Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions
Abstract
:1. Introduction
1.1. Residential Sector in Jordan
1.2. Building Envelopes in Jordan
1.3. Building Envelopes in Romania
1.4. PCM Contribution to Sustainability
2. Materials and Methods
2.1. Location Selection
2.2. Procedure for the Simulation Process (Workflow)
2.3. Building Information Modeling (BIM)
2.4. Building Energy Model (BEM)
2.5. Evaluation Criteria
2.5.1. PCM Melting Point
2.5.2. PCM Type
2.5.3. PCM Layer Configuration
2.5.4. PCM Layer Thickness
3. Results and Discussion
3.1. Baseline Building Model
3.2. PCM-Incorporated Building Model
3.2.1. Optimal Melting Point
3.2.2. PCM Type Evaluation
3.2.3. Optimal PCM Configuration
3.2.4. Optimal PCM Panel Thickness
3.3. Validation of the Results
4. Financial and Environmental Analysis
4.1. Financial Feasibility
4.2. Environmental Viability
5. Conclusions
- Incorporating BioPCMs led to a significant reduction in energy consumption, with a 34.38% decrease in heating and a 23.33% decrease in cooling energy compared to the baseline model at a melting point of 23 °C.
- The modeling and simulations revealed that BioPCMs significantly improved thermal performance, leading to more efficient heating and cooling in buildings.
- BioPCMs offer considerable environmental benefits, including non-toxicity, recyclability, reduced manufacturing emissions, and a notable reduction in greenhouse gas emissions, estimated at an annual decrease of 2382.31 kg of equivalent carbon dioxide.
- The BioPCM® M91/Q23 configuration demonstrated economic viability, with an estimated payback period of just four years.
- The simulation results showed the highest energy-saving rate in Amman (20.14%), followed by Irbid (19.78%), Aqaba (7.50%), and Oradea (5.64%).
- In moderate climates, like Amman and Irbid, where average temperatures align closely with the PCM’s phase transition temperature of 23 °C, PCMs showed enhanced performance, resulting in greater thermal stability compared to very hot-dry climates like Aqaba and cold-wet climates like Oradea.
- The close alignment of average daily temperatures with the PCM’s phase transition temperature in moderate climates led to decreased energy consumption by HVAC systems for maintaining indoor thermal comfort.
- Through all studied locations, the PCM-incorporated building models demonstrated a lower EUI compared to baseline models with conventional insulation, reflecting a substantial reduction in total end-use energy.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bungau, C.C.; Bungau, T.; Prada, M.F.; Prada, I.F.; Moleriu, R.D. Sustainable Development through Green Buildings: Updated Bibliometric Analysis of the Literature in the Field. Rom. J. Mater. 2023, 53, 82–93. [Google Scholar]
- Bungau, C.C.; Bungau, T.; Prada, I.F.; Prada, M.F. Green Buildings as a Necessity for Sustainable Environment Development: Dilemmas and Challenges. Sustainability 2022, 14, 13121. [Google Scholar] [CrossRef]
- Bendea, G.; Bendea, C.; Secui, C.; Hora, C.; Necula, S.; Ciobanca, A. Energy Efficient and Environmentally Safe New Thermal Power Plant in Oradea. In Proceedings of the 2019 International Conference on Energy and Environment (CIEM), Timisoara, Romania, 17–18 October 2019; pp. 534–538. [Google Scholar]
- Bendea, G.; Felea, I.; Hora, C.; Bendea, C.; Felea, A.; Blaga, A. Energy Performance Analysis of a Heat Supply System of a University Campus. Energies 2023, 16, 174. [Google Scholar] [CrossRef]
- Ayadi, O.; Abdalla, O.; Hallaq, Y.; Aldalabih, A. Developing an Energy Benchmark for Residential Buildings in Jordan. In Proceedings of the International Renewable Engineering Conference (IREC), Amman, Jordan, 14 April 2021; pp. 1–5. [Google Scholar]
- Ministry of Energy and Mineral Resources, Amman, Jordan. Energy 2019—Facts and Figures. Available online: https://memr.gov.jo/En/List/Studies_and_Statistics (accessed on 22 November 2023).
- Ministry of Energy and Mineral Resources, Amman, Jordan. Annual Report 2021. Available online: https://memr.gov.jo/En/List/Annual_Reports (accessed on 21 November 2023).
