Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview
Abstract
:1. Introduction
1.1. Supervised Machine Learning
1.2. Unsupervised Machine Learning
- i.
- ,
- ii.
- ,
- iii.
- .
1.3. Reinforcement Machine Learning
1.3.1. Monte Carlo Method
1.3.2. Temporal Difference Learning
1.3.3. Gradient Descent Methods
2. Supervised Machine Learning Applications
2.1. Data Requirement and Preprocessing
2.2. Computational Mechanics
2.3. Structural Health Monitoring
2.3.1. Utilizing Machine Learning
2.3.2. Digital Twins
2.4. Structural Design and Manufacturing
2.5. Stress Analysis
2.6. Failure Analysis
2.7. Material Modeling
2.8. Optimization Problems
2.9. Summary and Outlook
3. Unsupervised Machine Learning Applications
3.1. Cluster Analysis
3.2. Data Engineering
3.3. Feature Engineering
3.4. Structural Health Monitoring
3.5. Structural Design and Manufacturing
3.6. Other Structural Engineering Applications
3.7. Summary and Outlook
4. Reinforcement Machine Learning Applications
4.1. Data Requirement and Preprocessing
4.2. Computational Mechanics
4.3. Structural Control
4.4. Structural Design and Manufacturing
4.5. Failure Analysis
4.6. Material Modeling and Design
4.7. Summary and Outlook
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Pan, S.; Wang, J.; Vasilakos, V. Machine learning on big data: Opportunities and challenges. Neurocomputing 2017, 237, 350–361. [Google Scholar] [CrossRef]
- Sui, K.; Lee, W. Image processing analysis and research based on game animation design. J. Vis. Commun. Image Represent. 2019, 64, 94–100. [Google Scholar] [CrossRef]
- Yang, T.; Cappelle, C.; Ruichek, Y.; Bagdouri, M. Multi-object tracking with discriminant correlation filter based deep learning tracker. Integr. Comput.-Aided Eng. 2019, 26, 273–284. [Google Scholar] [CrossRef]
- Syed, F.; Tahir, M.; Rafi, M.; Shahab, M. Features selection for semi-supervised multi-target regression using genetic algorithm. Appl. Intell. 2021, 51, 8961–8984. [Google Scholar] [CrossRef]
- Wang, P.; Bai, X. Regional parallel structural based CNN for thermal infrared face identification. Integr. Comput.-Aided Eng. 2018, 25, 247–260. [Google Scholar] [CrossRef]
- Choppala, S.; Kelmar, T.W.; Chierichetti, M.; Davoudi, F.; Huang, D. Optimal sensor location and stress prediction on a plate using machine learning. In Proceedings of the AIAA SCITECH 2023 Forum, Online, 23–27 January 2023. [Google Scholar]
- Badillo, S.; Banfai, B.; Brizzle, F.; Davy, I.; Hutchinson, L.; Kam-Thong, T.; Polster, J.; Steleret, B.; Zhang, D. An introduction to machine learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Karmaker, S.; Hassan, M.; Smith, M.; Xu, L.; Zhai, C. ACM computing surveys. Knowl. Inf. Syst. 2022, 54, 1–36. [Google Scholar]
- Laisisi, A.; Attoh-Okine, N. Principal components analysis and track quality index: A machine learning approach. Transp. Res. Part C Emerg. Technol. 2018, 91, 230–248. [Google Scholar] [CrossRef]
- Le, Q. Building high-level features using large scale unsupervised learning. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 8595–8598. [Google Scholar]
- Zhang, J.; Zhao, X.; Wei, X. Reinforcement learning-based structural control of floating wind turbines. IEEE Trans. Syst. Man Cybern. Syst. 2020, 52, 1603–1613. [Google Scholar] [CrossRef]
- Jain, A. Data clustering: 50 years beyond K-means. Pattern Recognit. Lett. 2010, 9, 651–666. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, M.; Gao, M.; Chu, S. Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 991–1009. [Google Scholar] [CrossRef]
- Yu, B.; Wang, H.; Shan, W.; Yao, B. Prediction of bus travel time using random forests based on near neighbors. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 333–350. [Google Scholar] [CrossRef]
- Shetty, S.; Shetty, S.; Singh, C.; Rao, A. Supervised machine learning: Algorithms and applications. In Fundamental and Methods of Machine and Deep Learning: Algorithms, Tools and Applications; Wiley: Hoboken, NJ, USA, 2022; pp. 1–16. [Google Scholar]
- Abbasi, H.; Bennet, L.; Guann, J.; Unsworth, C. Latent phase detection of hypoxic-ischemic spike transients in the EEG of preterm fetal sheep using reverse biorthogonal wavelets and fuzzy classifier. Int. J. Neural Syst. 2019, 29, 195–212. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, J. Introduction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Lopez-Rubio, E.; Molina-Cabello, E.; Lique-Baena, M.; Dominguez, E. Foreground detection by competitive learning for varying input distributions. Int. J. Neural Syst. 2018, 28, 175–191. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, C. Roadway asset inspection sampling using high-dimensional clustering and locality-sensitivity hashing. Comput.-Aided Civ. Infrastruct. Eng. 2019, 34, 116–129. [Google Scholar] [CrossRef]
- Tramel, W.; Gabrie, M.; Manoel, A.; Caltagirone, F.; Krozakala, F. Deterministic and generalized framework for unsupervised learning with restricted Boltzmann machines. Phys. Rev. 2018, 8, 041006. [Google Scholar] [CrossRef]
- Marugan, A. Applications of reinforcement learning for maintenance of engineering systems:A review. Adv. Eng. Softw. 2023, 183, 103–117. [Google Scholar] [CrossRef]
- Park, J.; Park, J. Enhanced machine learning algorithms: Deep learning, reinforcement learning and Q-learning. J. Inf. Process. Syst. 2020, 16, 1001–1007. [Google Scholar]
- Abdi, J.; Moshiri, B. Application of temporal difference learning rules in short-term traffic flow prediction. Expert Syst. 2015, 32, 49–64. [Google Scholar] [CrossRef]
- Ahmad, T.; Chen, H. Deep learning for multi-scale smart energy forecasting. Energy 2019, 175, 98–112. [Google Scholar] [CrossRef]
- Bishop, C. Pattern Recognition and Machine Learning; Information science and statistics; Springer: New York, NY, USA, 2006. [Google Scholar]
- Andrew, G.; Ritchard, B.; Sutton, S. Reinforcement Learning, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Jiang, T.; Gradus, J.L.; Rosellini, A. Supervised machine learning: A brief primer. Behav. Ther. 2020, 51, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Thakur, N.; Sharma, A. A review of supervised machine learning algorithms. Behav. Ther. 2016, 3, 16–32. [Google Scholar]
- Osisanwo, Y.; Akinsola, T.; Awodele, O.; Hinmikaiye, O.; Olakanmi, O.; Akinjobi, J. Supervised machine learning algorithms: Classification and comparison. Int. J. Comput. Trends Technol. 2017, 48, 128–138. [Google Scholar]
- Kotsiantis, B.; Zaharakis, L.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Belavagi, M.; Muniyal, B. Performance evaluation of supervised machine learning algorithms for the intrusion detection. Procedia Comput. Sci. 2016, 89, 117–123. [Google Scholar] [CrossRef]
