A Case Study of 3D Scanning Techniques in Civil Engineering Using the Terrestrial Laser Scanning Technique
Abstract
:1. Introduction
2. Test Objects and Scanning Methods
2.1. Industrial Hall
2.2. ETICS Wall Sample
3. Results
3.1. Industrial Hall Faro Focus Scanner
3.2. Faro Focus TLS Scanner for External Wall Insulated
3.3. External Insulated Wall FreeScan UEPro Laser Scanner
3.4. Comparison of FreeScan UEPro and Faro Focus Scans
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Relich, M. Product Development: State of the Art and Challenges. In Decision Support for Product Development: Using Computational Intelligence for Information Acquisition in Enterprise Databases; Springer: Cham, Switzerland, 2021; pp. 1–26. [Google Scholar]
- Amigo, C.R.; Iritani, D.R.; Rozenfeld, H.; Ometto, A. Product Development Process Modeling: State of the Art and Classification. In Smart Product Engineering, Proceedings of the 23rd CIRP Design Conference, Bochum, Germany, 11–13 March 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 169–179. [Google Scholar] [CrossRef]
- Wynn, D.C.; Clarkson, P.J. Process Models in Design and Development. Res. Eng. Des. 2018, 29, 161–202. [Google Scholar] [CrossRef]
- Stănăşel, I.; Buidoş, T.; Crăciun, D. Rapid Prototyping Technology and 3d Scanning Verification. Case study. Rev. De Tehnol. Neconv. 2017, 21, 48. [Google Scholar]
- Kritzinger, W.; Karner, M.; Traar, G.; Henjes, J.; Sihn, W. Digital Twin in Manufacturing: A Categorical Literature Review and Classification. IFAC-Pap. 2018, 51, 1016–1022. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.J. Digital Twin Technology Challenges and Applications: A Comprehensive Review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Yu, W.; Patros, P.; Young, B.; Klinac, E.; Walmsley, T.G. Energy Digital Twin Technology for Industrial Energy Management: Classification, Challenges and Future. Renew. Sustain. Energy Rev. 2022, 161, 112407. [Google Scholar] [CrossRef]
- Lipowiecki, I.; Rządkowski, W.; Zapał, W.; Kowalik, M. Combining the Technology of Long-Range Laser 3D Scanners and Structured Light Handheld 3D Scanners to Digitize Large-Sized Objects. Adv. Sci. Technol. Res. J. 2023, 17, 196–205. [Google Scholar] [CrossRef]
- Javaid, M.; Haleem, A.; Pratap Singh, R.; Suman, R. Industrial Perspectives of 3D Scanning: Features, Roles and It’s Analytical Applications. Sens. Int. 2021, 2, 100114. [Google Scholar] [CrossRef]
- Daneshmand, M.; Helmi, A.; Avots, E.; Noroozi, F.; Alisinanoglu, F.; Arslan, H.S. 3D Scanning: A Comprehensive Survey. arXiv 2018, arXiv:1801.08863. [Google Scholar]
- Mihić, M.; Sigmund, Z.; Završki, I.; Butković, L.L. An Analysis of Potential Uses, Limitations and Barriers to Implementation of 3D Scan Data for Construction Management-Related Use—Are the Industry and the Technical Solutions Mature Enough for Adoption? Buildings 2023, 13, 1184. [Google Scholar] [CrossRef]
- Marshall, G.F.; Stutz, G.E. Handbook of Optical and Laser Scanning; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781315218243. [Google Scholar]
- De Luca, D.; Del Giudice, M.; Grasso, N.; Matrone, F.; Osello, A.; Piras, M. Handheld Volumetric Scanner for 3D Printed Integrations of Historical Elements: Comprasion and Resilts. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2019, 42, 381–388. [Google Scholar] [CrossRef]
- Nagy, Z.; Kelemen, A.; Sánduly, A. 3D Scanning Applications in Structural Design. In Proceedings of the IABSE Symposium Prague, 2022: Challenges for Existing and Oncoming Structures—Report, Prague, Czech Republic, 25–27 May 2022; pp. 1079–1086. [Google Scholar]
- van Brügge, L.; Çetin, K.M.; Koeberle, S.J.; Thiele, M.; Sturm, F.; Hornung, M. Application of 3D-Scanning for Structural and Geometric Assessment of Aerospace Structures. CEAS Aeronaut. J. 2023, 14, 455–467. [Google Scholar] [CrossRef]
