A Bibliometric Analysis and Review on Applications of Industrial By-Products in Asphalt Mixtures for Sustainable Road Construction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Approach of Study
2.2. Source of Data
2.3. Eligibility Criteria
2.4. Data Analysis
3. Results
3.1. Bibliometric Analysis
Annual Publications
3.2. Top Contributing Authors
Top Contributing Countries
3.3. Citation-Based Review on the Applications of Industrial By-Products in Asphalt Mixtures
3.3.1. Steel Slag Aggregates
3.3.2. Copper Slag
3.3.3. Phosphorus Slag
3.3.4. Bottom Ash
3.3.5. Fly Ash
3.3.6. Red Mud
3.3.7. Silica Fume
3.3.8. Foundry Sand
Size | Specific Gravity | Absorption (%) (<2) | Los Angeles Abrasion (%) (<25) | Sodium Sulfate Soundness Loss (%) | Angle of Internal Friction (°) | Hardness |
---|---|---|---|---|---|---|
Steel slag aggregates [28,30,96] | ||||||
15–0.075 mm | 3.2–3.6 | 3 | 20–25 | <12 | 40–50 | 6–7 |
Properties of copper slag [48,97] | ||||||
4.75–0.077 mm | 2.8–3.8 | 0.13–0.2 | 24.10 | 0.9 | 40–53 | 6–7 |
Phosphorus slag [96,98] | ||||||
4.75–0.075 mm | 1.36–1.44 | 1–1.5 | <30 | <1 | - | - |
Bottom ash [96] | ||||||
4.75–0.075 mm | 2.1–2.7 | 0.8–2 | 30–50 | 1.5–10 | - | - |
Fly ash [96] | ||||||
<0.075 mm | 2.1–3 | 5 | - | - | - | - |
Red mud [98] | ||||||
0.7–100 μm | 2.7–3.26 | - | - | - | - | - |
Silica fume [99] | ||||||
0.15 μm | 2.2 | - | - | - | - | - |
Foundry sand [96] | ||||||
<0.075 mm | 2.39–2.55 | 0.45 | <2 | 5–15 | 33–40 | - |
3.4. Discussions
4. Research Gaps and Recommendations
- The influence of long-term aging on the characteristics of asphalt mixes incorporating industrial by-products should be evaluated.
- Industrial by-products should be introduced into different types of asphalt mixes, such as warm-mix asphalt, cold-mix asphalt, stone mastic asphalt, and porous asphalt mixes, to provide a better assessment of the behavior of asphalt mixes incorporating industrial by-products.
- The use of bottom ash in asphalt mixes composed of steel slag aggregates and copper slag should be evaluated as a means of reducing the high density of asphalt mixtures incorporating steel slag.
- Based on previous studies, adding phosphorus slag improves the moisture sensitivity of an asphalt mix [49,50,51,52], while modifying the asphalt mix with red mud negatively affects its moisture resistance [79]. Thus, the impact of adding phosphorus slag to asphalt mixes that already contain red mud should be investigated to understand the benefits in terms of moisture resistance.
- It is documented that modifying asphalt mixes with red mud or silica fume enhances aging resistance [79,84,85,86,87,88], whereas the use of steel slag aggregates in asphalt mixes increases sensitivity to aging [39]. Therefore, the incorporation of steel slag aggregates and red mud in asphalt mixes should be studied.
- The use of silica fume and foundry sand as fillers should be evaluated in terms of their impact on the performance of asphalt mixes.
- According to previous studies, adding silica fume and phosphorus slag improves the resistance of asphalt mixes to moisture damage. Therefore, introducing silica fume or phosphorus slag into asphalt mixes containing red mud or fly ash should be investigated as a means to mitigate the negative impact of these materials on moisture resistance.
- It is documented that replacing natural aggregates in asphalt mixes with coarse steel slag aggregates enhances the mechanical properties of the asphalt mix [37,38,39]. Hence, the addition of steel slag aggregates to asphalt mixes incorporating different types of industrial by-products should be investigated.
- The effect of chemical reactions involving industrial by-products on the long-term performance of asphalt layers should be evaluated.
- The low-temperature performance of asphalt mixes incorporating industrial by-products should be emphasized.
- The use of coal gangue as a replacement for coarse aggregates, fine aggregates, and filler in asphalt mixtures is recommended due to its potential to enhance the performance of the asphalt mix, particularly in terms of rutting resistance and cracking resistance.
5. Conclusions
- Steel slag aggregates and fly ash were the most used industrial by-products in the last ten years.
- Based on the trend of annual publications, the industrial by-products of bottom ash, phosphorus slag, copper slag, red mud, silica fume, and foundry sand need more efforts to increase their usage in asphalt applications.