- Kim, E.; Kim, W.; Lee, Y. Combination of multiple classifiers for the customers purchase behavior prediction. Decis. Support Syst. 2003, 34, 167–175. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y.; Xie, M. An empirical analysis of data preprocessing for machine learning-based software cost estimation. Inf. Softw. Technol. 2015, 67, 108–127. [Google Scholar] [CrossRef]
- Miseta, T.; Fodor, A.; Vathy-Fogarassy, A. Surpassing early stopping:A novel correlation-based stopping criterion for neural networks. Neurocomputing 2024, 567, 127028. [Google Scholar] [CrossRef]
- Ahmed, U.; Momtaz, R.; Anwar, H.; Shan, A.; Ifran, R.; Nieto, J. Efficient water quality prediction using supervised machine learning. Water 2019, 11, 2210. [Google Scholar] [CrossRef]
- Fernandez, A.; Bella, J.; Dorronsoro, J. Supervised outlier detection for classification and regression. Neurocomputing 2022, 486, 77–92. [Google Scholar] [CrossRef]
- Praveena, M.; Jaiganesh, V. A literature review on supervised machine learning algorithms and boosting process. Int. J. Comput. Appl. 2017, 169, 975–988. [Google Scholar] [CrossRef]
- Jaccard, J.; Wan, C.; Turrisi, R. The detection and interpretation of interaction effects between continuous variables in multiple regression. Multivar. Behav. Res. 1990, 25, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Bahnsen, A.; Aouacha, D.; Ottersten, B. Dependent cost-sensitive decision trees. Expert Syst. Appl. 2015, 42, 6609–6619. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazez, A. A review on linear regression comprehensive in machine learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Utkin, V.; Zhuk, Y. A one-class classification support vector machine model by interval-valued training data. Knowl.-Based Syst. 2017, 120, 43–56. [Google Scholar] [CrossRef]
- Castillo-Botón, C.; Casillas-Pérez, D.; Casanova-Mateo, C.; Ghimire, S.; Cerro-Prada, E.; Gutierrez, P.; Deo, R.; Salcedo-Sanz, S. Machine learning regression and classification methods for fog events prediction. Atmos. Res. 2022, 272, 106157. [Google Scholar] [CrossRef]
- Wojtowytsch, S. Stochastic gradient descent with noise of machine learning type 1:Discrete time analysis. J. Nonlinear Sci. 2023, 33, 45. [Google Scholar] [CrossRef]
- Polyak, B. Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 1964, 4, 1–17. [Google Scholar] [CrossRef]
- Peng, Y.; Lee, W. Practical guidelines for resolving the loss divergence caused by the root-mean-aquared propagation optimizer. Appl. Soft Comput. 2024, 153, 13–37. [Google Scholar] [CrossRef]
- Lioyd, S.; Mohsen, M.; Robentrost, P. Quantum algorithms for supervised and unsupervised machine learning. Int. J. Quantuum Phys. 2013, 3, 17–32. [Google Scholar]
- Hofmann, T. Unsupervised learning by probabilistic latent semantic analysis. Int. J. Mach. Learn. 2001, 42, 177–196. [Google Scholar] [CrossRef]
- Sinaga, K.; Yang, M. Unsupervised K-means clustering algorithm. IEEE Access 2020, 8, 80716–80727. [Google Scholar] [CrossRef]
- Mathias, S.; Slager, R. Unsupervised machine learning and band topology. Phys. Rev. Lett. 2020, 124, 226–241. [Google Scholar]
- Einst, D.; Wehenkel, L.; Geurts, P. Trees-based batch mode reinforcement learning. J. Mach. Learn. Res. 2005, 6, 503–2556. [Google Scholar]
- Lin, J. Self improving reactive agents based on reinforcement learning, planning and teaching. J. Mach. Learn. Res. 1992, 8, 293–321. [Google Scholar] [CrossRef]
- Riedmiller, M. Concepts and facilities of a neural reinforcement learning control architecture for technical process control. J. Neural Comput. Appl. 2000, 8, 323–338. [Google Scholar] [CrossRef]
- Agarwal, A.; Kakade, S.; Lee, J.; Mahajen, G. On the theory of policy gradient methods: Optimality, approximation and distribution shift. J. Mach. Learn. Res. 2021, 22, 1–76. [Google Scholar]
- Aswani, A.; Gonzalez, H.; Sastry, S.; Tomlin, G. Probably safe and robust learning-based model predictive control. Automatica 2013, 49, 1216–1226. [Google Scholar] [CrossRef]
- Azar, M.; Munos, R.; Kappen, H. Minimax bounds on the sample, complexity of reinforcement learning with a generative model. Mach. Learn. 2013, 91, 325–349. [Google Scholar] [CrossRef]
- Sutton, R.; Andrew, B. Reinforcement learning: An introduction. Robotica 1999, 17, 229–235. [Google Scholar] [CrossRef]
- Ethem, A. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020. [Google Scholar]
- Ahmed, N.; Atiya, A.; Gayar, N.; El-shishiny, H. An empirical comparison of machine learning models for time series forecasting. Econ. Rev. 2010, 29, 594–621. [Google Scholar] [CrossRef]
- Carbonneau, R.; Lafiamboise, K.; Vaidov, R. Application of machine learning techniques for supply chain demand forecasting. Eur. J. Oper. Res. 2008, 184, 1140–1154. [Google Scholar] [CrossRef]
- Ghaboussi, J.; Garrett, J.; Xiping, W. Knowledge-based modeling of material behavior with neural networks. J. Eng. Mech. 1991, 117, 132–153. [Google Scholar] [CrossRef]
- Yeh, I.C. Modeling concrete strength with augment-neuron networks. J. Mater. Civ. Eng. 1998, 10, 263–268. [Google Scholar] [CrossRef]
- Janusz, K.; Janusz, R.; Artur, D. HPC strength prediction using artificial neural network. J. Comput. Civ. Eng. 1995, 9, 279–284. [Google Scholar]
- Yeh, I.C. Design of high-performance concrete mixture using neural networks and nonlinear programming. J. Comput. Civ. Eng. 1999, 13, 36–42. [Google Scholar] [CrossRef]
- Trent, S.; Renno, J.; Sassi, S.; Mohamed, S. Using image processing techniques in computational mechanics. Comput. Math. Appl. 2023, 136, 1–24. [Google Scholar] [CrossRef]
- Capuano, G.; Rimoli, J.J. Smart finite elements: A novel machine learning. Comput. Methods Appl. Mech. Eng. 2019, 345, 363–381. [Google Scholar] [CrossRef]
- Nashed, M.; Renno, J.; Mohamed, S. Nonlinear analysis of shell structures using image processing and machine learning. Adv. Eng. Softw. 2023, 176, 103392. [Google Scholar] [CrossRef]
- Cabrera, M.; Ninic, J.; Tizani, W. Fusion of experimental and synthetic data for reliable prediction of steel connection behaviour using machine learning. Eng. Comput. 2023, 39, 3993–4011. [Google Scholar] [CrossRef]
- Bolaji, O.; Helio, M.; Krishnan, A.; Sumanta, D. Integrating Experiments, Finite Element Analysis, and Interpretable Machine Learning to Evaluate the Auxetic Response of 3D Printed Re-entrant Metamaterials. J. Mater. Res. Technol. 2023, 25, 1612–1625. [Google Scholar]
- Liang, L.; Liu, M.; Martin, C.; Sun, W. A deep learning approach to estimate stress distribution: A fast and accurate surrogate of finite-element analysis. J. R. Soc. Interface 2018, 15, 20170844. [Google Scholar] [CrossRef] [PubMed]
