Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Materials
2.3. Methods
2.3.1. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. X-Ray Diffraction Analysis (XRD)
2.3.4. Thermogravimetric Analysis (TGA)
2.3.5. Density
2.3.6. Charpy Test
2.3.7. Tensile Strength Test
2.3.8. Hardness Test
3. Results
3.1. Fourier Transform Infrared Spectroscopy (FT-IR)
3.2. Scanning Electron Microscopy (SEM)
3.3. X-Ray Diffraction Analysis (XRD)
3.4. Thermogravimetric Analysis (TGA)
3.5. Density
3.6. Charpy Test
3.7. Tensile Strength Test
3.8. Hardened Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shao, J.; Ni, Y.; Yan, L. Oxidation of furfural to maleic acid and fumaric acid in deep eutectic solvent (DES) under vanadium pentoxide catalysis. J. Bioresour. Bioprod. 2021, 6, 39–44. [Google Scholar] [CrossRef]
- Madni, A.; Kousar, R.; Naeem, N.; Wahid, F. Recent advancements in applications of chitosan-based biomaterials for skin tissue engineering. J. Bioresour. Bioprod. 2021, 6, 11–25. [Google Scholar] [CrossRef]
- Zhang, C.; Khorshidi, H.; Najafi, E.; Ghasemi, M. Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. J. Clean. Prod. 2023, 384, 135390. [Google Scholar] [CrossRef]
- Herrmann, J.; Attanasio, D.; Tykot, R.; van den Hoek, A. Aspects of the trade in colored marbles in Algeria. Afr. Romana 2012, 19, 1331–1342. [Google Scholar]
- Renella, G. Recycling and reuse of sediments in agriculture: Where is the problem? Sustainability 2021, 13, 1648. [Google Scholar] [CrossRef]
- Papatzani, S. A review on the valorization of marble dust/solids or slurry: Classification, current trends and potentials. Indian Concr. J. 2019, 93, 36–54. [Google Scholar]
- Zoubir, Y.H. China’s relations with Algeria: From revolutionary friendship to comprehensive strategic partnership. In China and North Africa: Between Economics, Politics and Security; I.B. Tauris: New York, NY, USA, 2021; p. 125. [Google Scholar]
- Seghir, N.T.; Mellas, M.; Sadowski, Ł.; Żak, A. Effects of marble powder on the properties of the air-cured blended cement paste. J. Clean. Prod. 2018, 183, 858–868. [Google Scholar] [CrossRef]
- Bakshi, P.; Pappu, A.; Patidar, R.; Gupta, M.K.; Thakur, V.K. Transforming Marble Waste into High-Performance, Water-Resistant, and Thermally Insulative Hybrid Polymer Composites for Environmental Sustainability. Polymers 2020, 12, 1781. [Google Scholar] [CrossRef]
- Jassim, N.W.; Hassan, H.A.; Mohammed, H.A.; Fattah, M.Y. Utilization of waste marble powder as sustainable stabilization materials for subgrade layer. Results Eng. 2022, 14, 100436. [Google Scholar] [CrossRef]
- Jain, A.K.; Jha, A.K.; Shivanshi. Geotechnical behaviour and micro-analyses of expansive soil amended with marble dust. Soils Found. 2020, 60, 737–751. [Google Scholar] [CrossRef]
- Athawale, A.A.; Pandit, J.A. Unsaturated polyester resins, blends, interpenetrating polymer networks, composites, and nanocomposites: State of the art and new challenges. In Unsaturated Polyester Resins; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–42. [Google Scholar]
- Pączkowski, P.; Głogowska, K. Preparation and Characterization of Quartz-Reinforced Hybrid Composites Based on Unsaturated Polyester Resin from Post-Consumer PET Recyclate. Materials 2024, 17, 1116. [Google Scholar] [CrossRef] [PubMed]
- Perrot, Y.; Baley, C.; Grohens, Y.; Davies, P. Damage resistance of composites based on glass fibre reinforced low styrene emission resins for marine applications. Appl. Compos. Mater. 2007, 14, 67–87. [Google Scholar] [CrossRef]
- Jules, E.J.; Lomov, S.; Verpoest, I. Characterization of random long fiber composites and prediction of the local stiffness properties. In Proceedings of the FPCM-7 Conference, Newark, DE, USA, 7–9 July 2004. [Google Scholar]
- Mokaddem, A.; Doumi, B.; Belkheir, M.; Touimi, A. Comparative Analysis on the Elastic Behavior of Composite Materials Based on Plant Fibers: Bamboo/Epoxy and Coconut/Epoxy. Curr. Mater. Sci. Former. Recent Pat. Mater. Sci. 2019, 12, 127–135. [Google Scholar] [CrossRef]
- Nayak, S.K.; Satapathy, A. Development and characterization of polymer-based composites filled with micro-sized waste marble dust. Polym. Polym. Compos. 2020, 29, 497–508. [Google Scholar] [CrossRef]
