Characterization of Mineralogical and Mechanical Parameters of Alkali-Activated Materials Based on Water Sediments Activated by Potassium Silicate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
Mineralogical Composition (XRD)
2.2. Sample Preparations
2.3. AAM Characterization
3. Results
3.1. Precusor Characterization
3.1.1. Particle Size Distribution
3.1.2. Chemical Composition
3.2. Paste Samples Characterization
3.2.1. Calorimetry Analysis
3.2.2. The Basic Material Properties of Paste Samples
3.2.3. Compressive Strength
3.3. Mortars Characterization
3.3.1. The Basic Material Properties of Mortar Samples
3.3.2. Porosimetry Analysis
3.3.3. Microstructure
3.3.4. Mechanical Strength
3.3.5. Moisture Sorptivity
4. Conclusions
- The calorimetry of WS presents a low rate of reaction after the initial exothermic peak observed during wetting and dissolution of the reacting species. This low and slow reaction rate is obvious in the setting characteristics of the materials over a prolonged period of 16 h.
- The positive influence of aggregate on AAM density was observed with samples exhibiting acceptable density values; the bulk densities ranged from 2060 kg/m3 to 2110 kg/m3, and matrix densities varied from 2580 kg/m3 to 2630 kg/m3. The mortar samples S1-M, S4-M, and S7-M achieved low TOP values of 20% to 23%, indicating a relatively compact and dense structure suitable for structural applications.
- The microstructure of the AAMs is dominated by fine pores with compact morphology and homogenous texture, indicating high reactivity of the WS. S4-M exhibited the lowest micropore volume of 0.13 cm3/g, while S7-M presented a more homogeneous matrix with fewer cracks and fissures.
- Additionally, the low porosity increases the structure’s compactness, subsequently reducing the AAMs’ absorption coefficient. The moisture absorption coefficient (A) for samples S7-M, S1-M, and S4-M were 0.0188, 0.0088, and 0.0152 (g/m2 s ½), respectively.
- Notably, the AAMs demonstrate suitability for structural applications, with pure sediments displaying high compressive strength values between 23.52 MPa and 38.09 MPa. Mortar samples maintained similar strength to the paste, exhibiting a compressive strength of 23.75 MPa for S1, 30.56 MPa for S4, and 32.06 MPa for S7. A slight decrease in strength observed in S4 and S7 was due to measurement fluctuation; the strength performance is attributed to the effective dissolution of aluminosilicate during the polymerization reaction process. A similar observation was made in the flexural strength, which is generally low in most of the paste samples; however, a notable improvement was recorded with the addition of aggregates thanks to the mitigation of the shrinkage. The mortar samples exhibited flexural strengths of 3.55 MPa for S7-M, 3.00 MPa for S4-M, and 2.34 MPa for S1-M.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Wu, B.R.; Wang, R.J. Critical review and gap analysis on the use of high-volume fly ash as a substitute constituent in concrete. Constr. Build. Mater. 2022, 341, 127889. [Google Scholar] [CrossRef]
- Li, L.M.; Xie, J.H.; Zhang, B.F.; Feng, Y.; Yang, J. A state-of-the-art review on the setting behaviours of ground granulated blast furnace slag- and metakaolin-based alkali-activated materials. Constr. Build. Mater. 2023, 368, 130389. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Tuyan, M.; Nehdi, M.L. Alkali-activated and geopolymer materials developed using innovative manufacturing techniques: A critical review. Constr. Build. Mater. 2021, 303, 124483. [Google Scholar] [CrossRef]