- Silva, G.; Beber, V.; Pitz, D. Machine learning and finite element analysis: An integrated approach for fatigue lifetime prediction of adhesively bonded joints. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 3334–3348. [Google Scholar] [CrossRef]
- Jokar, M.; Semperlotti, F. Finite element network analysis: A machine learning based computational framework for the simulation of physical systems. Comput. Struct. 2021, 247, 106484. [Google Scholar] [CrossRef]
- Koutsourelakis, S. Stochastic upscaling in soild mechanics: An exercise in machine learning. J. Comput. Phys. 2007, 226, 301–325. [Google Scholar] [CrossRef]
- Oishi, A.; Yagawa, G. Computational mechanics enhanced by deep learning. Comput. Methods Appl. Mech. Eng. 2017, 327, 327–351. [Google Scholar] [CrossRef]
- Kirchdoerfer, T.; Ortiz, M. Data-driven computational mechanics. Comput. Methods Appl. Mech. Eng. 2016, 304, 81–101. [Google Scholar] [CrossRef]
- Lees, H.; Kang, S. Neural algorithm for solving differential equations. J. Comput. Phys. 1990, 91, 110–131. [Google Scholar]
- Meade, J.; Fernandez, A. The numerical solution of linear ordinary differential equations by feedward neural networks. Math. Comput. Model. 1994, 91, 1–25. [Google Scholar] [CrossRef]
- Lagaris, E.; Likas, A.; Fotiadis, I. Artificial neural networks for solving ordinary and partial differential equations. Trans. Neural Netw. 1998, 9, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, X.; Xiao, H.; Ling, J. A priori assessment of prediction confidence for data-driven turbulance modeling. Flow Turbul. Combust. 2017, 99, 25–46. [Google Scholar] [CrossRef]
- Xiao, H.; Wu, L.; Wang, H.; Sun, R.; Roy, J. Quantifying and reducing model-form uncertainties in Reynolds averaged Navier-stokes simulations. J. Comput. Phys. 2016, 324, 115–136. [Google Scholar] [CrossRef]
- Weinan, E.; Han, J.; Jentzen, A. Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic differential equations. Commun. Math. Stat. 2017, 5, 349–380. [Google Scholar]
- Berg, J.; Nystorm, K. A unified deep artificial neural network approach to partial differential equations in complex geometries. Neurocomputing 2018, 317, 28–41. [Google Scholar] [CrossRef]
- Trask, N.; Patel, R.; Paul, B.; Atzberger, J. GMLS-Nets: Aframe work for learning from unstructured data. Comput. Sci. 2019, 7, 15–29. [Google Scholar]
- Dufera, T. Deep neural network for system of ordinary differential equatuions: Vectorized algorithm and simulation. Mach. Learn. Appl. 2021, 5, 532–549. [Google Scholar]
- Guo, Y.; Cao, X.; Liu, B.; Gao, M. Solving partial differential equations using deep learning and physical constraints. Appl. Sci. 2020, 10, 5917. [Google Scholar] [CrossRef]
- Saha, S.; Gan, Z.; Cheng, L.; Gao, J.; Kafka, O.; Xie, X.; Li, H.; Tajdari, M.; Kim, H.; Liu, W. Hierarchical deep learning neural network HiDeNN: An artificial intelligence AI framework for computational science and engineering. Comput. Methods Appl. Mech. Eng. 2021, 378, 113452. [Google Scholar] [CrossRef]
- Raissi, M.; Perdikaris, P.; Karniadakis, E. Physics-informed neural networks:Adeep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Raissi, M.; Karniadakis, E. Machine learning of nonlinear partial differential equations. J. Comput. Phys. 2018, 357, 125–141. [Google Scholar] [CrossRef]
- Badarinath, V.; Chierichetti, M.; Kakhki, F. A machine learning approach as a surrogate for a finite element analysis: Status of research and application to one dimensional systems. Sensors 2021, 21, 1654. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, A.; Jang, J.; Beheshti, J. A Machine Learning-Based Surrogate Finite Element Model for Estimating Dynamic Response of Mechanical Systems. IEEE Access 2023, 11, 54509–54525. [Google Scholar] [CrossRef]
- Lu, M.; Mohammadi, A.; Meng, Z.; Meng, X.; Li, G.; Li, Z. Deep neural operator for learning transient response of interpenetrating phase composites subject to dynamic loading. Comput. Mech. 2023, 72, 563–576. [Google Scholar] [CrossRef]
- Li, Q.; Wang, Z.; Li, L.; Hao, H.; Chen, W.; Shao, Y. Machine learning prediction of structural dynamic responses using graph neural networks. Comput. Struct. 2023, 289, 107188. [Google Scholar] [CrossRef]
- Najera-Flores, D.A.; Quinn, D.D.; Garland, A.; Vlachas, K.; Chatzi, E.; Todd, M.D. A structure-preserving machine learning framework for accurate prediction of structural dynamics for systems with isolated nonlinearities. Mech. Syst. Signal Process. 2024, 213, 111340. [Google Scholar] [CrossRef]
- Jung, J.; Jun, H.; Lee, P. Self-updated four-node finite element using deep learning. Comput. Mech. 2022, 69, 23–44. [Google Scholar] [CrossRef]
- Logarzo, H.J.; Capuano, G.; Rimoli, J.J. Smart constitutive laws: Inelastic homogenization through machine learning. Comput. Methods Appl. Mech. Eng. 2021, 373, 113482. [Google Scholar] [CrossRef]
- Brevis, I.; Muga, I.; der Zee, K.V. A machine-learning minimal-residual (ML-MRes) framework for goal-oriented finite element discretizations. Comput. Math. Appl. 2021, 95, 186–199. [Google Scholar] [CrossRef]
- Mishra, S. A machine learning framework for data driven acceleration of computations of differential equations. Math. Eng. 2018, 1, 118–146. [Google Scholar] [CrossRef]
- Farrarand, C.; Worden, K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 303–315. [Google Scholar] [CrossRef] [PubMed]
- De Iuliis, M.; Miceli, E.; Castaldo, P. Machine learning modelling of structural response for different seismic signal characteristics: A parametric analysis. Appl. Soft Comput. 2024, 164, 112026. [Google Scholar] [CrossRef]
- Brownjohn, J. Structural health monitoring of civil infrastructure. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 589–622. [Google Scholar] [CrossRef] [PubMed]
- Wagg, J.; Worden, K.; Barthorpe, R.; Gardner, P. Digital twins: State-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASCE-ASME J. Risk Uncertain. Eng. Syst. Part B Mech. Eng. 2020, 6, 030901. [Google Scholar] [CrossRef]
- Tronci, E.; Beigi, H.; Feng, M.; Betti, R. A transfer learning SHM strategy for bridges enriched by the use of speaker recognition x-vectors. J. Civ. Struct. Health Monit. 2022, 12, 1285–1298. [Google Scholar] [CrossRef]
- Worden, K.; Manson, G. The application of machine learning to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007, 365, 515–537. [Google Scholar] [CrossRef]
- Farrar, C.; Doebling, S.; Nix, D. Vibration–based structural damage identification. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 2001, 359, 131–149. [Google Scholar] [CrossRef]
- Yeh, I.C.; Yau-Hwaug, K.; Deh-Shiu, H. Building KBES for diagnosing PC pile with artificial neural network. J. Comput. Civ. Eng. 1993, 7, 71–93. [Google Scholar] [CrossRef]