- Peansupap, V.; May, A.M. Development of a System for Measuring Surface Slope with Point Cloud Data. In Lecture Notes in Civil Engineering; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2024; Volume 369, pp. 507–516. ISBN 9789819940486. [Google Scholar]
- Tran, H.H.; Vu, H.Q.; Van Tran, A. Application of FARO Focus 3D S350 Terrestrial Laser Scanner in Building 3D Models of Potential Areas of Landslides and Rocks—Case Study in Ha Giang Province, Vietnam. In Proceedings of the International Conference on Sustainability in Civil Engineering, Hanoi, Vietnam, 25–27 November 2022; Springer: Singapore, 2022; Volume 344, pp. 703–710. [Google Scholar]
- Shen, N.; Wang, B.; Ma, H.; Zhao, X.; Zhou, Y.; Zhang, Z.; Xu, J. A Review of Terrestrial Laser Scanning (TLS)-Based Technologies for Deformation Monitoring in Engineering. Meas. J. Int. Meas. Confed. 2023, 223, 113684. [Google Scholar] [CrossRef]
- Feng, P.; Zou, Y.; Hu, L.; Liu, T.Q. Use of 3D Laser Scanning on Evaluating Reduction of Initial Geometric Imperfection of Steel Column with Pre-Stressed CFRP. Eng. Struct. 2019, 198, 109527. [Google Scholar] [CrossRef]
- Tzortzinis, G.; Ai, C.; Breña, S.F.; Gerasimidis, S. Using 3D Laser Scanning for Estimating the Capacity of Corroded Steel Bridge Girders: Experiments, Computations and Analytical Solutions. Eng. Struct. 2022, 265, 114407. [Google Scholar] [CrossRef]
- Flugge, J.; Wendt, K.; Danzebrink, H.; Abou-zeid, A. Optical Methods for Dimensional Metrology in Production Engineering. CIRP Ann. Manuf. Technol. 2002, 51, 685–699. [Google Scholar]
- Szilvási-Nagy, M.; Mátyási, G. Analysis of STL Files. Math. Comput. Model. 2003, 38, 945–960. [Google Scholar] [CrossRef]
- Haleem, A.; Javaid, M.; Singh, R.P.; Rab, S.; Suman, R.; Kumar, L.; Khan, I.H. Exploring the Potential of 3D Scanning in Industry 4.0: An Overview. Int. J. Cogn. Comput. Eng. 2022, 3, 161–171. [Google Scholar] [CrossRef]
- Bell, T.; Li, B.; Zhang, S. Structured Light Techniques and Applications. In Wiley Encyclopedia of Electrical and Electronics Engineering; Purdue University: West Lafayette, IN, USA, 2016; pp. 1–24. [Google Scholar] [CrossRef]
- Schenk, T. Introduction to Photogrammetry; Ohio State University: Columbus, OH, USA, 2005; ISBN 9781609181765. [Google Scholar]
- Lopez Paredes, A.; Song, Q.; Conde, M.H. Performance Evaluation of State-of-the-Art High-Resolution Time-of-Flight Cameras. IEEE Sens. J. 2023, 23, 13711–13727. [Google Scholar] [CrossRef]
- Baqersad, J.; Poozesh, P.; Niezrecki, C.; Avitabile, P. Photogrammetry and Optical Methods in Structural Dynamics—A Review. Mech. Syst. Signal Process. 2017, 86, 17–34. [Google Scholar] [CrossRef]
- Ding, D.; Ding, W.; Huang, R.; Fu, Y.; Xu, F. Research Progress of Laser Triangulation On-Machine Measurement Technology for Complex Surface: A Review. Meas. J. Int. Meas. Confed. 2023, 216, 113001. [Google Scholar] [CrossRef]
- Georgopoulos, A.; Ioannidis, C.; Valanis, A. Assessing the Performance of a Structured Light Scanner. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 251–255. [Google Scholar]
- Ao, S.; Gelman, L. Advances in Electrical Engineering and Computational Science; Springer: Berlin, Germany, 2009; Volume 39, ISBN 9789048123100. [Google Scholar]
- Dawda, A.; Nguyen, M. Comparison of Red versus Blue Laser Light for Accurate 3D Measurement of Highly Specular Surfaces in Ambient Lighting Conditions. In Proceedings of the Communications in Computer and Information Science, Auckland, New Zealand, 28–29 January 2021; Springer Science and Business Media Deutschland GmbH: Berlin, Germany, 2021; Volume 1386, pp. 300–312. [Google Scholar]
- Wedgbrow, G. Plant & Works Engineering. Tonbridge, UK, 2022; pp. 32–33. Available online: https://pwemag.co.uk/ (accessed on 22 October 2024).