- He, J.; Jie, Y.X.; Zhang, J.H.; Yu, Y.Z.; Zhang, G.P. Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem. Concr. Compos. 2013, 37, 108–118. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Mehta, A.; Siddique, R. An overview of geopolymers derived from industrial by-products. Constr. Build. Mater. 2016, 127, 183–198. [Google Scholar] [CrossRef]
- Wongsa, A.; Sata, V.; Nematollahi, B.; Sanjayan, J.; Chindaprasirt, P. Mechanical and thermal properties of lightweight geopolymer mortar incorporating crumb rubber. J. Clean. Prod. 2018, 195, 1069–1080. [Google Scholar] [CrossRef]
- Capasso, I.; Liguori, B.; Ferone, C.; Caputo, D.; Cioffi, R. Strategies for the valorization of soil waste by geopolymer production: An overview. J. Clean. Prod. 2021, 288, 125646. [Google Scholar] [CrossRef]
- El Hafid, K.; Hajjaji, M.; El Hafid, H. Influence of NaOH concentration on microstructure and properties of cured alkali-activated calcined clay. J. Build. Eng. 2017, 11, 158–165. [Google Scholar] [CrossRef]
- Palacios, M.; Alonso, M.M.; Varga, C.; Puertas, F. Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes. Cem. Concr. Compos. 2019, 95, 277–284. [Google Scholar] [CrossRef]
- Alastair, M.; Andrew, H.; Pascaline, P.; Mark, E.; Pete, W. Alkali activation behaviour of un-calcined montmorillonite and illite clay minerals. Appl. Clay Sci. 2018, 166, 250–261. [Google Scholar] [CrossRef]
- Ye, H.L.; Radlinska, A. Fly ash-slag interaction during alkaline activation: Influence of activators on phase assemblage and microstructure formation. Constr. Build. Mater. 2016, 122, 594–606. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Anand, N.; Raj, R.S.; Lubloy, E. Techno-socio-economic aspects of Portland cement, Geopolymer, and Limestone Calcined Clay Cement (LC3) composite systems: A-State-of-Art-Review. Constr. Build. Mater. 2023, 398, 132484. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, J.X.; Song, Y.B.; Xu, Y. Alkali-activated fly ash foam concrete with Yellow River silt: Physico-mechanical and structural properties. Constr. Build. Mater. 2023, 373, 130879. [Google Scholar] [CrossRef]
- Beddaa, H.; Ben Fraj, A.; Ducléroir, S. Experimental study on river sediment incorporation in concrete as a full aggregate replacement: Technical feasibility and economic viability. Constr. Build. Mater. 2021, 313, 125425. [Google Scholar] [CrossRef]
- Du, H.J.; Pang, S.D. Value-added utilization of marine clay as cement replacement for sustainable concrete production. J. Clean. Prod. 2018, 198, 867–873. [Google Scholar] [CrossRef]
- Fort, J.; Afolayan, A.; Mildner, M.; Hotek, P.; Keppert, M.; Cerny, R.; Huang, B.T. Assessment of Clayey Freshwater Sediments as Suitable Precursors for Alkaline Activation. Polymers 2024, 16, 175. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, B.A.; Barbu, A.M.; Lazarescu, A.V.; Rada, S.; Gabor, T.; Florean, C. The Influence of Substitution of Fly Ash with Marble Dust or Blast Furnace Slag on the Properties of the Alkali-Activated Geopolymer Paste. Coatings 2023, 13, 403. [Google Scholar] [CrossRef]
- Jiang, S.; Xu, J.X.; Song, Y.B.; Gong, W.J.; Wang, L.M.; Yu, Z.H.; Wang, G.L. Effect of calcination pretreatment on mechanical properties of alkali-activated artificial stone incorporating Yellow River silt. J. Clean. Prod. 2022, 364, 132682. [Google Scholar] [CrossRef]
- Zibret, L.; Wisniewski, W.; Horvat, B.; Bozic, M.; Gregorc, B.; Ducman, V. Clay rich river sediments calcined into precursors for alkali activated materials. Appl. Clay Sci. 2023, 234, 106848. [Google Scholar] [CrossRef]