- Zarei, M.; Zare, H. Energy Consumption Modeling in Residential Buildings. Archit. Urban Dev. 2013, 3, 35–38. [Google Scholar]
- The Department of Statistics of Jordan. Jordan in Figure 2021. Available online: https://dosweb.dos.gov.jo/products/jordan-in-figure2021/ (accessed on 22 November 2023).
- Al-Yasiri, Q.; Szabó, M. Incorporation of Phase Change Materials into Building Envelope for Thermal Comfort and Energy Saving: A Comprehensive Analysis. J. Build. Eng. 2021, 36, 102122. [Google Scholar] [CrossRef]
- Al-Hinti, I.; Al-Sallami, H. Potentials and Barriers of Energy Saving in Jordan’s Residential Sector through Thermal Insulation. Jordan J. Mech. Ind. Eng. 2017, 11, 141–145. [Google Scholar]
- International Energy Agency. The Future of Cooling. Opportunities for Energy-Efficient Air Conditioning. Available online: https://www.iea.org/reports/the-future-of-cooling (accessed on 22 November 2023).
- Sommese, F.; Badarnah, L.; Ausiello, G. A critical review of biomimetic building envelopes: Towards a bio-adaptive model from nature to architecture. Renew. Sustain. Energy Rev. 2022, 169, 112850. [Google Scholar] [CrossRef]
- Huang, H.; Zhou, Y.; Huang, R.; Wu, H.; Sun, Y.; Huang, G.; Xu, T. Optimum Insulation Thicknesses and Energy Conservation of Building Thermal Insulation Materials in Chinese Zone of Humid Subtropical Climate. Sustain. Cities Soc. 2020, 52, 101840. [Google Scholar] [CrossRef]
- Urbikain, M.K. Energy Efficient Solutions for Retrofitting a Residential Multi-Storey Building with Vacuum Insulation Panels and Low-E Windows in Two European Climates. J. Clean. Prod. 2020, 269, 121459. [Google Scholar] [CrossRef]
- Lyu, Y.-L.; Liu, W.-J.; Su, H.; Wu, X. Numerical Analysis on the Advantages of Evacuated Gap Insulation of Vacuum-Water Flow Window in Building Energy Saving under Various Climates. Energy 2019, 175, 353–364. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, L.; Yang, Y.; Feng, Y.; Yang, L.; Gao, Q. Effects of External Insulation Component on Thermal Performance of a Trombe Wall with Phase Change Materials. Sol. Energy 2020, 204, 115–133. [Google Scholar] [CrossRef]
- Chung, W.J.; Park, S.H.; Yeo, M.S.; Kim, K.W. Control of Thermally Activated Building System Considering Zone Load Characteristics. Sustainability 2017, 9, 586. [Google Scholar] [CrossRef]
- Juaidi, A.; Anayah, F.; Assaf, R.; Hasan, A.A.; Monna, S.; Herzallah, L.; Abdallah, R.; Dutournié, P.; Jeguirim, M. An Overview of Renewable Energy Strategies and Policies in Palestine: Strengths and Challenges. Energy Sustain. Dev. 2022, 68, 258–272. [Google Scholar] [CrossRef]
- Al-Saeed, Y.W.; Ahmed, A. Evaluating Design Strategies for Nearly Zero Energy Buildings in the Middle East and North Africa Regions. Designs 2018, 2, 35. [Google Scholar] [CrossRef]
- Jordan National Building Codes. Energy Codes and Manuals. Available online: https://www.buildings-mena.com/files/JordanNationalBuildingCodes.pdf (accessed on 22 November 2023).
- Alsaad, M.; Hammad, M. Heating, and Air Conditioning for Residential Buildings, 1st ed.; National Library Department, The Hashemite Kingdom of Jordan: Amman, Jordan, 2011; ISBN 199/2/1995. [Google Scholar]
- Shamout, S.; Al-khuraissat, M. Your Guide to Building Envelope Retrofits for Optimising Energy Efficiency & Thermal Comfort in Jordan; National Library Department, The Hashemite Kingdom of Jordan: Amman, Jordan, 2018; ISBN 9789957878917. [Google Scholar]
- Dan, D.; Stoian, V.; Nagy-Gyorgy, T.; Daescu, C. Thermal Insulation of Old and New Buildings in Romania. Politehnica University of Timisoara. Available online: https://www.irbnet.de/daten/iconda/CIB11594.pdf (accessed on 10 December 2023).