- The use of coarse steel slag aggregates, phosphorus slag, and copper slag notably enhanced the performance of the asphalt mixtures.
- Replacing the natural fine aggregates with certain content of bottom ash produces asphalt mixtures with satisfactory performance.
- Modifying asphalt mixtures with red mud offers positive effects on the characteristics of asphalt mixes, except for moisture resistance.
- The use of silica fume as a modifier for the base binder produces modified bitumen with superior performance.
- Substituting the fine natural aggregates with foundry sand may produce asphalt mixes with satisfactory performance.
- The use of industrial by-products in asphalt mixtures can enhance durability and sustainability, promoting their use in road construction.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brown, E.R.; Kandhal, P.S.; Roberts, F.L.; Kim, Y.R.; Lee, D.Y.; Kennedy, T.W. Hot Mix Asphalt Materials, Mixture Design and Construction; NAPA Research and Education Foundation: Greenbelt, MD, USA, 1991. [Google Scholar]
- Ogbo, C.; Kaseer, F.; Oshone, M.; Sias, J.E.; Martin, A.E. Mixture-based rheological evaluation tool for cracking in asphalt pavements. Road Mater. Pavement Des. 2019, 20 (Suppl. S1), S299–S314. [Google Scholar] [CrossRef]
- Miljković, M.; Radenberg, M. Thin noise-reducing asphalt pavements for urban areas in Germany. Int. J. Pavement Eng. 2012, 13, 569–578. [Google Scholar] [CrossRef]
- Kowalski, K.J.; McDaniel, R.S.; Shah, A.; Olek, J. Long-term monitoring of noise and frictional properties of three pavements: Dense-graded asphalt, stone matrix asphalt, and porous friction course. Transp. Res. Rec. 2009, 2127, 12–19. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Characteristics of warm mix asphalt incorporating coarse steel slag aggregates. Appl. Sci. 2021, 11, 3708. [Google Scholar] [CrossRef]
- Akhtar, A.; Sarmah, A.K. Construction and demolition waste generation and properties of recycled aggregate concrete: A global perspective. J. Clean. Prod. 2018, 186, 262–281. [Google Scholar] [CrossRef]
- Behera, M.; Bhattacharyya, S.K.; Minocha, A.K.; Deoliya, R.; Maiti, S. Recycled aggregate from C&D waste & its use in concrete–A breakthrough towards sustainability in construction sector: A review. Constr. Build. Mater. 2014, 68, 501–516. [Google Scholar]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Influence of the long-term oven aging on the performance of the reinforced asphalt mixtures. Coatings 2020, 10, 953. [Google Scholar] [CrossRef]
- Baikerikar, A. A review on green concrete. J. Emerg. Technol. Innov. Res. 2014, 1, 472–474. [Google Scholar]
- Vila-Cortavitarte, M.; Jato-Espino, D.; Tabakovic, A.; Castro-Fresno, D. Optimizing the valorization of industrial by-products for the induction healing of asphalt mixtures. Constr. Build. Mater. 2019, 228, 116715. [Google Scholar] [CrossRef]
- Vignesh, K.S.; Rajadesingu, S.; Arunachalam, K.D. Challenges, issues, and problems with zero-waste tools. In Concepts of Advanced Zero Waste Tools; Elsevier: Amsterdam, The Netherlands, 2021; pp. 69–90. [Google Scholar]
- Valentin, J.; Trejbal, J.; Nežerka, V.; Valentová, T.; Faltus, M. Characterization of quarry dusts and industrial by-products as potential substitutes for traditional fillers and their impact on water susceptibility of asphalt concrete. Constr. Build. Mater. 2021, 301, 124294. [Google Scholar] [CrossRef]
- Huang, Y.; Bird, R.N.; Heidrich, O. A review of the use of recycled solid waste materials in asphalt pavements. Resour. Conserv. Recycl. 2007, 52, 58–73. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Laboratory evaluation of fiber-modified asphalt mixtures incorporating steel slag aggregates. CMC-Comput. Mater. Contin. 2022, 70, 5967–5990. [Google Scholar]