- Çınar, M.E.; Kar, F. Characterization of composite produced from waste PET and marble dust. Constr. Build. Mater. 2017, 163, 734–741. [Google Scholar] [CrossRef]
- Rajawat, A.S.; Singh, S.; Gangil, B.; Ranakoti, L.; Sharma, S.; Asyraf, M.R.M.; Razman, M.R. Effect of Marble Dust on the Mechanical, Morphological, and Wear Performance of Basalt Fibre-Reinforced Epoxy Composites for Structural Applications. Polymers 2022, 14, 1325. [Google Scholar] [CrossRef]
- Nayak, S.K.; Satapathy, A. Wear analysis of waste marble dust-filled polymer composites with an integrated approach based on design of experiments and neural computation. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234, 1846–1856. [Google Scholar] [CrossRef]
- Doan, T.T.L.; Brodowsky, H.M.; Gohs, U.; Mäder, E. Re-use of marble stone powders in producing unsaturated polyester composites. Adv. Eng. Mater. 2018, 20, 1701061. [Google Scholar] [CrossRef]
- Abdulkader, N.J.; Abdula, A.M.; Ahmed, S.S. Mechanical Properties of Polyester Matrix Composites Reinforced with Waste Marble Particles. IOP Conf. Ser. Mater. Sci. Eng. 2020, 978, 012034. [Google Scholar] [CrossRef]
- Kumar, S.R.; Patnaik, A.; Bhat, I. Development and characterization of marble dust-filled dental composite. J. Compos. Mater. 2017, 51, 1997–2008. [Google Scholar] [CrossRef]
- Awad, A.; El-Gamasy, R.; El-Wahab, A.A.A.; Abdellatif, M.H. Mechanical behavior of PP reinforced with marble dust. Constr. Build. Mater. 2019, 228, 116766. [Google Scholar] [CrossRef]
- Awad, A.; El-Wahab, A.A.A.; El-Gamsy, R.; Abdel-Latif, M.H. A study of some thermal and mechanical properties of HDPE blend with marble and granite dust. Ain Shams Eng. J. 2019, 10, 353–358. [Google Scholar] [CrossRef]
- Lendvai, L.; Singh, T.; Ronkay, F. Thermal, thermomechanical and structural properties of recycled polyethylene terephthalate (rPET)/waste marble dust composites. Heliyon 2024, 10, e25015. [Google Scholar] [CrossRef]
- Singh, T.; Pattnaik, P.; Shekhawat, D.; Ranakoti, L.; Lendvai, L. Waste marble dust-filled sustainable polymer composite selection using a multi-criteria decision-making technique. Arab. J. Chem. 2023, 16, 104695. [Google Scholar] [CrossRef]
- Sharma, A.; Choudhary, M.; Agarwal, P.; Biswas, S.K.; Patnaik, A. Effect of micro-sized marble dust on mechanical and thermo-mechanical properties of needle-punched nonwoven jute fiber reinforced polymer composites. Polym. Compos. 2020, 42, 881–898. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, K.; Liu, F.; Kang, H. Development and performance of a novel hybrid toughened unsaturated polyester resin (UPR) composite for crack repair of asphalt pavement. Constr. Build. Mater. 2024, 416, 135274. [Google Scholar] [CrossRef]
- Polymex-Laboratoire D’analyse, D’étude et Expertise Chimique. Available online: https://polymex.fr/piscine-polyester-defectueuse (accessed on 31 October 2024).
- Safety Information Form tp220tico tixotropic Polyester Resin, N°29204, “Regulation of the Ministry of Environment and Ur-banization of the T.C. on Safety Data Sheets for Hazardous Substances and Mixtures”. Available online: https://www.turkuazpolyester.com.tr/dil/eng (accessed on 31 October 2024).
- Nouryon Product Data Sheet Butanox M-50. 2021. Available online: https://www.nouryon.com/globalassets/inriver/resources/pds-butanox-m-50-thermoset-composites-glo-en.pdf (accessed on 31 October 2024).
- Babouri, L.; Biskri, Y.; Khadraoui, F.; El Mendili, Y. Mechanical performance and corrosion resistance of reinforced concrete with marble waste. Eur. J. Environ. Civ. Eng. 2022, 26, 4112–4129. [Google Scholar] [CrossRef]
- Perrot, Y. Influence des Propriétés de la Matrice sur le Comportement Mécanique de Matériaux Composites Verre/Polyester Utilisés en Construction Navale de Plaisance-Cas des Résines Polyester Limitant les Émissions de Styrène. Doctoral Dissertation, Université de Bretagne Sud, Vannes, France, 2006. [Google Scholar]
- Spectrum™ 10 software. Available online: https://www.perkinelmer.com/fr/product/software-kit-spectrum-10-lx108873 (accessed on 31 October 2024).