- Nada, S.A.; Alshaer, W.G.; Saleh, R.M. Experimental Investigation of PCM Transient Performance in Free Cooling of the Fresh Air of Air Conditioning Systems. J. Build. Eng. 2020, 29, 101153. [Google Scholar] [CrossRef]
- Hirmiz, R.; Teamah, H.M.; Lightstone, M.F.; Cotton, J.S. Analytical and Numerical Sizing of Phase Change Material Thickness for Rectangular Encapsulations in Hybrid Thermal Storage Tanks for Residential Heat Pump Systems. Appl. Therm. Eng. 2020, 170, 114978. [Google Scholar] [CrossRef]
- Mevada, D.; Panchal, H.; kumar Sadasivuni, K.; Israr, M.; Suresh, M.; Dharaskar, S.; Thakkar, H. Effect of Fin Configuration Parameters on Performance of Solar Still: A Review. Groundw. Sustain. Dev. 2020, 10, 100289. [Google Scholar] [CrossRef]
- Bhave, A.G.; Kale, C.K. Development of a Thermal Storage Type Solar Cooker for High Temperature Cooking Using Solar Salt. Sol. Energy Mater. Sol. Cells 2020, 208, 110394. [Google Scholar] [CrossRef]
- Ren, Q.; Guo, P.; Zhu, J. Thermal Management of Electronic Devices Using Pin-Fin Based Cascade Microencapsulated PCM/Expanded Graphite Composite. Int. J. Heat Mass Transf. 2020, 149, 119199. [Google Scholar] [CrossRef]
- Elsheniti, M.B.; Hemedah, M.A.; Sorour, M.M.; El-Maghlany, W.M. Novel Enhanced Conduction Model for Predicting Performance of a PV Panel Cooled by PCM. Energy Convers. Manag. 2020, 205, 112456. [Google Scholar] [CrossRef]
- Owens, C.G.; Cox, J.N.; Horwath, P.F.; Sawafta, R.I. Thermal Energy Storage Systems Including a Shipping Container, a Heat Exchange Apparatus, and a Phase Change Material. U.S. Patent 10,012,451 B2, 3 July 2018. [Google Scholar]
- Hasan, M.I.; Abduladheem, A.A. Modifying the Thermal Performance of Electrical Distribution Transformers Using Phase Change Materials (Paraffin Wax). Heat Transf. Res. 2019, 48, 2440–2455. [Google Scholar] [CrossRef]
- Frigione, M.; Lettieri, M.; Sarcinella, A. Phase Change Materials for Energy Efficiency in Buildings and Their Use in Mortars. Materials 2019, 12, 1260. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Xie, J.; Liu, J.; Wang, J.; Chen, S. A Review on Phase Change Material Application in Building. Adv. Mech. Eng. 2017, 9, 1687814017700828. [Google Scholar] [CrossRef]
- Kumar, D.; Alam, M.; Sanjayan, J.G. Retrofitting Building Envelope Using Phase Change Materials and Aerogel Render for Adaptation to Extreme Heatwave: A Multi-Objective Analysis Considering Heat Stress, Energy, Environment, and Cost. Sustainability 2021, 13, 10716. [Google Scholar] [CrossRef]
- Rahemipoor, S.; Hasany, M.; Mehrali, M.; Almdal, K.; Ranjbar, N.; Mehrali, M. Phase Change Materials Incorporation into 3D Printed Geopolymer Cement: A Sustainable Approach to Enhance the Comfort and Energy Efficiency of Buildings. J. Clean. Prod. 2023, 417, 138005. [Google Scholar] [CrossRef]
- Lamrani, B.; Johannes, K.; Kuznik, F. Phase Change Materials Integrated into Building Walls: An Updated Review. Renew. Sustain. Energy Rev. 2021, 140, 110751. [Google Scholar] [CrossRef]
- Bre, F.; Lamberts, R.; Flores-Larsen, S.; Koenders, E.A.B. Multi-Objective Optimization of Latent Energy Storage in Buildings by Using Phase Change Materials with Different Melting Temperatures. Appl. Energy 2023, 336, 120806. [Google Scholar] [CrossRef]