- Alnadish, A.; Aman, Y. Mechanistic approach for reducing the thickness of asphalt layer incorporating steel slag aggregate. Civil Eng. J. 2018, 4, 334–345. [Google Scholar] [CrossRef]
- Kamon, M.; Katsumi, T. Civil engineering use of industrial waste in Japan. In Developments in Geotechnical Engineering; CRC Press: Boca Raton, FL, USA, 2021; pp. 265–278. [Google Scholar]
- Junak, J.; Stevulova, N. Potential of selected industrial wastes in civil engineering applications. In Proceedings of the International Multidisciplinary Scientific Geoconference, Albena, Bulgaria, 20–25 June 2011; Volume 567. [Google Scholar]
- Alnadish, A.M.; Aman, M.Y.; Katman, H.Y.B.; Ibrahim, M.R. Laboratory assessment of the performance and elastic behavior of asphalt mixtures containing steel slag aggregate and synthetic fibers. Int. J. Pavement Res. Technol. 2020, 14, 473–481. [Google Scholar] [CrossRef]
- Baarimah, A.O.; Bazel, M.A.; Alaloul, W.S.; Alazaiza, M.Y.; Al-Zghoul, T.M.; Almuhaya, B.; Mushtaha, A.W. Artificial intelligence in wastewater treatment: Research trends and future perspectives through bibliometric analysis. Case Stud. Chem. Eng. 2024, 10, 100926. [Google Scholar] [CrossRef]
- Yousafzai, A.K.; Sutanto, M.H.; Khan, M.I.; Yaro, N.S.A.; Baarimah, A.O.; Khan, N.; Sani, A. Systematic Literature Review and Scientometric Analysis on the Advancements in Electrically Conductive Asphalt Technology for Smart and Sustainable Pavements. Transp. Res. Rec. 2024, 03611981241260703. [Google Scholar] [CrossRef]
- Alawag, A.M.; Alaloul, W.S.; Al-dhawi, B.N.S.; Baarimah, A.O.; Bazel, M.A.; Mushtaha, A.W. A Review and Bibliometric Analysis of Blockchain Adoption Within the Context of Smart Construction Projects. In Proceedings of the 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS), Manama, Bahrain, 28–29 January 2024; IEEE: New York, NY, USA, 2024; pp. 805–811. [Google Scholar]
- Alnadish, A.M.; Katman, H.Y.B.; Ibrahim, M.R.; Gamil, Y.; Mashaan, N.S. A bibliometric analysis and review on the performance of polymer-modified bitumen. Front. Mater. 2023, 10, 1225830. [Google Scholar] [CrossRef]
- Baarimah, A.O.; Gartoumi, K.I.; Alaloul, W.S.; Liew, M.S.; Alawag, A.M.; Bahamid, R.A. Applications of Heritage Building Information Modeling (HBIM): A Bibliometric Review and Future Trends. In Proceedings of the 2023 International Conference on Sustaining Heritage: Innovative and Digital Approaches (ICSH), Sakhir, Bahrain, 18–19 June 2023; IEEE: New York, NY, USA, 2023; pp. 104–111. [Google Scholar]
- Singh, V.K.; Singh, P.; Karmakar, M.; Leta, J.; Mayr, P. The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics 2021, 126, 5113–5142. [Google Scholar] [CrossRef]
- Alnadish, A.M.; Singh, N.S.S.; Alawag, A.M. Applications of Synthetic, Natural, and Waste Fibers in Asphalt Mixtures: A Citation-Based Review. Polymers 2023, 15, 1004. [Google Scholar] [CrossRef]
- Bazel, M.A.; Baarimah, A.O.; Mohammed, F.; Alaloul, W.S.; Alawag, A.M.; Alzubi, K.M. Blockchain Technology in Construction Industry: Current State and Future Trends through Bibliometric Analysis. In Proceedings of the 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI), Zallaq, Bahrain, 25–26 October 2023; IEEE: New York, NY, USA, 2023; pp. 114–123. [Google Scholar]
- Available online: https://kib.ki.se/en/publish-analyse/bibliometrics-verification/recommendations-concerning-use-bibliometric-indicators (accessed on 10 October 2024).