- ASTM E168-16; Standard Practices for General Techniques of Infrared Quantitative Analysis. ASTM: West Conshohocken, PA, USA, 2023.
- ASTM E1252-98; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM: West Conshohocken, PA, USA, 2021.
- ASTM A1131-08; Standard Test Method for Compositional Analysis by Thermogravimetry. ASTM International: West Conshohocken, PA, USA, 2014.
- Wikberg, H.; Maunu, S.L. Characterization of thermally modified hard and softwoods by 13C CPMAS NMR. Carbohydr. Polym. 2004, 58, 461–466. [Google Scholar] [CrossRef]
- NF EN ISO 1183-1; Plastiques—Méthodes de Détermination de la Masse Volumique des Plastiques non Alvéolaires—Partie 1: Méthode par Immersion, Méthode du Pycnomètre en Milieu Liquide et Méthode par Titrage. ISO: Geneva, Switzerland, 2019.
- ASTM D-256; Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics. ASTM: West Conshohocken, PA, USA, 2023.
- Yao, B.; Zhou, Z.; Duan, L.; Chen, Z. Anisotropic Charpy impact behavior of novel interpenetrating phase composites. Vacuum 2018, 155, 83–90. [Google Scholar] [CrossRef]
- Tanks, J.; Sharp, S.; Harris, D. Charpy impact testing to assess the quality and durability of unidirectional CFRP rods. Polym. Test. 2016, 51, 63–68. [Google Scholar] [CrossRef]
- ASTM D882; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. ASTM: West Conshohocken, PA, USA, 2018.
- ASTM D2240-15; Standard Test Method for Rubber Property—Durometer Hardness. ASTM: West Conshohocken, PA, USA, 2021.
- Aldas, M.; Pavon, C.; De La Rosa-Ramírez, H.; Ferri, J.M.; Bertomeu, D.; Samper, M.D.; López-Martínez, J. The Impact of Biodegradable Plastics in the Properties of Recycled Polyethylene Terephthalate. J. Polym. Environ. 2021, 29, 2686–2700. [Google Scholar] [CrossRef]
- Ekinci, A.; Öksüz, M.; Ates, M.; Aydin, I. Thermal and Mechanical Properties of Polypropylene/Post-consumer Poly (ethylene terephthalate) Blends: Bottle-to-Bottle recycling. J. Polym. Res. 2022, 29, 433. [Google Scholar] [CrossRef]
- Ali, F.; Hossain, S.; Lithi, I.J.; Ahmed, S.; Chowdhury, A.S. Fabrication and characterization of sustainable composites from animal fibers reinforced unsaturated polyester resin. Heliyon 2024, 10, e33441. [Google Scholar] [CrossRef]
- Kiemle, D.J.; Silverstein, R.M.; Webster, F.X. Identification Spectrométrique de Composés Organiques-3ème Édition; De Boeck Superieur: Louvain-la-Neuve, Belgium, 2016. [Google Scholar]
- Lubna, M.M.; Salem, K.S.; Sarker, M.; Khan, M.A. Modification of Thermo-Mechanical Properties of Recycled PET by Vinyl Acetate (VAc) Monomer Grafting Using Gamma Irradiation. J. Polym. Environ. 2018, 26, 83–90. [Google Scholar] [CrossRef]
- Khan, A.; Patidar, R.; Pappu, A. Marble waste characterization and reinforcement in low density polyethylene composites via injection moulding: Towards improved mechanical strength and thermal conductivity. Constr. Build. Mater. 2021, 269, 121229. [Google Scholar] [CrossRef]
- Lo, J.; Anders, M.; Centea, T.; Nutt, S. The effect of process parameters on volatile release for a benzoxazine–epoxy RTM resin. Compos. Part A Appl. Sci. Manuf. 2016, 84, 326–335. [Google Scholar] [CrossRef]
- Bogiatzidis, C.; Zoumpoulakis, L. Thermoset Polymer Matrix Composites of Epoxy, Unsaturated Polyester, and Novolac Resin Embedding Construction and Demolition Wastes powder: A Comparative Study. Polymers 2021, 13, 737. [Google Scholar] [CrossRef]
- Chu, F.; Wang, W.; Zhou, Y.; Xu, Z.; Zou, B.; Jiang, X.; Hu, Y.; Hu, W. Fully bio-based and intrinsically flame retardant unsaturated polyester cross-linked with isosorbide-based diluents. Chemosphere 2023, 344, 140371. [Google Scholar] [CrossRef]