- Köse, E.; Manioğlu, G. Evaluation of the Performance of a Building Envelope Constructed with Phase-Change Materials in Relation to Orientation in Different Climatic Regions. E3S Web Conf. 2019, 111, 4003. [Google Scholar] [CrossRef]
- Li, D.; Zhuang, B.; Chen, Y.; Li, B.; Landry, V.; Kaboorani, A.; Wu, Z.; Wang, X.A. Incorporation Technology of Bio-Based Phase Change Materials for Building Envelope: A Review. Energy Build. 2022, 260, 111920. [Google Scholar] [CrossRef]
- Qu, Y.; Zhou, D.; Xue, F.; Cui, L. Multi-Factor Analysis on Thermal Comfort and Energy Saving Potential for PCM-Integrated Buildings in Summer. Energy Build. 2021, 241, 110966. [Google Scholar] [CrossRef]
- Li, Z.X.; Al-Rashed, A.A.A.A.; Rostamzadeh, M.; Kalbasi, R.; Shahsavar, A.; Afrand, M. Heat Transfer Reduction in Buildings by Embedding Phase Change Material in Multi-Layer Walls: Effects of Repositioning, Thermophysical Properties and Thickness of PCM. Energy Convers. Manag. 2019, 195, 43–56. [Google Scholar] [CrossRef]
- Kishore, R.A.; Bianchi, M.V.A.; Booten, C.; Vidal, J.; Jackson, R. Parametric and Sensitivity Analysis of a PCM-Integrated Wall for Optimal Thermal Load Modulation in Lightweight Buildings. Appl. Therm. Eng. 2021, 187, 116568. [Google Scholar] [CrossRef]
- Kylili, A.; Fokaides, P.A. Life Cycle Assessment (LCA) of Phase Change Materials (PCMs) for Building Applications: A Review. J. Build. Eng. 2016, 6, 133–143. [Google Scholar] [CrossRef]
- Zhou, S.; Razaqpur, A.G. Efficient Heating of Buildings by Passive Solar Energy Utilizing an Innovative Dynamic Building Envelope Incorporating Phase Change Material. Renew. Energy 2022, 197, 305–319. [Google Scholar] [CrossRef]
- Fagehi, H.; Hadidi, H.M. Toward Buildings with Lower Power Demand in the Smart City of NEOM-Incorporating Phase Change Material into Building Envelopes. Sustain. Energy Technol. Assess. 2022, 53, 102494. [Google Scholar] [CrossRef]
- Bungau, C.C.; Hanga Prada, F.I.; Bungau, T.; Bungau, C.; Bendea, G.; Prada, M.F. Web of Science Scientometrics on the Energy Efficiency of Buildings to Support Sustainable Construction Policies. Sustainability 2023, 15, 8772. [Google Scholar] [CrossRef]
- Jaysawal, R.K.; Chakraborty, S.; Elangovan, D.; Padmanaban, S. Concept of Net Zero Energy Buildings (NZEB)—A Literature Review. Clean. Eng. Technol. 2022, 11, 100582. [Google Scholar] [CrossRef]
- Craiut, L.; Bungau, C.; Negru, P.A.; Bungau, T.; Radu, A.-F. Technology Transfer in the Context of Sustainable Development-A Bibliometric Analysis of Publications in the Field. Sustainability 2022, 14, 11973. [Google Scholar] [CrossRef]
- Uusitalo, P.; Lavikka, R. Technology Transfer in the Construction Industry. J. Technol. Transf. 2021, 46, 1291–1320. [Google Scholar] [CrossRef]
- Bungău, C.C.; Prada, I.F.; Prada, M.; Bungău, C. Design and Operation of Constructions: A Healthy Living Environment-Parametric Studies and New Solutions. Sustainability 2019, 11, 6824. [Google Scholar] [CrossRef]
- Iqbal, M.; Ma, J.; Ahmad, N.; Hussain, K.; Waqas, M.; Liang, Y. Sustainable Construction through Energy Management Practices: An Integrated Hierarchal Framework of Drivers in the Construction Sector. Environ. Sci. Pollut. Res. Int. 2022, 29, 90108–90127. [Google Scholar] [CrossRef] [PubMed]
- Meteoblue Weather in Amman, Irbid, and Aqaba. Available online: https://www.meteoblue.com/en/weather/ (accessed on 5 September 2023).