- Ameri, M.; Behnood, A. Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates. Constr. Build. Mater. 2012, 26, 475–480. [Google Scholar] [CrossRef]
- Naidu, T.S.; Sheridan, C.M.; van Dyk, L.D. Basic oxygen furnace slag: Review of current and potential uses. Miner. Eng. 2020, 149, 106234. [Google Scholar] [CrossRef]
- Pasetto, M.; Baliello, A.; Giacomello, G.; Pasquini, E. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags. J. Clean. Prod. 2017, 166, 835–843. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Performance comparative analysis of stone mastic asphalts with electric arc furnace steel slag: A laboratory evaluation. Mater. Struct. 2012, 45, 411–424. [Google Scholar] [CrossRef]
- Gao, J.; Sha, A.; Wang, Z.; Tong, Z.; Liu, Z. Utilization of steel slag as aggregate in asphalt mixtures for microwave deicing. J. Clean. Prod. 2017, 152, 429–442. [Google Scholar] [CrossRef]
- Sun, Y.H.; Liu, Q.T.; Wu, S.P.; Shang, F. Microwave heating of steel slag asphalt mixture. In Key Engineering Materials; Trans Tech Publications Ltd.: Bäch, Switzerland, 2014; Volume 599, pp. 193–197. [Google Scholar]
- Shen, A.; Zhai, C.; Guo, Y.; Yang, X. Mechanism of adhesion property between steel slag aggregate and rubber asphalt. J. Adhes. Sci. Technol. 2018, 32, 2727–2740. [Google Scholar] [CrossRef]
- Liu, W.; Li, H.; Zhu, H.; Xu, P. Properties of a steel slag–permeable asphalt mixture and the reaction of the steel slag–asphalt interface. Materials 2019, 12, 3603. [Google Scholar] [CrossRef]
- Shafabakhsh, G.H.; Ani, O.J. Experimental investigation of effect of Nano TiO2/SiO2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Constr. Build. Mater. 2015, 98, 692–702. [Google Scholar] [CrossRef]
- Fakhri, M.; Ahmadi, A. Evaluation of fracture resistance of asphalt mixes involving steel slag and RAP: Susceptibility to aging level and freeze and thaw cycles. Constr. Build. Mater. 2017, 157, 748–756. [Google Scholar] [CrossRef]
- Phan, T.M.; Park, D.W.; Le, T.H.M. Crack healing performance of hot mix asphalt containing steel slag by microwaves heating. Constr. Build. Mater. 2018, 180, 503–511. [Google Scholar] [CrossRef]
- Masoudi, S.; Abtahi, S.M.; Goli, A. Evaluation of electric arc furnace steel slag coarse aggregate in warm mix asphalt subjected to long-term aging. Constr. Build. Mater. 2017, 135, 260–266. [Google Scholar] [CrossRef]
- Behnood, A.; Gharehveran, M.M.; Asl, F.G.; Ameri, M. Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash. Constr. Build. Mater. 2015, 96, 172–180. [Google Scholar] [CrossRef]
- Phiri, T.C.; Singh, P.; Nikoloski, A.N. The potential for copper slag waste as a resource for a circular economy: A review–Part II. Miner. Eng. 2021, 172, 107150. [Google Scholar] [CrossRef]
- Raposeiras, A.C.; Movilla-Quesada, D.; Muñoz-Cáceres, O.; Andrés-Valeri, V.C.; Lagos-Varas, M. Production of asphalt mixes with copper industry wastes: Use of copper slag as raw material replacement. J. Environ. Manag. 2021, 293, 112867. [Google Scholar] [CrossRef] [PubMed]
- Ziari, H.; Moniri, A.; Imaninasab, R.; Nakhaei, M. Effect of copper slag on performance of warm mix asphalt. Int. J. Pavement Eng. 2019, 20, 775–781. [Google Scholar] [CrossRef]
- Muñoz-Cáceres, O.; Raposeiras, A.C.; Movilla-Quesada, D.; Castro-Fresno, D.; Lagos-Varas, M.; Andrés-Valeri, V.C.; Valdés-Vidal, G. Mechanical performance of sustainable asphalt mixtures manufactured with copper slag and high percentages of reclaimed asphalt pavement. Constr. Build. Mater. 2021, 304, 124653. [Google Scholar] [CrossRef]
- Mohi Ud Din, I.; Mir, M.S. Effect of copper slag and reclaimed asphalt pavement on the skid resistance of asphalt mixes. Int. J. Pavement Eng. 2021, 23, 3983–3996. [Google Scholar] [CrossRef]
- Modarres, A.; Alinia Bengar, P. Investigating the indirect tensile stiffness, toughness and fatigue life of hot mix asphalt containing copper slag powder. Int. J. Pavement Eng. 2019, 20, 977–985. [Google Scholar] [CrossRef]