- Franke, J.; Koutecký, T.; Koutný, D. Comparison of Sublimation 3D Scanning Sprays in Terms of Their Effect on the Resulting 3D Scan, Thickness, and Sublimation Time. Materials 2023, 16, 6165. [Google Scholar] [CrossRef] [PubMed]
- Helle, R.H.; Lemu, H.G. A Case Study on Use of 3D Scanning for Reverse Engineering and Quality Control. Mater. Today Proc. 2021, 45, 5255–5262. [Google Scholar] [CrossRef]
- Yilmaz, B.; Marques, V.R.; Donmez, M.B.; Cuellar, A.R.; Lu, W.E.; Abou-Ayash, S.; Çakmak, G. Influence of 3D Analysis Software on Measured Deviations of CAD-CAM Resin Crowns from Virtual Design File: An in-Vitro Study. J. Dent. 2022, 118, 103933. [Google Scholar] [CrossRef]
- Taraben, J.; Morgenthal, G. Automated Linking of 3D Inspection Data for Damage Analysis. In Proceedings of the 10th International Conference on Bridge Maintenance, Safety and Management, IABMAS 2020, Sapporo, Japan, 28 June–2 July 2020; CRC Press: London, UK, 2021; pp. 3714–3720. [Google Scholar]
- Stałowska, P.; Suchocki, C.; Rutkowska, M. Crack Detection in Building Walls Based on Geometric and Radiometric Point Cloud Information. Autom. Constr. 2022, 134, 104065. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Geng, W.; Li, Z. Enhancing Extraction of Two-Dimensional Engineering Drawings from Three-Dimensional Data of Existing Buildings. J. Build. Eng. 2023, 76, 107235. [Google Scholar] [CrossRef]
- Stanley, T. Assessment of the FARO 3D Focus Laser Scanner for Forest Inventory. Ph.D. Dissertation, University of Southern Queensland, Darling Heights, Australia, 2013. [Google Scholar]
- Kersten, T.P.; Lindstaedt, M. Geometric Accuracy Investigations of Terrestrial Laser Scanner Systems in the Laboratory and in the Field. Appl. Geomat. 2022, 14, 421–434. [Google Scholar] [CrossRef]
- Pervolarakis, Z.; Zidianakis, E.; Katzourakis, A.; Evdaimon, T.; Partarakis, N.; Zabulis, X.; Stephanidis, C. Three-Dimensional Digitization of Archaeological Sites—The Use Case of the Palace of Knossos. Heritage 2023, 6, 904–927. [Google Scholar] [CrossRef]
- FARO Technologies Inc. Faro Focus Laser Scanner User Manual; Worldwide: Purple Downs, Australia, 2011. [Google Scholar]
- Chow, J.C.K.; Lichti, D.D.; Teskey, W.F.; Key, C. Accuracy Assessment of the FARO Focus 3D and Leica HDS6100 Panoramic- Type Terrestrial Laser Scanners through Point-Based and Plane-Based User Self-Calibration. In Proceedings of the FIG Working Week: Knowing to Manage the Territory, Protect the Environment, Evaluate the Cultural Heritage, Rome, Italy, 6–10 May 2012; Volume 610, pp. 6–10. [Google Scholar]
- Chiabrando, F.; Sammartano, G.; Spanò, A.; Spreafico, A. Hybrid 3D Models: When Geomatics Innovations Meet Extensive Built Heritage Complexes. ISPRS Int. J. Geo-Inf. 2019, 8, 124. [Google Scholar] [CrossRef]
- Rocha, G.; Mateus, L.; Fernández, J.; Ferreira, V. A Scan-to-Bim Methodology Applied to Heritage Buildings. Heritage 2020, 3, 47–65. [Google Scholar] [CrossRef]