- Autodesk. (n.d.). Revit System Analysis for Mechanical Design Professional. Available online: https://www.autodesk.com/certification/learn/course/revit-system-analysis-mechanical-design-professional/module/HvSSdYIkMAXaKzTXiHqtW (accessed on 20 August 2023).
- Wang, X.; Yuan, J.; You, K.; Ma, X.; Li, Z. Using Real Building Energy Use Data to Explain the Energy Performance Gap of Energy-Efficient Residential Buildings: A Case Study from the Hot Summer and Cold Winter Zone in China. Sustainability 2023, 15, 1575. [Google Scholar] [CrossRef]
- Alharbey, R.A.; Daqrouq, K.O.; Alkhateeb, A. Energy exchange of inserting eco-friendly bio phase change material into the vertical walls to make the buildings energy-efficient. J. Build. Eng. 2022, 56, 104777. [Google Scholar] [CrossRef]
- Jaradat, M.; Alsotary, O.; Juaidi, A.; Albatayneh, A.; Alzoubi, A.; Gorjian, S. Potential of Producing Green Hydrogen in Jordan. Energies 2022, 15, 9039. [Google Scholar] [CrossRef]
- Local Official Monitor: Decision of the Deliberative Authority of Oradea City Council Regarding the Approval of the Local Prices of Thermal Energy Practiced by the Company Termoficare Oradea SA in the Municipality of Oradea, Valid for the Period 01.11.2023–31.03.2024. Available online: https://mol.oradea.ro/storage/39852/pct.-1081.pdf (accessed on 9 December 2023).
- Jaradat, M.; Albatayneh, A.; Alsotary, O.; Hammad, R.; Juaidi, A.; Manzano-Agugliaro, F. Water Harvesting System in Greenhouses with Liquid Desiccant Technology. J. Clean. Prod. 2023, 414, 137587. [Google Scholar] [CrossRef]
Location | Average Temperature [°C] | |||
---|---|---|---|---|
Summer | Winter | |||
June to September | December to March | |||
Daytime | Nighttime | Daytime | Nighttime | |
Amman | 33 | 21 | 17 | 6 |
Irbid | 32 | 20 | 15 | 5 |
Aqaba | 38 | 25 | 24 | 14 |
Oradea | 24 | 15 | 2.5 | −3 |
Room Destination | Sensible | Latent | Lighting | Power | Infiltration Air Flow [L/s·m2] |
---|---|---|---|---|---|
Heat Gain [W/Person] | Load Density [W/m2] | ||||
Bedrooms | 73.27 | 45.43 | 11.95 | 5.81 | 0.19 |
Living room | 80.59 | 80.59 | 22.60 | 5.81 | |
Corridor | 73.27 | 58.61 | 11.84 | 5.81 | |
Guest room | 73.27 | 45.43 | 11.84 | 5.81 | |
Kitchen | 73.27 | 58.61 | 12.92 | 16.15 | |
Dressing room | 73.27 | 58.61 | 6.03 | 5.81 |
Component | Thickness [cm] | Overall Heat Transfer Coefficient (U-Value) [W/m2∙K] | Thermal Resistance (R-Value) [m2∙K/W] | Thermal Mass [kJ/m2∙K] |
---|---|---|---|---|
External Wall | 42.5 | 0.534 | 1.7756 | 476.49 |
Internal Wall | 20 | 2.109 | 0.476 | 249.06 |
Roof | 42 | 0.520 | 1.9747 | 471.14 |
Floor | 63 | 0.905 | 1.104 | 958.63 |
Exterior Side | ||||
---|---|---|---|---|
Material | Thickness [cm] | Thermal Conductivity [W/m∙K] | Specific Heat [J/g∙°C] | Density [kg/m3] |
Limestone | 5.00 | 2.900 | 0.840 | 2750.00 |
Concrete | 20.00 | 1.046 | 0.657 | 2300.00 |
Extruded polystyrene | 5.00 | 0.035 | 1.470 | 23.00 |
Hollow brick | 10.00 | 0.540 | 0.840 | 1550.00 |
Plaster | 2.50 | 0.510 | 0.960 | 1120.00 |
Interior Side |
PCM TYPE | BioPCM® | InfiniteR PCM | WinCo Enerciel PCM | |
---|---|---|---|---|
SPECS | ||||
Source | Organics | Inorganics | Eutectic mixture | |