- Oluwasola, E.A.; Hainin, M.R.; Aziz, M.M.A. Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction. Transp. Geotech. 2015, 2, 47–55. [Google Scholar] [CrossRef]
- Oluwasola, E.A.; Hainin, M.R. Evaluation of performance characteristics of stone mastic asphalt incorporating industrial waste. J. Mater. Civ. Eng. 2016, 28, 06016016. [Google Scholar] [CrossRef]
- Sheng, Y.; Zhang, B.; Yan, Y.; Chen, H.; Xiong, R.; Geng, J. Effects of phosphorus slag powder and polyester fiber on performance characteristics of asphalt binders and resultant mixtures. Constr. Build. Mater. 2017, 141, 289–295. [Google Scholar] [CrossRef]
- Abbas, S.; Arshad, U.; Abbass, W.; Nehdi, M.L.; Ahmed, A. Recycling untreated coal bottom ash with added value for mitigating alkali–silica reaction in concrete: A sustainable approach. Sustainability 2020, 12, 10631. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, X.; Qian, G.; Gong, X.; Nie, X. Evaluation of phosphorus slag (PS) content and particle size on the performance modification effect of asphalt. Constr. Build. Mater. 2020, 256, 119334. [Google Scholar] [CrossRef]
- Qian, G.; Bai, S.; Ju, S.; Huang, T. Laboratory evaluation on recycling waste phosphorus slag as the mineral filler in hot-mix asphalt. J. Mater. Civ. Eng. 2013, 25, 846–850. [Google Scholar] [CrossRef]
- Qian, G.; Yu, H.; Gong, X.; Zheng, W. Effect of phosphorus slag powder on flammability properties of asphalt. J. Mater. Civ. Eng. 2019, 31, 04019280. [Google Scholar] [CrossRef]
- Yu, H.; Li, S.; Qian, G.; Gong, X.; Wang, K. Experiment evaluation on the surface treatment of phosphorus slag (PS) micropowder for asphalt modification. Constr. Build. Mater. 2020, 262, 119931. [Google Scholar] [CrossRef]
- Al-Hdabi, A.; Nageim, H.A.; Ruddock, F.; Seton, L. Laboratory studies to investigate the properties of novel cold-rolled asphalt containing cement and waste bottom ash. Road Mater. Pavement Des. 2014, 15, 78–89. [Google Scholar] [CrossRef]
- Ding, Y.; Xi, Y.; Gao, H.; Wang, J.; Wei, W.; Zhang, R. Porosity of municipal solid waste incinerator bottom ash effects on asphalt mixture performance. J. Clean. Prod. 2022, 369, 133344. [Google Scholar] [CrossRef]
- Jattak, Z.A.; Hassan, N.A.; Satar, M.K.I.M. Moisture susceptibility and environmental impact of warm mix asphalt containing bottom ash. Case Stud. Constr. Mater. 2021, 15, e00636. [Google Scholar] [CrossRef]
- Luo, H.L.; Chen, S.H.; Lin, D.F.; Cai, X.R. Use of incinerator bottom ash in open-graded asphalt concrete. Constr. Build. Mater. 2017, 149, 497–506. [Google Scholar] [CrossRef]
- Yoo, B.S.; Park, D.W.; Vo, H.V. Evaluation of asphalt mixture containing coal ash. Transp. Res. Procedia 2016, 14, 797–803. [Google Scholar] [CrossRef]
- Buritatum, A.; Suddeepong, A.; Horpibulsuk, S.; Akkharawongwhatthana, K.; Yaowarat, T.; Hoy, M.; Arulrajah, A. Improved Performance of Asphalt Concretes using Bottom Ash as an Alternative Aggregate. Sustainability 2022, 14, 7033. [Google Scholar] [CrossRef]
- Colonna, P.; Berloco, N.; Ranieri, V.; Shuler, S.T. Application of bottom ash for pavement binder course. Procedia-Soc. Behav. Sci. 2012, 53, 961–971. [Google Scholar] [CrossRef]
- Pasetto, M.; Baldo, N. Laboratory investigation on foamed bitumen bound mixtures made with steel slag, foundry sand, bottom ash and reclaimed asphalt pavement. Road Mater. Pavement Des. 2012, 13, 691–712. [Google Scholar] [CrossRef]
- Rashad, A.M. A brief on high-volume Class F fly ash as cement replacement—A guide for Civil Engineer. Int. J. Sustain. Built Environ. 2015, 4, 278–306. [Google Scholar] [CrossRef]
- Xie, J.; Kayali, O. Effect of superplasticiser on workability enhancement of Class F and Class C fly ash-based geopolymers. Constr. Build. Mater. 2016, 122, 36–42. [Google Scholar] [CrossRef]