- Komnitsas, K. Co-valorization of marine sediments and construction & demolition wastes through alkali activation. J. Environ. Chem. Eng. 2016, 4, 4661–4669. [Google Scholar] [CrossRef]
- Özkiliç, Y.; Çelik, A.; Tunç, U.; Karalar, M.; Deifalla, A.; Alomayri, T.; Althoey, F. The use of crushed recycled glass for alkali activated fly ash based geopolymer concrete and prediction of its capacity. J. Mater. Res. Technol. 2023, 24, 8267–8281. [Google Scholar] [CrossRef]
- Crocetti, P.; Gonzalez-Camejo, J.; Li, K.; Foglia, A.; Eusebi, A.L.; Fatone, F. An overview of operations and processes for circular management of dredged sediments. Waste Manag. 2022, 146, 20–35. [Google Scholar] [CrossRef]
- Kubeneck, L.J.; Lenstra, W.K.; Malkin, S.Y.; Conley, D.J.; Slomp, C.P. Phosphorus burial in vivianite-type minerals in methane-rich coastal sediments. Mar. Chem. 2021, 231, 103948. [Google Scholar] [CrossRef]
- Shen, R.C.; Huang, X.Y.; Wen, X.T.; Liu, J.; Song, H.C.; Weihrauch, C.; Rinklebe, J.; Yang, H.; Yuan, Z.F.; Zheng, B.F.; et al. The determining factors of sediment nutrient content and stoichiometry along profile depth in seasonal water. Sci. Total Environ. 2023, 856, 158972. [Google Scholar] [CrossRef] [PubMed]
- Moreno, N.; Querol, X.; Andrés, J.M.; Stanton, K.; Towler, M.; Nugteren, H.; Janssen-Jurkovicová, M.; Jones, R. Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 2005, 84, 1351–1363. [Google Scholar] [CrossRef]
- Beddaa, H.; Tchiotsop, J.; Ben Fraj, A.; Somé, C. Reuse of river sediments in pervious concrete: Towards an adaptation of concrete to the circular economy and climate change challenges. Constr. Build. Mater. 2023, 368, 130443. [Google Scholar] [CrossRef]
- Alvarado, C.; Martínez-Cerna, D.; Alvarado-Quintana, H. Geopolymer Made from Kaolin, Diatomite, and Rice Husk Ash for Ceiling Thermal Insulation. Buildings 2024, 14, 112. [Google Scholar] [CrossRef]
- Khalifa, A.Z.; Cizer, O.; Pontikes, Y.; Heath, A.; Patureau, P.; Bernal, S.A.; Marsh, A.T.M. Advances in alkali-activation of clay minerals. Cem. Concr. Res. 2020, 132, 106050. [Google Scholar] [CrossRef]
- CSN EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. Czech Standardization Institute: Prague, Czech Republic, 2011.
- EN 12390-2; Testing Hardened Concrete—Part 2: Making and Curing Specimens for Strength Tests. Czech Standardization Institute: Prague, Czech Republic, 2002.
- EN 12390-5; Testing of Hardened Concrete—Part 5: Flexural Strength. Czech Standardization Institute: Prague, Czech Republic, 2007.
- EN 12390e3; Testing of Hardened Concrete—Part 3: Compressive Strength. Czech Standardization Institute: Prague, Czech Republic, 2002.
- Yang, L.; Gao, D.Y.; Zhang, Y.S.; Tang, J.Y.; Li, Y. Relationship between sorptivity and capillary coefficient for water absorption of cement-based materials: Theory analysis and experiment. R. Soc. Open Sci. 2019, 6, 190112. [Google Scholar] [CrossRef] [PubMed]
- Leong, H.Y.; Ong, D.E.L.; Sanjayan, J.G.; Nazari, A. Suitability of Sarawak and Gladstone fly ash to produce geopolymers: A physical, chemical, mechanical, mineralogical and microstructural analysis. Ceram. Int. 2016, 42, 9613–9620. [Google Scholar] [CrossRef]
- Trejo, D.; Prasittisopin, L. Chemical Transformation of Rice Husk Ash Morphology. Aci. Mater. J. 2015, 112, 385–392. [Google Scholar] [CrossRef]
- Mostefa, F.; Bouhamou, N.E.; Mesbah, H.A.; Aggoune, S.; Mekhatria, D. Sedimentary Clays as Geopolymer Precursor. Int. J. Eng. Res. Afr. 2018, 39, 97–111. [Google Scholar] [CrossRef]