Melting point [°C] | 21, 23, 25, 27, 29 | 18, 21, 23, 25, 27, 29 | 21, 23, 29 | |
Latent heat of fusion [J/g] | 250 | 200 | 175 | |
Specific heat [J/kg∙K] | Liquid | 1970 | 2000 | 2200 |
Solid | 4500 | 3140 | 2500 | |
Thermal conductivity [W/m∙K] | Liquid | 0.15 | 0.54 | 0.148 |
Solid | 2.5 | 1.09 | 1.8 | |
Relative density [kg/m3] | Liquid | 850 | 929 | 832 |
Solid | 1400 | 1540 | 1170 | |
Sheet thickness [cm] | 1, 2.1, 3.7 | 2, 4 | 0.3 | |
Containment | Macro-encapsulated | Macro-encapsulated | Micro-encapsulated (interior coating) |
Amman | Irbid | Aqaba | Oradea | |
---|---|---|---|---|
Baseline Building Model | Energy Use Intensity [kWh/m2/Year] | |||
Energy Intensity per Conditioned Floor Area | 147.03 | 155.08 | 143.09 | 181.40 |
Energy Intensity per Total Floor Area | 132.10 | 139.33 | 128.55 | 162.97 |
HVAC Energy Intensity per Conditioned Floor Area | 91.14 | 99.19 | 87.20 | 123.66 |
HVAC Energy Intensity per Total Floor Area | 81.89 | 89.12 | 78.34 | 111.10 |
Energy Intensity | Baseline Building Model | PCM-Incorporated Building Model |
---|---|---|
Energy Use Intensity [kWh/m2/Year] | ||
PCM-Incorporated building model in Amman | ||
Energy intensity per conditioned floor area | 147.03 | 117.42 |
Energy intensity per total floor area | 132.10 | 105.50 |
HVAC energy intensity per conditioned floor area | 91.14 | 61.53 |
HVAC energy intensity per total floor area | 81.89 | 55.28 |
PCM-Incorporated building model in Irbid | ||
Energy intensity per conditioned floor area | 155.08 | 124.41 |
Energy intensity per total floor area | 139.33 | 111.77 |
HVAC energy intensity per conditioned floor area | 99.19 | 68.52 |
HVAC energy intensity per total floor area | 89.12 | 61.56 |
PCM-Incorporated building model in Aqaba | ||
Energy intensity per conditioned floor area | 143.09 | 132.36 |
Energy intensity per total floor area | 128.55 | 118.91 |
HVAC energy intensity per conditioned floor area | 87.20 | 76.47 |
HVAC energy intensity per total floor area | 78.34 | 68.70 |
PCM-Incorporated building model in Oradea | ||
Energy intensity per conditioned floor area | 181.40 | 171.50 |
Energy intensity per total floor area | 162.97 | 154.08 |
HVAC energy intensity per conditioned floor area | 123.66 | 113.76 |
HVAC energy intensity per total floor area | 111.10 | 102.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaradat, M.; Al Majali, H.; Bendea, C.; Bungau, C.C.; Bungau, T. Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions. Buildings 2024, 14, 40. https://doi.org/10.3390/buildings14010040
Jaradat M, Al Majali H, Bendea C, Bungau CC, Bungau T. Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions. Buildings. 2024; 14(1):40. https://doi.org/10.3390/buildings14010040
Chicago/Turabian StyleJaradat, Mustafa, Hazaa Al Majali, Codruta Bendea, Constantin C. Bungau, and Tudor Bungau. 2024. "Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions" Buildings 14, no. 1: 40. https://doi.org/10.3390/buildings14010040
APA StyleJaradat, M., Al Majali, H., Bendea, C., Bungau, C. C., & Bungau, T. (2024). Enhancing Energy Efficiency in Buildings through PCM Integration: A Study across Different Climatic Regions. Buildings, 14(1), 40. https://doi.org/10.3390/buildings14010040