- Dwivedi, A.; Jain, M.K. Fly ash–waste management and overview: A Review. Recent Res. Sci. Technol. 2014, 6, 30–35. [Google Scholar]
- Cheng, Y.; Tao, J.; Jiao, Y.; Tan, G.; Guo, Q.; Wang, S.; Ni, P. Influence of the properties of filler on high and medium temperature performances of asphalt mastic. Constr. Build. Mater. 2016, 118, 268–275. [Google Scholar] [CrossRef]
- Woszuk, A.; Bandura, L.; Franus, W. Fly ash as low cost and environmentally friendly filler and its effect on the properties of mix asphalt. J. Clean. Prod. 2019, 235, 493–502. [Google Scholar] [CrossRef]
- Sobolev, K.; Vivian, I.F.; Saha, R.; Wasiuddin, N.M.; Saltibus, N.E. The effect of fly ash on the rheological properties of bituminous materials. Fuel 2014, 116, 471–477. [Google Scholar] [CrossRef]
- Likitlersuang, S.; Chompoorat, T. Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures. Int. J. Pavement Res. Technol. 2016, 9, 337–344. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I.; Ramírez, A.; Cano, M.M. Moisture damage resistance of hot-mix asphalt made with paper industry wastes as filler. J. Clean. Prod. 2016, 112, 853–862. [Google Scholar] [CrossRef]
- Mistry, R.; Karmakar, S.; Kumar Roy, T. Experimental evaluation of rice husk ash and fly ash as alternative fillers in hot-mix asphalt. Road Mater. Pavement Des. 2019, 20, 979–990. [Google Scholar] [CrossRef]
- Lu, D.; Wang, Y.; Leng, Z.; Zhong, J. Influence of ternary blended cementitious fillers in a cold mix asphalt mixture. J. Clean. Prod. 2021, 318, 128421. [Google Scholar] [CrossRef]
- Khairul, M.A.; Zanganeh, J.; Moghtaderi, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019, 141, 483–498. [Google Scholar] [CrossRef]
- Jovičević-Klug, M.; Souza Filho, I.R.; Springer, H.; Adam, C.; Raabe, D. Green steel from red mud through climate-neutral hydrogen plasma reduction. Nature 2024, 625, 703–709. [Google Scholar] [CrossRef]
- Lima, M.S.; Thives, L.P. Evaluation of red mud as filler in Brazilian dense graded asphalt mixtures. Constr. Build. Mater. 2020, 260, 119894. [Google Scholar] [CrossRef]
- Zhang, H.; Li, H.; Zhang, Y.; Wang, D.; Harvey, J.; Wang, H. Performance enhancement of porous asphalt pavement using red mud as alternative filler. Constr. Build. Mater. 2018, 160, 707–713. [Google Scholar] [CrossRef]
- Choudhary, J.; Kumar, B.; Gupta, A. Performance evaluation of bauxite residue modified asphalt concrete mixes. Eur. J. Environ. Civ. Eng. 2022, 26, 978–994. [Google Scholar] [CrossRef]
- Zhang, J.; Li, P.; Liang, M.; Jiang, H.; Yao, Z.; Zhang, X.; Yu, S. Utilization of red mud as an alternative mineral filler in asphalt mastics to replace natural limestone powder. Constr. Build. Mater. 2020, 237, 117821. [Google Scholar] [CrossRef]
- Chaudhary, M.; Saboo, N.; Gupta, A.; Miljković, M. Influence of red mud filler on the fatigue behaviour of bituminous mastic. In Green and Intelligent Technologies for Sustainable and Smart Asphalt Pavements; CRC Press: Boca Raton, FL, USA, 2021; pp. 561–566. [Google Scholar]
- Ram Kumar, B.A.V.; Ramakrishna, G. Sustainable Use of Red Mud and Reclaimed Asphalt Pavement Wastes in Roller Compacted Concrete. Int. J. Pavement Res. Technol. 2022, 17, 291–305. [Google Scholar] [CrossRef]
- Nassar, A.I.; Mohammed, M.K.; Thom, N.; Parry, T. Mechanical, durability and microstructure properties of Cold Asphalt Emulsion Mixtures with different types of filler. Constr. Build. Mater. 2016, 114, 352–363. [Google Scholar] [CrossRef]
- Türköz, M.; Umu, S.U.; Öztürk, O. Effect of silica fume as a waste material for sustainable environment on the stabilization and dynamic behavior of dispersive soil. Sustainability 2021, 13, 4321. [Google Scholar] [CrossRef]
- Zheng, X.; Xu, W.; Feng, H.; Cao, K. High and low temperature performance and fatigue properties of silica fume/SBS compound modified asphalt. Materials 2020, 13, 4446. [Google Scholar] [CrossRef] [PubMed]