- González, P.; Zapico, L. Seismic damage identification in buildings using neural networks and modal data. Comput. Struct. 2008, 86, 416–426. [Google Scholar] [CrossRef]
- Chang, C.; Lin, T.; Chang, C. Applications of neural network models for structural health monitoring based on derived modal properties. Measurement 2018, 129, 457–470. [Google Scholar] [CrossRef]
- Soyoz, S.; Feng, Q. Long-term monitoring and identification of bridge structural parameters. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 82–92. [Google Scholar] [CrossRef]
- Peng, J.; Zhang, S.; Peng, D.; Liang, K. Application of machine learning method in bridge health monitoring. In Proceedings of the 2017 Second International Conference on Reliability Systems Engineering (ICRSE), Beijing, China, 10–12 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–7. [Google Scholar]
- Giglioni, V.; Venanzi, I.; Ubertini, F. Supervised machine learning techniques for predicting multiple damage classes in bridges. In Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Long Beach, CA, USA, 12–17 March 2023; Volume 12486, p. 1248617. [Google Scholar]
- Kao, C.; Loh, C. Monitoring of long-term static deformation data of Fei-Tsui arch dam using artificial neural network-based approaches. Struct. Control Health Monit. 2013, 20, 282–303. [Google Scholar] [CrossRef]
- Ranković, V.; Grujović, N.; Divac, D.; Milivojević, N. Development of support vector regression identification model for prediction of dam structural behaviour. Struct. Saf. 2014, 48, 33–39. [Google Scholar] [CrossRef]
- Santillán, D.; Fraile-Ardanuy, J.; Toledo, M.Á. Prediction of gauge readings of filtration in arch dams using artificial neural networks. Tecnol. Cienc. Agua 2014, 5, 81–96. [Google Scholar]
- Song, J.; Yuan, S.; Xu, Z.; Li, X. Fast inversion method for seepage parameters of core earth-rock dam based on LHS-SSA-MKELM fusion surrogate model. Structures 2023, 55, 160–168. [Google Scholar] [CrossRef]
- Taylor, M.; Stone, P. Transfer learning for reinforcement learning domains: A survey. J. Mach. Learn. Res. 2009, 10, 1633–1685. [Google Scholar]
- Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive survey on transfer learning. Proc. IEEE 2021, 109, 43–76. [Google Scholar] [CrossRef]
- Gardner, P.; Bull, L.; Dervilis, N.; Worden, K. On the application of Kernelised Bayesian transfer learning to population-based structural health monitoring. Mech. Syst. Signal Process. 2022, 167, 108519. [Google Scholar] [CrossRef]
- Gosliga, J.; Hester, D.; Worden, K.; Bunce, A. On Population-based structural health monitoring for bridges. Mech. Syst. Signal Process. 2022, 173, 108919. [Google Scholar] [CrossRef]
- Bao, N.; Zhang, T.; Huang, R.; Biswal, S.; Su, J.; Wang, Y. A deep transfer learning network for structural condition identification with limited real-world training data. Struct. Control Health Monit. 2023, 8899806. [Google Scholar] [CrossRef]
- Li, Y.; Bao, T.; Gao, Z.; Shu, X.; Zhang, K.; Xie, L.; Zhang, Z. A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques. Struct. Health Monit. 2022, 21, 770–787. [Google Scholar] [CrossRef]
- Tsialiamanis, G.; Wagg, D.; Gardner, P.; Dervilis, N.; Worden, K. On partitioning of an SHM problem and parallels with transfer learning. In Topics in Modal Analysis & Testing, Volume 8: Proceedings of the 38th IMAC, A Conference and Exposition on Structural Dynamics 2020; Springer: Cham, Switzerland, 2021; pp. 41–50. [Google Scholar]
- Azad, M.; Kim, S.; Cheon, Y.; Kim, H. Intelligent structural health monitoring of composite structures using machine learning, deep learning, and transfer learning: A review. Adv. Compos. Mater. 2023, 33, 162–188. [Google Scholar] [CrossRef]
- Kamariotis, A.; Chatzi, E.; Straub, D. A framework for quantifying the value of vibration-based structural health monitoring. Mech. Syst. Signal Process. 2023, 184, 109708. [Google Scholar] [CrossRef]
- Markogiannaki, O.; Arailopoulos, A.; Giagopoulos, D.; Papadimitriou, C. Vibration-based Damage Localization and Quantification Framework of Large-Scale Truss Structures. Struct. Health Monit. 2023, 22, 1376–1398. [Google Scholar] [CrossRef]
- Pizarro, P.; Massone, L. Structural design of reinforced concrete buildings based on deep neural networks. Eng. Struct. 2021, 241, 112377. [Google Scholar] [CrossRef]
- Chaillou, S. Archigan: Artificial intelligence x architecture. In Architectural Intelligence: Selected Papers from the 1st International Conference on Computational Design and Robotic Fabrication (CDRF 2019); Springer: Berlin/Heidelberg, Germany, 2020; pp. 117–127. [Google Scholar]
- Ampanavos, S.; Nourbakhsh, M.; Cheng, C. Structural design recommendations in the early design phase using machine learning. In International Conference on Computer-Aided Architectural Design Futures; Springer: Singapore, 2022; pp. 190–202. [Google Scholar]
- Rasoulzadeh, S.; Senk, V.; Königsberger, M.; Reisinger, J.; Kovacic, I.; Füssl, J.; Wimmer, M. A novel integrative design framework combining 4D sketching, geometry reconstruction, micromechanics material modelling, and structural analysis. Adv. Eng. Informatics 2023, 57, 102074. [Google Scholar] [CrossRef]
- Liao, W.; Lu, X.; Huang, Y.; Zheng, Z.; Lin, Y. Automated structural design of shear wall residential buildings using generative adversarial networks. Autom. Constr. 2021, 132, 103931. [Google Scholar] [CrossRef]
- Zhang, Y.; Mueller, C. Shear wall layout optimization for conceptual design of tall buildings. Eng. Struct. 2017, 140, 225–240. [Google Scholar] [CrossRef]
- Lou, H.; Gao, B.; Jin, F.; Wan, Y.; Wang, Y. Shear wall layout optimization strategy for high-rise buildings based on conceptual design and data-driven tabu search. Comput. Struct. 2021, 250, 106546. [Google Scholar] [CrossRef]
- Chang, K.; Cheng, C. Learning to simulate and design for structural engineering. In Proceedings of the International Conference on Machine Learning, PMLR, Virtual, 13–18 July 2020; pp. 1426–1436. [Google Scholar]
- Preisinger, C.; Heimrath, M. Karamba—A toolkit for parametric structural design. Struct. Eng. Int. 2014, 24, 217–221. [Google Scholar] [CrossRef]
- Khayam, S.; Ajmal, A.; Park, J.; Kim, I.; Park, J. Tendon Stress Estimation from Strain Data of a Bridge Girder Using Machine Learning-Based Surrogate Model. Sensors 2023, 23, 5040. [Google Scholar] [CrossRef] [PubMed]
- Motsa, S.M.; Stavroulakis, G.E.; Drosopoulos, G.A. A data-driven, machine learning scheme used to predict the structural response of masonry arches. Eng. Struct. 2023, 296, 116912. [Google Scholar] [CrossRef]