- Prasittisopin, L.; Sereewatthanawut, I. Effects of seeding nucleation agent on geopolymerization process of fly-ash geopolymer. Front. Struct. Civ. Eng. 2018, 12, 16–25. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, C.; Zhu, H.; Wu, Q. Reaction kinetics and mechanical properties of a mineral-micropowder/ metakaolin-based geopolymer. Ceram. Int. 2022, 48, 14173–14181. [Google Scholar] [CrossRef]
- Shi, Z.G.; Shi, C.J.; Wan, S.; Li, N.; Zhang, Z.H. Effect of of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cem. Concr. Res. 2018, 113, 55–64. [Google Scholar] [CrossRef]
- Hu, Z.L.; Wyrzykowski, M.; Lura, P. Estimation of reaction kinetics of geopolymers at early ages. Cem. Concr. Res. 2020, 129, 105971. [Google Scholar] [CrossRef]
- Çelik, A.; Tunç, U.; Kayabasi, R.; Acar, M.; Sener, A.; Özkiliç, Y. Influence of aluminum waste, hydrogen peroxide, and silica fume ratios on the mechanical and thermal characteristics of alkali-activated sustainable raw perlite based geopolymer paste. Sustain. Chem. Pharm. 2024, 41, 101727. [Google Scholar] [CrossRef]
- Liang, G.W.; Yao, W.; She, A.M. New insights into the early-age reaction kinetics of metakaolin geopolymer by 1H low-field NMR and isothermal calorimetry. Cem. Concr. Compos. 2023, 137, 104932. [Google Scholar] [CrossRef]
- Kaze, C.; Alomayri, T.; Hasan, A.; Tome, S.; Lecomte-Nana, G.; Nemaleu, J.; Tchakoute, H.; Kamseu, E.; Melo, U.; Rahier, H. Reaction kinetics and rheological behaviour of meta-halloysite based geopolymer cured at room temperature: Effect of thermal activation on physicochemical and microstructural properties. Appl. Clay Sci. 2020, 196, 105773. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, M.; Yang, K.; Yu, L.; Yang, C. Setting behaviours and early-age microstructures of alkali-activated ground granulated blast furnace slag (GGBS) from different regions in China. Cem. Concr. Compos. 2020, 114, 103782. [Google Scholar] [CrossRef]
- Stefanini, L.; Ansari, D.; Walkley, B.; Provis, J. Characterisation of calcined waste clays from kaolinite extraction in alkali-activated GGBFS blends. Mater. Today Commun. 2024, 38, 107777. [Google Scholar] [CrossRef]
- Fořt, J.; Novotny, R.; Vejmelkova, E.; Trnik, A.; Rovnanikova, P.; Keppert, M.; Pommer, V.; Cerny, R. Characterization of geopolymers prepared using powdered brick. J. Mater. Res. Technol. 2019, 8, 6253–6261. [Google Scholar] [CrossRef]
- Hou, L.; Li, J.; Lu, Z. Effect of Na/Al on formation, structures and properties of metakaolin based Na-geopolymer. Constr. Build. Mater. 2019, 226, 250–258. [Google Scholar] [CrossRef]
- Vasic, M.V.; Terzic, A.; Radovanovic, Z.; Radojevic, Z.; Warr, L.N. Alkali-activated geopolymerization of a low illitic raw clay and waste brick mixture. An alternative to traditional ceramics. Appl. Clay Sci. 2022, 218, 106410. [Google Scholar] [CrossRef]
- Lv, Y.; Chen, Y.; Dai, W.; Yang, H.; Jiang, L.; Li, K.; Jin, W. Preparation and Properties of Porous Concrete Based on Geopolymer of Red Mud and Yellow River Sediment. Materials 2024, 17, 923. [Google Scholar] [CrossRef]
- Gharzouni, A.; Ouamara, L.; Sobrados, I.; Rossignol, S. Alkali-activated materials from different aluminosilicate sources: Effect of aluminum and calcium availability. J. Non-Cryst. Solids 2018, 484, 14–25. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yehualaw, M.D.; Vo, D.H.; Huyn, T.P. Development of high-strength alkali-activated pastes containing high volumes of waste brick and ceramic powders. Constr. Build. Mater. 2019, 218, 519–529. [Google Scholar] [CrossRef]
- González-García, D.M.; Téllez-Jurado, L.; Jiménez-Alvarez, F.J.; Zarazua-Villalobos, L.; Balmori-Ramírez, H. Evolution of a natural pozzolan-based geopolymer alkalized in the presence of sodium or potassium silicate/hydroxide solution. Constr. Build. Mater. 2022, 321, 126305. [Google Scholar] [CrossRef]