- Abutalib, N.; Fini, E.H.; Aflaki, S.; Abu-Lebdeh, T.M. Investigating effects of application of silica fume to reduce asphalt oxidative aging. Am. J. Eng. Appl. Sci. 2015, 8, 176–184. [Google Scholar] [CrossRef]
- Katkhuda, H.N.; Shatarat, N.K.; Hyari, K.H. Effect of silica fume on mechanical properties of concrete containing recycled asphalt pavement. Struct. Eng. Mech. 2017, 62, 357–364. [Google Scholar] [CrossRef]
- Ezzat, H.; El-Badawy, S.; Gabr, A.; Zaki, E.S.I.; Breakah, T. Evaluation of asphalt binders modified with nanoclay and nanosilica. Procedia Eng. 2016, 143, 1260–1267. [Google Scholar] [CrossRef]
- Al-Taher, M.G.; Hassanin, H.D.; Ibrahim, M.F.; Sawan, A.M. Investigation of the effect of adding silica fume on asphalt concrete properties. Int. J. Eng. Res. 2018, 7, 48–55. [Google Scholar] [CrossRef]
- Fini, E.H.; Hajikarimi, P.; Rahi, M.; Moghadas Nejad, F. Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles. J. Mater. Civ. Eng. 2016, 28, 04015133. [Google Scholar] [CrossRef]
- Kai, C.; Wenyuan, X.; Dan, C.; Huimin, F. High-and low-temperature properties and thermal stability of silica fume/SBS composite-modified asphalt mortar. Adv. Mater. Sci. Eng. 2018, 2018, 1317436. [Google Scholar] [CrossRef]
- Rodríguez-Fernández, I.; Lastra-González, P.; Indacoechea-Vega, I.; Castro-Fresno, D. Recyclability potential of asphalt mixes containing reclaimed asphalt pavement and industrial by-products. Constr. Build. Mater. 2019, 195, 148–155. [Google Scholar] [CrossRef]
- Chesner, W.H.; Collins, R.J.; MacKay, M.H.; Emery, J. User Guidelines for Waste and By-Product Materials in Pavement Construction; FHWA-RD-97-148, Guideline Manual, Rept No. 480017; Recycled Materials Resource Center: Washington, DC, USA, 2002. [Google Scholar]
- Dyer, P.P.; Coppio, G.J.; Silva, S.A.; Cividanes, L.S.; Klinsky, L.M.G.; de Lima, M.G. Mechanical and microstructural assessments of waste foundry sand in hot mix asphalt. Constr. Build. Mater. 2021, 311, 125329. [Google Scholar] [CrossRef]
- Dyer, P.P.O.L.; Gutierrez Klinsky, L.M.; Silva, S.A.; de Lima, M.G. Mechanical and structural assessment of hot mix bituminous mixtures containing waste foundry sand. Int. J. Pavement Eng. 2021, 22, 1801–1812. [Google Scholar] [CrossRef]
- Tyuryukhanov, K.Y.; Pugin, K.G. An Impact of Waste Foundry Sand on Asphalt Concrete Mixture. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 753, p. 022079. [Google Scholar]
- De Souza Campelo, N.; da Costa, K.J.S.; Vieira, R.K.; Vieira, A.K. Use of waste foundry sand (WFS) as filler in Hot-Mixed Asphalt concrete. In Sandy Materials in Civil Engineering-Usage and Management; IntechOpen: London, UK, 2019. [Google Scholar]
- Emery, J.J. Manitoba Slags Deposit, Characterization, Modifications, Potential Utilization; JEGEL Report; Geotechnical Engineering Limited: Toronto, ON, Canada, 1986; p. 367. [Google Scholar]
- Das, B.M.; Tarquin, A.J.; Jones, A.D. Geotechnical Properties of a Copper Slag; Transportation Research Record: Thousand Oaks, CA, USA, 1983. [Google Scholar]
- Wang, P.; Liu, D.Y. Physical and chemical properties of sintering red mud and bayer red mud and the implications for beneficial utilization. Materials 2012, 5, 1800–1810. [Google Scholar] [CrossRef]
- Srivastava, V.; Kumar, R.; Agarwal, V.C.; Mehta, P.K. Effect of silica fume on workability and compressive strength of OPC concrete. J. Environ. Nanotechnol. 2014, 3, 32–35. [Google Scholar]
Industrial By-Products | Minimum Number of Documents for the Analysis between Co-Authorships and Authors | Minimum Number of Documents for the Analysis between Bibliographic Coupling and Countries |
---|---|---|
Steel slag | 14 | 15 |
Copper slag | 5 | 6 |
Phosphorus slag | 3 | 7 |
Bottom ash | 4 | 5 |
Fly ash | 10 | 20 |
Red mud | 6 | 8 |
Silica fume | 4 | 8 |