- Habib, M.; Bashir, B.; Alsalman, A.; Bachir, H. Evaluating the accuracy and effectiveness of machine learning methods for rapidly determining the safety factor of road embankments. Multidiscip. Model. Mater. Struct. 2023, 19, 966–983. [Google Scholar] [CrossRef]
- Skordaris, G.; Bouzakis, K.; Charalampous, P.; Kotsanis, T.; Bouzakis, E.; Bejjani, R. Bias voltage effect on the mechanical properties, adhesion and milling performance of PVD films on cemented carbide inserts. Wear 2018, 404, 50–61. [Google Scholar] [CrossRef]
- Fu, Z.; Yang, W.; Wang, X.; Leopold, J. An analytical force model for ball-end milling based on a predictive machine theory considering cutter runout. Int. J. Adv. Manuf. Technol. 2017, 93, 2061–2069. [Google Scholar]
- Newby, G.; Venkatachalam, S.; Liang, S. Empirical analysis of cutting force constants in Micro-end-milling operations. J. Mater. Process. Technol. 2007, 192, 41–47. [Google Scholar] [CrossRef]
- Man, X.; Ren, D.; Usui, C.; Johnson, T.; Marusich, T. Validation of finite element cutting force prediction for end milling. Procedia CIRP 2012, 1, 663–668. [Google Scholar] [CrossRef]
- Michailidis, N.; Kombogiannis, S.; Charalampous, P.; Maliaris, G.; Stegioudi, F. Computational-experimental investigations of milling porous Aluminimum. CIRP Ann. 2017, 66, 121–124. [Google Scholar] [CrossRef]
- Charalampous, P. Prediction of cutting forces in milling using machine learning algorithms and finite element analysis. J. Mater. Eng. Perform. 2002, 30, 2002–2012. [Google Scholar] [CrossRef]
- Jirousek, O.; Palar, P.; Falta, J.; Dwianto, Y. Design exploration of additively manufactured chiral auxetic structure using explainable machine learning. Mater. Des. 2023, 232, 112128. [Google Scholar]
- Grozav, S.; Sterca, A.; Kočiško, M.; Pollák, M.; Ceclan, V. Artificial Neural Network-Based Predictive Model for Finite Element Analysis of Additive-Manufactured Components. Machines 2023, 11, 547. [Google Scholar] [CrossRef]
- Dwyer, A.; Mathews, B.; Azadani, A.; Ge, L.; Guy, S.; Tseng, E. Migration forces of transcatheter aortic valves in patients with noncalcific aortic insufficiency. J. Thorac. Cardiovasc. Surg. 2009, 138, 1227–1233. [Google Scholar] [CrossRef] [PubMed]
- Aurccio, F.; Conti, M.; Morganti, S.; Reali, A. Simulations of transcather aortic valve implementation: Apatient-specific finite element approach. Comput. Methods Biomech. Biomed. Eng. 2014, 17, 1347–1357. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Minliang, L.; John, E.; Wei, S. Synergistic integration of deep neural networks and finite element method with applications of nonlinear large deformation biomechanics. Comput. Methods Appl. Mech. Eng. 2023, 416, 116–218. [Google Scholar] [CrossRef]
- Jiang, H.; Nie, Z.; Yeo, R.; Farimani, A.; Burak, K. Stressgan: A generative deep learning model for two-dimensional stress distribution prediction. J. Appl. Mech. 2021, 88, 051005. [Google Scholar] [CrossRef]
- Kazeruni, M.; Ince, A. Data-driven artificial neural network for elastic plastic stress and strain computation for notched bodies. Theor. Appl. Fract. Mech. 2023, 125, 103917. [Google Scholar] [CrossRef]
- Yan, W.; Deng, L.; Zhang, F.; Li, T.; Li, S. Probabilistic machine learning approach to bridge fatigue failure analysis due to vehicular overloading. Eng. Struct. 2019, 193, 91–99. [Google Scholar] [CrossRef]
- Reiner, J.; Linden, N.; Vaziri, R.; Zobeiry, N.; Kramer, B. Bayesian parameter estimation for the inclusion of uncertainty in progressive damage simulation of composites. Compos. Struct. 2023, 321, 117257. [Google Scholar] [CrossRef]
- Bui, Q.; Tran, V.; Shan, A. Improved knowledge-based neural network (KBNN) model for predicting spring-back angles in metal sheet bending. Int. J. Model. Simul. Sci. Comput. 2014, 5, 135–146. [Google Scholar] [CrossRef]
- Rafiq, Y.; Bugmann, G.; Easterbrook, J. Neural network design for engineering applications. Comuters Struct. 2001, 79, 1541–1552. [Google Scholar] [CrossRef]
- Kan, S.; Tan, C.; Mathew, J. A review on prognostic techniques for non-stationary and non-linear totating systems. Mech. Syst. Signal Process. 2015, 62, 1–20. [Google Scholar] [CrossRef]
- Yu, S.; Qi, S.; Liu, L.; Xu, Q.; Wu, L.; Zeng, W. Application of the Ultrasonic Guided Wave Technique Based on PSO-ELM Algorithm in the Rail Fatigue Crack Assessment. J. Test. Eval. 2023, 51, JTE20220569. [Google Scholar] [CrossRef]
- Cheng, Y.; Huang, L.; Zhou, Y. Artificial neural network technology for the data processing of one-line corrosion fatigue crack growth monitoing. Int. J. Pres. Ves. Pip 1999, 76, 113–116. [Google Scholar] [CrossRef]
- Zio, E.; Maio, D. Fatigue crack growth estimation by relevance vector machine. Expert Syst. Appl. 2012, 39, 10681–10692. [Google Scholar] [CrossRef]
- Mohanty, R.; Mahanta, K.; Mohanty, A.; Thatoi, N. Prediction of constant amplitude fatigue crack growth life of 2024T3 AI alloy with R-ratio effect by GP. Appl. Soft Comput. 2014, 26, 428–434. [Google Scholar] [CrossRef]
- Tan, H.; Bi, H.; Hou, L.; Wong, W. Reliability analysis using radial basis function networks and support vector machines. Comput. Geotech. 2011, 38, 178–186. [Google Scholar] [CrossRef]
- Heng, Y. Intelligent prognostics of machinery health utilising suspended condition monitoring data. Comput. Geotech. 2011, 38, 178–186. [Google Scholar]
- Hashash, Y.; Jung, S.; Ghaboussi, J. Numerical implementation of a neural network based material model in finite element analysis. Int. J. Numer. Methods Eng. 2004, 59, 989–1005. [Google Scholar] [CrossRef]
- Carneiro, A.; Alves, A.; Coelho, R.; Cardoso, J.; Pires, F. A simple machine learning-based framework for faster multi-scale simulations of path-independent materials at large strains. Finite Elem. Anal. Des. 2023, 222, 103956. [Google Scholar] [CrossRef]
- Nikolić, F.; Čanađija, M. Deep Learning of Temperature–Dependent Stress–Strain Hardening Curves. C. R. Mécanique 2023, 351, 151–170. [Google Scholar] [CrossRef]
- Fazily, P.; Yoon, J. Machine learning-driven stress integration method for anisotropic plasticity in sheet metal forming. Int. J. Plast. 2023, 166, 103642. [Google Scholar] [CrossRef]
- Long, C.; Liu, S.; Sun, R.; Lu, J. Impact of structural characteristics on thermal conductivity of foam structures revealed with machine learning. Comput. Mater. Sci. 2024, 237, 112898. [Google Scholar] [CrossRef]
- Gang, M.; Shaoheng, G.; Qiao, W.; YT, F.; Wei, Z. A predictive deep learning framework for path-dependent mechanical behavior of granular materials. Acta Geotech. 2022, 17, 3463–3478. [Google Scholar]
- Mital, U.; José, A. Bridging length scales in granular materials using convolutional neural networks. Comput. Part. Mech. 2022, 9, 221–235. [Google Scholar] [CrossRef]