- Messina, F.; Ferone, C.; Molino, A.; Roviello, G.; Colangelo, F.; Molino, B.; Cioffi, R. Synergistic recycling of calcined clayey sediments and water potabilization sludge as geopolymer precursors: Upscaling from binders to precast paving cement-free bricks. Constr. Build. Mater. 2017, 133, 14–26. [Google Scholar] [CrossRef]
- Alloul, A.; Amar, M.; Benzerzour, M.; Abriak, N.E. Geopolymer mortar with flash-calcined sediments cured under ambient conditions. Constr. Build. Mater. 2023, 391, 131809. [Google Scholar] [CrossRef]
- Belayali, F.; Maherzi, W.; Benzerzour, M.; Abriak, N.E.; Senouci, A. Compressed Earth Blocks Using Sediments and Alkali-Activated Byproducts. Sustainability 2022, 14, 3158. [Google Scholar] [CrossRef]
- Castillo, H.; Collado, H.; Droguett, T.; Sanchez, S.; Vesely, M.; Garrido, P.; Palma, S. Factors Affecting the Compressive Strength of Geopolymers: A Review. Minerals 2021, 11, 11317. [Google Scholar] [CrossRef]
- Zhou, A.; Li, K.X.; Liu, T.J.; Zou, D.J.; Peng, X.; Lyu, H.X.; Xiao, J.D.; Luan, C.C. Recycling and optimum utilization of engineering sediment waste into low-carbon geopolymer paste for sustainable infrastructure. J. Clean. Prod. 2023, 383, 135549. [Google Scholar] [CrossRef]
- Pachideh, G.; Gholhaki, M.; Ketabdari, H. Effect of pozzolanic wastes on mechanical properties, durability and microstructure of the cementitious mortars. J. Build. Eng. 2020, 29, 101178. [Google Scholar] [CrossRef]
- Fort, J.; Vejmelkova, E.; Keppert, M.; Rovnanikova, P.; Bezdicka, P.; Cerny, R. Alkaline activation of low-reactivity ceramics: Peculiarities induced by the precursors’ dual character. Cem. Concr. Compos. 2020, 105, 103440. [Google Scholar] [CrossRef]
- Rao, S.M.; Acharya, I.P. Mercury Intrusion Porosimetry Studies with Geopolymers. Indian Geotech. J. 2017, 47, 495–502. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020, 251, 27. [Google Scholar] [CrossRef]
- Chen, S.; Ruan, S.; Zeng, Q.; Liu, Y.; Zhang, M.; Tian, Y.; Yan, D. Pore structure of geopolymer materials and its correlations to engineering properties: A review. Constr. Build. Mater. 2022, 328, 127064. [Google Scholar] [CrossRef]
- Zouch, A.; Mamindy-Pajany, Y.; Bouchikhi, A.; Abriak, N.; Ksibi, M. Valorization of marine sediments in geopolymer mortars: Physico-mechanical, microstructural and environmental investigations at laboratory scale. J. Mater. Cycles Waste Manag. 2022, 24, 1109–1123. [Google Scholar] [CrossRef]
- Lirer, S.; Liguori, B.; Capasso, I.; Flora, A.; Caputo, D. Mechanical and chemical properties of composite materials made of dredged sediments in a fly-ash based geopolymer. J. Environ. Manag. 2017, 191, 1–7. [Google Scholar] [CrossRef]
- Grubesa, I.N.; Barisic, I.; Ducman, V.; Korat, L. Draining capability of single-sized pervious concrete. Constr. Build. Mater. 2018, 169, 252–260. [Google Scholar] [CrossRef]
- Wu, F.; Yu, Q.L.; Liu, C.W.; Brouwers, H.J.H.; Wang, L.F. Effect of surface treatment of apricot shell on the performance of lightweight bio-concrete. Constr. Build. Mater. 2019, 229, 116859. [Google Scholar] [CrossRef]
- Fort, J.; Afolayan, A.; Medved, I.; Scheinherrová, L.; Cerny, R. A review of the role of lightweight aggregates in the development of mechanical strength of concrete. J. Build. Eng. 2024, 89, 109312. [Google Scholar] [CrossRef]
- Liu, J.X.; Wang, Y.Z. Performance degradation mechanism of adobe materials under freeze-thaw cycles based on moisture transportation characteristics and microstructural analysis. Constr. Build. Mater. 2024, 411, 134464. [Google Scholar] [CrossRef]