Foundry sand | 4 | 5 |
Type of By-Product | Author | Documents | Citations | Total Link Strength | Network Visualization |
---|---|---|---|---|---|
Steel slag | Baldo, Nicola | 14 | 401 | 14 | |
Chen, Zongwu | 14 | 436 | 11 | ||
Pasetto, Marco | 20 | 435 | 14 | ||
Shen, Aiqin | 11 | 60 | 0 | ||
Wu, Shaopeng | 38 | 1325 | 23 | ||
Xiao, Yue | 15 | 412 | 11 | ||
Xie, Jun | 14 | 267 | 11 | ||
Copper slag | Hainin, Mohd Rosli | 6 | 129 | 5 | |
Mir, Mohammad Shafi | 5 | 19 | 0 | ||
Oluwasola, Ebenezer | 5 | 127 | 5 | ||
Phosphorus slag | Qian, Guoping | 5 | 119 | 3 | |
Yu, Huanan | 3 | 73 | 3 | ||
Gong, Xiangbing | 3 | 73 | 3 | ||
Bottom ash | Baldo, Nicola | 4 | 58 | 4 | |
Edil, Tuncer B. | 5 | 63 | 4 | ||
Nam, Boo Hyun | 5 | 70 | 0 | ||
Pasetto, Marco | 4 | 58 | 4 | ||
Soleimanbeigi, Ali | 4 | 55 | 4 | ||
Fly ash | Arulrajah, Arul | 11 | 626 | 1 | |
Edil, Tuncer B. | 10 | 205 | 0 | ||
Saride, Sireesh | 13 | 216 | 1 | ||
Red mud | Gupta, Ankit | 6 | 31 | 0 | |
Liang, Ming | 6 | 159 | 6 | ||
Zhang, Jizhe | 6 | 159 | 5 | ||
Yao, Zhanyong | 6 | 159 | 6 | ||
Silica fume | Boffetta, Paolo | 4 | 217 | 4 | |
Burstyn, Igor | 4 | 217 | 4 | ||
Heikkilä, Pirjo | 4 | 217 | 4 | ||
Singh, Surender | 6 | 164 | 0 | ||
Foundry sand | De Lima, Maryangela | 7 | 65 | 7 | |
Dyer, Paulo P.O.L. | 4 | 55 | 4 | ||
Klinsky, Luis Miguel | 4 | 11 | 4 | ||
Silva, Silvelene | 4 | 11 | 4 |
Type of By-Product | Country | Documents | Citations | Total Link Strength | Network Visualization |
---|---|---|---|---|---|
Steel slg | China | 129 | 2697 | 849.26 | |
United States | 26 | 380 | 510.62 | ||
Iran | 30 | 1146 | 313.43 | ||
Italy | 29 | 622 | 363.86 | ||
Malaysia | 15 | 276 | 173.27 | ||
India | 20 | 149 | 371.80 | ||
Copper slag | India | 8 | 25 | 57.72 | |
Iran | 6 | 529 | 46.50 | ||
Spain | 6 | 66 | 52.50 | ||
Phospourus | China | 7 | 142 | 15 | - |
Bottom ash | China | 5 | 103 | 98.63 | |
Italy | 6 | 161 | 29.64 | ||
Malaysia | 7 | 24 | 15.50 | ||
South Korea | 6 | 44 | 137.49 | ||
United Kingdom | 6 | 372 | 81.85 | ||
United States | 31 | 403 | 209.26 | ||
Fly ash | China | 82 | 1259 | 701.45 | |
India | 50 | 581 | 305.86 | ||
Indonesia | 20 | 10 | 28 | ||
United Kingdom | 20 | 356 | 94.12 | ||
United States | 109 | 2044 | 629.56 | ||
Red mud | China | 15 | 305 | 169.37 | |
India | 8 | 40 | 30.66 | ||
United States | 8 | 196 | 149.92 | ||
Silica fume | China | 8 | 34 | 5 | |
Egypt | 8 | 112 | 53 | ||
India | 14 | 238 | 50.42 | ||
Iraq | 8 | 75 | 11 | ||
United States | 14 | 621 | 61.75 | ||
Foundry sand | Brazil | 8 | 66 | 12.10 | |
India | 5 | 627 | 5 | ||
Russia | 5 | 7 | 8.83 | ||
United States | 10 | 407 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnadish, A.M.; Bangalore Ramu, M.; Kasim, N.; Alawag, A.M.; Baarimah, A.O. A Bibliometric Analysis and Review on Applications of Industrial By-Products in Asphalt Mixtures for Sustainable Road Construction. Buildings 2024, 14, 3240. https://doi.org/10.3390/buildings14103240
Alnadish AM, Bangalore Ramu M, Kasim N, Alawag AM, Baarimah AO. A Bibliometric Analysis and Review on Applications of Industrial By-Products in Asphalt Mixtures for Sustainable Road Construction. Buildings. 2024; 14(10):3240. https://doi.org/10.3390/buildings14103240
Chicago/Turabian StyleAlnadish, Adham Mohammed, Madhusudhan Bangalore Ramu, Narimah Kasim, Aawag Mohsen Alawag, and Abdullah O. Baarimah. 2024. "A Bibliometric Analysis and Review on Applications of Industrial By-Products in Asphalt Mixtures for Sustainable Road Construction" Buildings 14, no. 10: 3240. https://doi.org/10.3390/buildings14103240
APA StyleAlnadish, A. M., Bangalore Ramu, M., Kasim, N., Alawag, A. M., & Baarimah, A. O. (2024). A Bibliometric Analysis and Review on Applications of Industrial By-Products in Asphalt Mixtures for Sustainable Road Construction. Buildings, 14(10), 3240. https://doi.org/10.3390/buildings14103240