- Guan, S.; Qu, T.; Feng, Y.T.; Ma, G.; Zhou, W. A machine learning-based multi-scale computational framework for granular materials. Acta Geotech. 2022, 18, 1699–1720. [Google Scholar] [CrossRef]
- Hakim, S.; Noorzaei, J.; Jaafar, M.; Jameel, M.; Mohammadhassani, M. Application of artificial neural networks to predict compressive strength of high strength concrete. Int. J. Phys. Sci. 2011, 6, 975–981. [Google Scholar]
- Al-Janabi, K.; Abdulwahab, A. Modeling of polymer modified-concrete strength with artificial neural networks. Int. J. Civ. Eng. 2008, 10, 47–68. [Google Scholar]
- Kim, J.; Kim, D.; Feng, M.; Yazdani, F. Application of neural networks for estimation of concrete strength. J. Mater. Civ. Eng. 2004, 16, 257–264. [Google Scholar] [CrossRef]
- Kim, K.; Lee, J.; Chang, K. Application of probabilistic neural networks for prediction of concrete strength. J. Mater. Civ. Eng. 2005, 17, 353–362. [Google Scholar] [CrossRef]
- Gupta, R.; kewalramani, A.; Geol, A. Prediction of concrete strength using neural-expert system. J. Mater. Civ. Eng. 2006, 18, 462–466. [Google Scholar] [CrossRef]
- Roberson, M.; Inman, K.; Carey, A.; Howard, I.; Shannon, J. Probabilistic neural networks that predict compressive strength of high strength concrete in mass placements using thermal history. Comput. Struct. 2022, 259, 106707. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, J.; Huang, F.; Chen, Z.; Qiu, R.; Wu, S. Effect of structural parameters on compression performance of autoclaved aerated concrete: Simulation and machine learning. Constr. Build. Mater. 2024, 423, 135860. [Google Scholar] [CrossRef]
- Korza, R. Genetic Programming: On the Programming of Computers by Natural Selection; MIT Press: Cambridge, MA, USA, 2018; Volume 339, pp. 358–388. [Google Scholar]
- Hein, D.; Udluft, S.; Runkler, A. Interpretable policies for reinforcement learning by genetic programming. Eng. Appl. Artif. Intell. 2018, 76, 158–167. [Google Scholar] [CrossRef]
- Nicholas, A.; Kamran, B.; Zouheir, F. Applicability and viability of a GA based finite element analysis architecture for structural design optimization. Comput. Struct. 2003, 81, 2259–2271. [Google Scholar]
- Hashem, B.; Zahidul, I. Advantages and limitations of genetic algorithms for clustering records. In Proceedings of the 2016 IEEE 11th Conference on Industrial Electronics and Applications (ICIEA), Hefei, China, 5–7 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 2478–2483. [Google Scholar]
- Guan, X.; Burton, H. Bias-variance tradeoff in machine learning: Theoretical formulation and implications to structural engineering applications. Structures 2022, 46, 17–30. [Google Scholar] [CrossRef]
- Gharahamani, Z. Unsupervised learning. Adv. Lect. Mach. Learn. 2004, 16, 362–379. [Google Scholar]
- Benyamin, G.; Crowley, M.; Karray, F.; Ghodsi, A. Locally linear embedding. In Elements of Dimensionality Reduction and Manifold Learning; Springer International Publishing: Cham, Switzerland, 2023; Volume 404, pp. 207–247. [Google Scholar]
- Andrew, M.; Kamal, N.; Jason, R.; Kristie, S. A machine learning approach to building domain-specific search engines. In Proceedings of the IJCAI, Stockholm, Sweden, 31 July–6 August 1999; Volume 99, pp. 662–667. [Google Scholar]
- Magidson, J.; Vermunt, J. Latent class models for clustering: A comparison with K-means. Int. Can. J. Mark. Res. 2002, 20, 13–27. [Google Scholar]
- Alcala-Fdez, J.; Sanchez, L.; Garcia, S.; Del-Jesus, M. Software to assess evolutionary algorithms for data mining problems. Soft Comput. 2008, 6, 93–103. [Google Scholar]
- Macqueen, J. Some methods for classification and analysis of multivariate observations. In Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Berkeley, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- John, H.; Langley, P. Estimating continious distributions in Bayesian classifiers. In Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18–20 August 1995; Volume 1, pp. 338–345. [Google Scholar]
- Rakthanmanon, T.; Keogh, J.; Evans, S. MDL-based time series clustering. Knowl. Inf. Syst. 2012, 33, 371–399. [Google Scholar] [CrossRef]
- Saul, L.; Roweis, S. Unsupervised learning of two dimensional manifolds. J. Mach. Learn. Res. 2003, 4, 119–155. [Google Scholar]
- Dy, J.; Brodley, C. Feature selection for unsupervised learning. J. Mach. Learn. Res. 2004, 5, 845–889. [Google Scholar]
- Bo, L.; Ren, X.; Fox, D. Unsupervised feature learning for RGB-D based object recognition. In Proceedings of the Experimental Robotics: The 13th International Symposium on Experimental Robotics, Québec City, QC, Canada, 18–21 June 2012; Springer: Berlin/Heidelberg, Germany, 2013; pp. 387–402. [Google Scholar]
- Madan, A. Vibration control of building structures using self-organizing and self-learning neural networks. J. Sounds Vib. 2005, 287, 759–784. [Google Scholar] [CrossRef]
- Daneshvar, M.; Hassan, S. Unsupervised learning-based damage assessment of full-scale civil structures under long-term and short-term monitoring. Eng. Struct. 2022, 256, 114059. [Google Scholar] [CrossRef]
- García-Macías, E.; Ubertini, F. Integrated SHM systems: Damage detection through unsupervised learning and data fusion. In Structural Health Monitoring Based on Data Science Techniques; Springer: Berlin/Heidelberg, Germany, 2021; pp. 247–268. [Google Scholar]
- Ma, X.; Lin, Y.; Nie, Z.; Ma, H. Structural damage identification based on unsupervised feature-extraction via Variational Auto-encoder. Measurement 2020, 160, 107811. [Google Scholar] [CrossRef]
- Alireza, E.; Hashem, S. An unsupervised learning approach by novel damage indices in structural health monitoring for damage localization and quantification. Struct. Health Monit. 2018, 17, 325–345. [Google Scholar]
- Alireza, E.; Hashem, S.; Stefano, M. Fast unsupervised learning methods for structural health monitoring with large vibration data from dense sensor networks. Struct. Health Monit. 2020, 19, 1685–1710. [Google Scholar]
- Liu, J.; Li, Q.; Li, L.; An, S. Structural damage detection and localization via an unsupervised anomaly detection method. Reliab. Eng. Syst. Saf. 2024, 252, 110465. [Google Scholar] [CrossRef]
- Junges, R.; Rastin, Z.; Lomazzi, L.; Giglio, M.; Cadini, F. Convolutional autoencoders and CGANs for unsupervised structural damage localization. Mech. Syst. Signal Process. 2024, 220, 111645. [Google Scholar] [CrossRef]
- Eloi, F.; Yano, O.; Samuel, D.; Ionut, M.; Mihai, A. Transfer learning to enhance the damage detection performance in bridges when using numerical models. J. Bridge Eng. 2023, 28, 04022134. [Google Scholar]
