023. "Cooling Energy Benefits of Increased Green Infrastructure in Subtropical Urban Building Environments" Buildings 13, no. 9: 2257. https://doi.org/10.3390/buildings13092257
APA StyleMohammed, A., Khan, A., Khan, H. S., & Santamouris, M. (2023). Cooling Energy Benefits of Increased Green Infrastructure in Subtropical Urban Building Environments. Buildings, 13(9), 2257. https://doi.org/10.3390/buildings13092257