- Zhu, Z.; Huo, W.; Sun, H.; Ma, B.; Yang, L. Correlations between unconfined compressive strength, sorptivity and pore structures for geopolymer based on SEM and MIP measurements. J. Build. Eng. 2023, 67, 106011. [Google Scholar] [CrossRef]
- Hall, M.; Djerbib, Y. Moisture ingress in rammed earth: Part 3—Sorptivity, surface receptiveness and surface inflow velocity. Constr. Build. Mater. 2006, 20, 384–395. [Google Scholar] [CrossRef]
- Ismail, I.; Bernal, S.; Provis, J.; Nicolas, R.; Brice, D.; Kilcullen, A.; Hamdan, S.; van Deventer, J. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr. Build. Mater. 2013, 48, 1187–1201. [Google Scholar] [CrossRef]
Clay Minerals | Quartz | Feldspars | Hornblende | Hillebrandite | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Kaolinite | Chlorite | Illite | Albite | Plagioclase | Microcline | Anorthite | ||||
S1 | ++ | ++ | ++ | +++ | + | 0 | + | + | + | + |
S2 | ++ | ++ | +++ | +++ | 0 | + | + | 0 | + | 0 |
S3 | + | + | ++ | +++ | 0 | + | 0 | 0 | + | 0 |
S4 | ++ | + | ++ | +++ | + | + | ++ | + | 0 | + |
S5 | ++ | 0 | ++ | +++ | ++ | 0 | + | 0 | + | 0 |
S6 | ++ | 0 | ++ | +++ | + | 0 | 0 | 0 | + | 0 |
S7 | + | ++ | +++ | +++ | 0 | + | 0 | 0 | 0 | + |
S8 | +++ | 0 | ++ | +++ | + | + | 0 | 0 | + | 0 |
Mortar Description | Sediments (kg) | Aggregates (kg) | K-Water Glass (kg) | Water (kg) |
---|---|---|---|---|
S1-M | 1.6 | 3.066 | 0.57 | 0.4 |
S4-M | 1.6 | 3.066 | 0.57 | 0.4 |
S7-M | 1.6 | 3.066 | 0.57 | 0.4 |
Samples (S) | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 |
---|---|---|---|---|---|---|---|---|
PSD (d50) µm | 17.33 | 50.78 | 48.65 | 35.24 | 32.01 | 30.19 | 7.198 | 16.93 |
Initial Setting (min) | Final Setting (min) | |
---|---|---|
S1 | 230 | 380 |
S2 | 280 | 1040 |
S3 | 200 | 370 |
S4 | 160 | 230 |
S5 | 180 | 290 |
S6 | 180 | 300 |
S7 | 140 | 220 |
S8 | 220 | 360 |
S1-P | S3-P | S4-P | S5-P | S6-P | S7-P | S8-P | |
---|---|---|---|---|---|---|---|
Bulk density (kg/m3) | 1830 | 1860 | 1640 | 1880 | 1890 | 1700 | 1560 |
Matrix density (kg/m3) | 2480 | 2470 | 2490 | 2490 | 2490 | 2560 | 2520 |
Total open porosity (-) | 0.26 | 0.24 | 0.34 | 0.24 | 0.24 | 0.33 | 0.38 |
Sample | Bulk Density (kg/m3) | Matrix Density (kg/m3) | Total Open Porosity (-) |
---|---|---|---|
S1-M | 2015 | 2628 | 0.23 |
S4-M | 2056 | 2581 | 0.20 |
S7-M | 2045 | 2614 | 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afolayan, A.; Mildner, M.; Hotěk, P.; Keppert, M.; Černý, R.; Fořt, J. Characterization of Mineralogical and Mechanical Parameters of Alkali-Activated Materials Based on Water Sediments Activated by Potassium Silicate. Buildings 2024, 14, 3077. https://doi.org/10.3390/buildings14103077
Afolayan A, Mildner M, Hotěk P, Keppert M, Černý R, Fořt J. Characterization of Mineralogical and Mechanical Parameters of Alkali-Activated Materials Based on Water Sediments Activated by Potassium Silicate. Buildings. 2024; 14(10):3077. https://doi.org/10.3390/buildings14103077
Chicago/Turabian StyleAfolayan, Ayodele, Martin Mildner, Petr Hotěk, Martin Keppert, Robert Černý, and Jan Fořt. 2024. "Characterization of Mineralogical and Mechanical Parameters of Alkali-Activated Materials Based on Water Sediments Activated by Potassium Silicate" Buildings 14, no. 10: 3077. https://doi.org/10.3390/buildings14103077
APA StyleAfolayan, A., Mildner, M., Hotěk, P., Keppert, M., Černý, R., & Fořt, J. (2024). Characterization of Mineralogical and Mechanical Parameters of Alkali-Activated Materials Based on Water Sediments Activated by Potassium Silicate. Buildings, 14(10), 3077. https://doi.org/10.3390/buildings14103077