- Parras, D.; Cavas-Martínez, F.; Nieto, J.; Cañavate, F.J.F.; Fernández-Pacheco, D.G. Reconstruction by Low Cost Software Based on Photogrammetry as a Reverse Engineering Process. In Proceedings of the Lecture Notes in Computer Science, Cairo, Egypt, 2–7 September 2023; Springer: Berlin/Heidelberg, Germany, 2018; Volume 10909, pp. 145–154. [Google Scholar]
- Michalak, J. External Thermal Insulation Composite Systems (ETICS) from Industry and Academia Perspective. Sustainability 2021, 13, 13705. [Google Scholar] [CrossRef]
- Fernandes, C.; De Brito, J.; Cruz, C.O. Architectural Integration of ETICS in Building Rehabilitation. J. Build. Eng. 2016, 5, 178–184. [Google Scholar] [CrossRef]
- Dong, Y.; Kong, J.; Mousavi, S.; Rismanchi, B.; Yap, P.S. Wall Insulation Materials in Different Climate Zones: A Review on Challenges and Opportunities of Available Alternatives. Thermo 2023, 3, 38–65. [Google Scholar] [CrossRef]
- EN 16383:2016; Thermal Insulation Products for Building Applications. Determination of the Hygrothermal Behaviour of External Thermal Insulation Composite Systems with Renders (ETICS). European Committee for Standardization: Brussel, Belgium, 2016.
- SHINING 3D Tech Co., Ltd. FreeScan UE Pro User Manual; Shining 3D Offices: Hangzhou, China, 2023. [Google Scholar]
- Le, Q.; Liscio, E. A Comparative Study between FARO Scene and FARO Zone 3D for Area of Origin Analysis. Forensic Sci. Int. 2019, 301, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Dhruwa, L.; Garg, P.K. Generation of 3D Large-Scale Maps Using LiDAR Point Cloud Data. Int. Soc. Photogramm. Remote Sens. 2023, 48, 1–5. [Google Scholar]
- Dhruwa, L.; Garg, P.K. Positional Accuracy Assessment of Features Using Lidar Point Cloud. Int. Soc. Photogramm. Remote Sens. 2023, 48, 77–80. [Google Scholar] [CrossRef]
- Marzouk, M.; El-Bendary, N. Facility Management of Gas Turbine Power Plants Using 3D Laser Scanning. HBRC J. 2022, 18, 73–83. [Google Scholar] [CrossRef]
- Regassa Hunde, B.; Debebe Woldeyohannes, A. Future Prospects of Computer-Aided Design (CAD)—A Review from the Perspective of Artificial Intelligence (AI), Extended Reality, and 3D Printing. Results Eng. 2022, 14, 100478. [Google Scholar] [CrossRef]
- Szer, J.; Jeruzal, J.; Szer, I.; Filipowicz, P. Periodic Inspections of Buildings Recommendations, Requirements and Problems; Monography; Lodz University of Technology: Lodz, Poland, 2020; ISBN 978-83-66287-43-3. [Google Scholar]
- Sudoł, E.; Piekarczuk, A.; Kozikowska, E.; Mazurek, A. Resistance of External Thermal Insulation Systems with Fire Barriers to Long-Lasting Weathering. Materials 2024, 17, 3113. [Google Scholar] [CrossRef]
- Piekarczuk, A.; Sudoł, E.; Mazurek, A. Measurement Analysis of Large-Area Elements of External Thermal Insulation Composite Systems Using 3D Scanning Techniques. Meas. J. Int. Meas. Confed. 2024, 233, 114755. [Google Scholar] [CrossRef]