- Bayane, I.; Leander, J.; Karoumi, R. An unsupervised machine learning approach for real-time damage detection in bridges. Eng. Struct. 2024, 308, 117971. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, L.; Liu, Z.; Zhou, L.; Yang, B.; Jiang, Z.; Liu, Y. Unsupervised quantitative structural damage identification method based on BiLSTM networks and probability distribution model. J. Sound Vib. 2024, 590, 118597. [Google Scholar] [CrossRef]
- Lieber, D.; Stople, M.; Konrad, B.; Deuse, J.; Morik, K. Quality predictions in interlinked manufacturing processes based on supervised and unsupervised machine learning. Procedia CIRP 2013, 7, 193–198. [Google Scholar] [CrossRef]
- Alwood, M.; Cullen, M. Sustainable Materials; UIT Cambridge Ltd.: Cambridge, UK, 2012; Volume 2, pp. 51–54. [Google Scholar]
- Konrad, B.; Lieber, D.; Deuse, J. Striving for zero defect production: Intelligent manufacturing control through data mining in continious rolling mill processes. Robust Manuf. Control 2012, 1, 67–75. [Google Scholar]
- Stolpr, M.; Morik, K. Learning from label proportion by optimizing cluster model selection. Mach. Learn. Knowl. Discov. Databases 2011, 6913, 349–364. [Google Scholar]
- Choi, J.; Kim, N.; Hong, Y. Unsupervised Legendre–Galerkin Neural Network for Solving Partial Differential Equations. IEEE Access 2023, 11, 23433–23446. [Google Scholar] [CrossRef]
- Zhu, Y.; Nicholas, Z.; Phaedon-Stelios, K.; Paris, P. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef]
- Piervincenzo, R.; Marcello, C.; Debaditya, D.; Hoon, S.; Kent, H. An unsupervised learning algorithm for fatigue crack detection in waveguides. Smart Mater. Struct. 2009, 18, 025016. [Google Scholar]
- Hau, M.; Qui, L.; Kang, J.; Lee, J. A novel deep unsupervised learning-based framework for optimization of truss structures. Eng. Comput. 2022, 39, 2585–2608. [Google Scholar]
- Pan, J.; Huang, J.; Wang, Y.; Cheng, G.; Zeng, Y. A self-learning finite element extraction system based on reinforcement learning. AI EDAM 2021, 35, 180–208. [Google Scholar] [CrossRef]
- Soheila, E.; Soheil, E.; Debarshi, S.; Shamim, P. Active structural control framework using policy-gradient reinforcement learning. Eng. Struct. 2023, 274, 115122. [Google Scholar]
- Wei, S.; Bao, Y.; Li, H. Optimal policy for structure maintenance: A deep reinforcement learning framework. Struct. Saf. 2020, 83, 101906. [Google Scholar] [CrossRef]
- Yu, C.-H.; Tseng, B.-Y.; Yang, Z.; Tung, C.-C.; Zhao, E.; Ren, Z.-F.; Yu, S.-S.; Chen, P.-Y.; Chen, C.-S.; Buehler, M.J. Hierarchical Multiresolution Design of Bioinspired Structural Composites Using Progressive Reinforcement Learning. Adv. Theory Simul. 2022, 5, 2200459. [Google Scholar] [CrossRef]
- Dhaya, R.; Kanthavel, R.; Fahad, A.; Jayarajan, P.; Mahor, A. Reinforcement learning concepts ministering smart city applications using IoT. In Internet of Things in Smart Technologies for Sustainable Urban Development; Springer: Cham, Switzerland, 2020; pp. 19–41. [Google Scholar]
- Savinay, N.; Nikhil, P.; Rashmi, U.; Koshy, G. Comparison of reinforcement learning algorithms applied to the cart-pole problem. In Proceedings of the 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 13–16 September 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 26–32. [Google Scholar]
- Bernard, A.; Ian, S. Reinforcement learning for structural control. J. Comput. Civ. Eng. 2008, 22, 133–139. [Google Scholar]
- Arash, K.; Mehdi, S.; Masoud, K. Online control of an active seismic system via reinforcement learning. Struct. Control Health Monit. 2019, 26, e2298. [Google Scholar]
- Kazem, S.; Javad, M. Application of reinforcement learning algorithm for automation of canal structures. Irrig. Drain. 2015, 64, 77–84. [Google Scholar]
- Dominik, P.; ukasz, J. Reinforcement learning-based control to suppress the transient vibration of semi-active structures subjected to unknown harmonic excitation. Comput.-Aided Civ. Infrastruct. Eng. 2022, 38, 1605–1621. [Google Scholar]
- Qiu, Z.-C.; Chen, G.-H.; Zhang, X.-M. Reinforcement learning vibration control for a flexible hinged plate. Aerosp. Sci. Technol. 2021, 118, 107056. [Google Scholar] [CrossRef]
- Yi, L.; Deng, X.; Yang, L.T.; Wu, H.; Wang, M.; Situ, Y. Reinforcement-learning-enabled partial confident information coverage for IoT-based bridge structural health monitoring. IEEE Internet Things J. 2020, 8, 3108–3119. [Google Scholar] [CrossRef]
- Yang, A.; Qiu, Q.; Zhu, M.; Cui, L.; Chen, W.; Chen, J. Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning. Reliab. Eng. Syst. Saf. 2022, 225, 108643. [Google Scholar] [CrossRef]
- Cao, P.; Tang, J. A Reinforcement Learning Hyper-Heuristic in Multi-Objective Single Point Search with Application to Structural Fault Identification. arXiv 2018, arXiv:1812.07958. [Google Scholar]
- Cao, P.; Zhang, Y.; Zhou, K.; Tang, J. A reinforcement learning hyper-heuristic in multi-objective optimization with application to structural damage identification. Struct. Multidiscip. Optim. 2023, 66, 16. [Google Scholar] [CrossRef]
- Zimmerling, C.; Poppe, C.; Stein, O.; Kärger, L. Optimisation of manufacturing process parameters for variable component geometries using reinforcement learning. Mater. Des. 2022, 214, 110423. [Google Scholar] [CrossRef]
- Harley, O.; Ying, L.; Maneesh, K.; Michael, W.; Michael, R. Reinforcement learning for facilitating human–robot-interaction in manufacturing. J. Manuf. Syst. 2020, 56, 326–340. [Google Scholar]
- Jonathan, V.; Jean, R.; Alexander, K.; Hassan, G.; Aurélien, L.; Elie, H. Direct shape optimization through deep reinforcement learning. J. Comput. Phys. 2021, 428, 110080. [Google Scholar]
- Shaopeng, L.; Reda, S.; Teng, W. A knowledge-enhanced deep reinforcement learning-based shape optimizer for aerodynamic mitigation of wind-sensitive structures. Comput.-Aided Civ. Infrastruct. Eng. 2021, 36, 733–746. [Google Scholar]
- Sérgio, D.; Sidney, G.; Cairo, N. Autonomous construction of structures in a dynamic environment using reinforcement learning. In Proceedings of the 2013 IEEE International Systems Conference (SysCon), Orlando, FL, USA, 15–18 April 2013; IEEE: Piscataway, NJ, USA, 2013; pp. 452–459. [Google Scholar]
- Kevin, D.; Oliveira, I.; Daniel, D.; Alexandre, G.; Mário, S.; Alexandre, B. Q-learning based Path Planning Method for UAVs using Priority Shifting. In Proceedings of the 2022 International Conference on Unmanned Aircraft Systems (ICUAS), Dubrovnik, Croatia, 21–24 June 2022; Volume 3, pp. 421–426. [Google Scholar] [CrossRef]
- Fabian, D.; Sebastian, D.; Maximilian, W.; Benjamin, S.; Sandro, W. Reinforcement learning for engineering design automation. Adv. Eng. Inform. 2022, 52, 101612. [Google Scholar]
- Junhyeon, S.; Rakesh, K. Development of an artificial intelligence system to design of structures using reinforcement learning: Proof of concept. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 and 19–21 January 2021; p. 1692. [Google Scholar]