- Almukhtar, A.; Saeed, Z.O.; Abanda, H.; Tah, J.H.M. Reality Capture of Buildings Using 3D Laser Scanners. CivilEng 2021, 2, 214–235. [Google Scholar] [CrossRef]
- Blanco, D.; Fernandez, P.; Cuesta, E.; Suarez, C.M.; Beltran, N. Selection of Ambient Light for Laser Digitizing of Quasi-Lambertian Surfaces. Adv. Electr. Eng. Comput. Sci. 2009, 39, 447–457. [Google Scholar] [CrossRef]
Distance Measurement Error | Angular Precision | Position Accuracy | Laser Class |
---|---|---|---|
±1 mm | 19 s | 10 m: 2 mm/25 m: 3.5 mm | Class 1 wavelength 1550 nm |
Scan Mode | Light Source | Volumetric Accuracy | Scan Accuracy | Scan Speed |
---|---|---|---|---|
Multiple Lines Scan, Single Line Scan | 26 laser lines, single laser line | 0.02 + 0.03 mm/m (standard mode) | Up to 0.02 mm | 1,850,000 points/s |
Fine Scan | 7 parallel laser lines | 0.02 + 0.015 mm/m (built-in photogrammetry mode) |
Name | Type of Scanner | |
---|---|---|
FreeScan UEPro | FaroFocus | |
Number of nodes | 4,994,811 | 777,645 |
Min. [mm] | −1.2248 | −5.6247 |
Max. [mm] | 1.2247 | 3.6395 |
Avg. [mm] | 0.0141 | −0.0359 |
RMS [mm] | 0.2239 | 0.3278 |
Std. Dev. [mm] | 0.2234 | 0.3258 |
Var. [mm] | 0.0499 | 0.1062 |
Name | Type of Scanner | |||||||
---|---|---|---|---|---|---|---|---|
FreeScan UEPro | Faro Focus | |||||||
Reference Point | A | B | C | D | A | B | C | D |
Number of nodes | 19 | 12 | 21 | 10 | 2 | 1 | 2 | 1 |
Min. [mm] | 0.5898 | 0.7875 | −0.3570 | −0.4146 | 0.5493 | 0.671 | −0.5679 | −0.2925 |
Max. [mm] | 0.6968 | 0.8328 | −0.2257 | −0.3591 | 0.5693 | 0.671 | −0.4679 | −0.2925 |
avg. [mm] | 0.6354 | 0.8100 | −0.2997 | −0.3839 | 0.5593 | 0.671 | −0.5179 | −0.2925 |
RMS [mm] | 0.6363 | 0.8102 | 0.3028 | 0.3844 | 0.5594 | 0.671 | 0.5203 | 0.2925 |
Std. Dev. [mm] | 0.0322 | 0.0157 | 0.0429 | 0.0199 | 0.01 | 0 | 0.05 | 0 |
Var. [mm] | 0.001 | 0.0002 | 0.0018 | 0.0004 | 0.0001 | 0 | 0.0025 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piekarczuk, A.; Mazurek, A.; Szer, J.; Szer, I. A Case Study of 3D Scanning Techniques in Civil Engineering Using the Terrestrial Laser Scanning Technique. Buildings 2024, 14, 3703. https://doi.org/10.3390/buildings14123703
Piekarczuk A, Mazurek A, Szer J, Szer I. A Case Study of 3D Scanning Techniques in Civil Engineering Using the Terrestrial Laser Scanning Technique. Buildings. 2024; 14(12):3703. https://doi.org/10.3390/buildings14123703
Chicago/Turabian StylePiekarczuk, Artur, Aleksandra Mazurek, Jacek Szer, and Iwona Szer. 2024. "A Case Study of 3D Scanning Techniques in Civil Engineering Using the Terrestrial Laser Scanning Technique" Buildings 14, no. 12: 3703. https://doi.org/10.3390/buildings14123703
APA StylePiekarczuk, A., Mazurek, A., Szer, J., & Szer, I. (2024). A Case Study of 3D Scanning Techniques in Civil Engineering Using the Terrestrial Laser Scanning Technique. Buildings, 14(12), 3703. https://doi.org/10.3390/buildings14123703