- Maximilian, O.; Gordon, W. Design synthesis of structural systems as a Markov decision process solved with deep reinforcement learning. J. Mech. Des. 2023, 145, 061701. [Google Scholar]
- Guan, X.; Xiang, Z.; Bao, Y.; Li, H. Structural dominant failure modes searching method based on deep reinforcement learning. Reliab. Eng. Syst. Saf. 2022, 219, 108258. [Google Scholar] [CrossRef]
- Guan, X.; Sun, H.; Hou, R.; Xu, Y.; Bao, Y.; Li, H. A deep reinforcement learning method for structural dominant failure modes searching based on self-play strategy. Reliab. Eng. Syst. Saf. 2023, 233, 109093. [Google Scholar] [CrossRef]
- Johannes, D.; Lukas, M.; Samuel, Z.; Tarek, I.; Norbert, L.; Dirk, H. Deep reinforcement learning methods for structure-guided processing path optimization. J. Intell. Manuf. 2022, 33, 333–352. [Google Scholar]
Reference | Machine Learning Type | Focus Area | Methodology | Potential Applications |
---|---|---|---|---|
[57] | Supervised Learning | Structural Analysis | Finite Element Integration | Predicting structural responses |
[179] | Supervised Learning | Damage Detection | Neural Networks | Real-time monitoring |
[66] | Supervised Learning | Stress Analysis | Surrogate Finite Element Models | Predicting stress distributions |
[103] | Supervised Learning | Structural Health Monitoring | Statistical Pattern Recognition | Damage diagnosis and prediction |
[125] | Supervised Learning | Structural Design | Generative Adversarial Networks | Designing building floor plans |
[168] | Supervised Learning | Concrete Strength Prediction | Regression Models | Strength prediction in concrete |
[174] | Supervised Learning | Material Properties | Gradient Boosting | Enhancing prediction accuracy |
[143] | Supervised Learning | Additive Manufacturing | Artificial Neural Networks | Predicting mechanical properties |
[133] | Supervised Learning | Prestressed Concrete | Neural Networks | Design and safety evaluations |
[173] | Supervised Learning | Material Modeling | Bayesian Inference | Predicting concrete strength |
[148] | Supervised Learning | Fatigue Analysis | Neural Networks | Predicting fatigue life |
[134] | Supervised Learning | Structural Performance | Machine Learning Algorithms | Analyzing masonry structures |
[75] | Supervised Learning | ODE/PDE solving | Neural networks | Stress analysis |
[76] | Supervised Learning | ODE/PDE solving | Fixed meshes | Numerical approximation |
[85] | Supervised Learning | Structural response prediction | Hierarchical deep learning | Nonlinear dynamics |
[58] | Supervised Learning | Data requirement | Dataset analysis | Training model efficacy |
[59] | Supervised Learning | Data requirement | Quality and relevance of data | Model performance |
[64] | Supervised Learning | Data preprocessing | Synthetic and real data | Stress analysis |
[105] | Supervised Learning | Structural health monitoring | Neural networks | Damage detection in buildings |
[106] | Supervised Learning | Structural health monitoring | Finite element model | Damage localization |
[107] | Supervised Learning | Structural health monitoring | Neural network | Damage detection in bridges |
[110] | Supervised Learning | Structural health monitoring | Flow leakage detection | Dam monitoring |
[111] | Supervised Learning | Structural health monitoring | Pore pressure monitoring | Dam safety |
[206] | Unsupervised Learning | Damage Identification | Graph Neural Networks | Localizing structural damage |
[207] | Unsupervised Learning | PDE Solving | Deep Learning | Solving partial differential equations |
[180] | Unsupervised Learning | Data Analysis | Clustering Techniques | Anomaly detection |
[192] | Unsupervised Learning | Anomaly Detection | Variational Autoencoders | Structural damage detection |
[194] | Unsupervised Learning | Feature Extraction | Nearest Neighbors | Monitoring large structures |
[22] | Unsupervised Learning | Clustering | Deep Belief Networks, sparse coding | Data mining |
[181] | Unsupervised Learning | Dimensionality reduction | Locally linear embedding | Feature extraction |
[206] | Unsupervised Learning | PDE solving | Legendre–Galerkin network | Structural dynamics |
[207] | Unsupervised Learning | PDE solving | Convolutional encoder–decoder | Structural dynamics |
[196] | Unsupervised Learning | Damage localization | Autoregressive modeling | Damage detection |
[200] | Unsupervised Learning | Bridge Monitoring | Dynamic Signal Processing | Detecting changes in bridge conditions |
[212] | Reinforcement Learning | Maintenance systems | Historical data learning | Bridge maintenance |
[236] | Reinforcement Learning | Material design optimization | Deep Q-networks | Material property prediction |
[213] | Reinforcement Learning | Material modeling | Q-learning | Material microstructure optimization |
[210] | Reinforcement Learning | Mesh Generation | Markov Decision Processes | Automated mesh generation |
[217] | Reinforcement Learning | Structural Control | Active Control Systems | Seismic structure control |
[213] | Reinforcement Learning | Design Optimization | Q-learning | Optimal design processes |
[229] | Reinforcement Learning | Autonomous Navigation | Q-learning | Path planning in dynamic environments |
[211] | Reinforcement Learning | Structural Control | Actor–Critic Methods | Vibration control in structures |
[11] | Reinforcement Learning | Structural Design | Dynamic Programming | Control of floating wind turbines |
[231] | Reinforcement Learning | Design Automation | Deep Reinforcement Learning | Data-driven design processes |
[234] | Reinforcement Learning | Failure Analysis | Deep Learning | Failure mode selection |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Etim, B.; Al-Ghosoun, A.; Renno, J.; Seaid, M.; Mohamed, M.S. Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview. Buildings 2024, 14, 3515. https://doi.org/10.3390/buildings14113515
Etim B, Al-Ghosoun A, Renno J, Seaid M, Mohamed MS. Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview. Buildings. 2024; 14(11):3515. https://doi.org/10.3390/buildings14113515
Chicago/Turabian StyleEtim, Bassey, Alia Al-Ghosoun, Jamil Renno, Mohammed Seaid, and M. Shadi Mohamed. 2024. "Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview" Buildings 14, no. 11: 3515. https://doi.org/10.3390/buildings14113515
APA StyleEtim, B., Al-Ghosoun, A., Renno, J., Seaid, M., & Mohamed, M. S. (2024). Machine Learning-Based Modeling for Structural Engineering: A Comprehensive Survey and Applications Overview. Buildings, 14(11), 3515. https://doi.org/10.3390/buildings14113515