- Wang, R.; Liu, X.; Yang, F.; Gao, S.; Zhou, S.; Kong, Y. Neighboring Cu toward Mn site in confined mesopore to trigger strong interplay for boosting catalytic epoxidation of styrene. Appl. Surf. Sci. 2021, 537, 148100. [Google Scholar] [CrossRef]
- Rassmann, S.; Reid, R.G.; Paskaramoorthy, R. Effects of processing conditions on the mechanical and water absorption properties of resin transfer moulded kenaf fibre reinforced polyester composite laminates. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1612–1619. [Google Scholar] [CrossRef]
- Ribeiro, C.E.G.; Rodriguez, R.J.S.; de Carvalho, E.A. Microstructure and mechanical properties of artificial marble. Constr. Build. Mater. 2017, 149, 149–155. [Google Scholar] [CrossRef]
- Wang, J.G.; Wu, L.; Zhou, J.X.; Qi, X.Y.; Yi, D.L. Preparation and Characterization of Marble/Unsaturated Polyester Resin Composite Materials. Adv. Mater. Res. 2011, 152–153, 825–828. [Google Scholar] [CrossRef]
- Fu, S.Y.; Feng, X.Q.; Lauke, B.; Mai, Y.W. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Diao, X.; Song, Y.; Pan, S.; Cai, X.; Shi, T.; Wang, L. Enhanced dynamic compressive performance of silicon carbide whiskers-modified mortars. Constr. Build. Mater. 2024, 432, 136626. [Google Scholar] [CrossRef]
- de Azevedo, N.H.; de Matos, P.R.; Gleize, P.J.; Betioli, A.M. Effect of thermal treatment of SiC nanowhiskers on rheological, hydration, mechanical and microstructure properties of Portland cement pastes. Cem. Concr. Compos. 2021, 117, 103903. [Google Scholar] [CrossRef]
- Ding, P.; Qu, B. Synthesis and characterization of exfoliated polystyrene/ZnAl layered double hydroxide nanocomposite via emulsion polymerization. J. Colloid Interface Sci. 2005, 291, 13–18. [Google Scholar] [CrossRef]
- Farsane, M.; Saadouni, K.; Lhasnaoui, S.; Akhiate, A.; Anouar, A.; Chah, S.; Bouzziri, M. Effect of Recycled Ceramic Waste Content on the Properties of Unsaturated Polyester Resin. Preprints 2019, 2019120274. [Google Scholar] [CrossRef]
- El Mendili, Y.; Chateigner, D.; Orberger, B.; Gascoin, S.; Bardeau, J.-F.; Petit, S.; Duée, C.; Le Guen, M.; Pilliere, H. Combined XRF, XRD, SEM-EDS, and Raman analyses on serpentinized harzburgite (nickel laterite mine, New Caledonia): Implications for exploration and geometallurgy. ACS Earth Space Chem. 2019, 3, 2237–2249. [Google Scholar] [CrossRef]
- Salemane, M.; Baruwa, A.; Makhatha, M. Investigating the chemical stability and thermal functionality of DMPT promoted TiO2 nanoparticles on unsaturated polyester resin. Results Eng. 2024, 22, 102116. [Google Scholar] [CrossRef]
- de Souza, F.; Bragança, S.R. Thermogravimetric analysis of limestones with different contents of MgO and microstructural characterization in oxy-combustion. Thermochim. Acta 2013, 561, 19–25. [Google Scholar] [CrossRef]
- Barcina, L.; Espina, A.; Suárez, M.; García, J.; Rodríguez, J. Characterization of monumental carbonate stones by thermal analysis (TG, DTG and DSC). Thermochim. Acta 1997, 290, 181–189. [Google Scholar] [CrossRef]
- Ror, C.K.; Tejyan, S.; Kumar, N. Effect of marble dust reinforcement in composites for different applications: A review. Mater. Today Proc. 2022, 60, 1120–1124. [Google Scholar] [CrossRef]
- Kumar, T.N.; Vikas, B.; Krishna, M.R.; Jyothi, Y.; Imran, S. Development of composite slabs of marble powder embedded epoxy resin. Mater. Today Proc. 2018, 5, 13031–13035. [Google Scholar] [CrossRef]
- Albdiry, M.; Ku, H.; Yousif, B. Impact fracture behaviour of silane-treated halloysite nanotubes-reinforced unsaturated polyester. Eng. Fail. Anal. 2013, 35, 718–725. [Google Scholar] [CrossRef]
- Gagliardi, S.; Arrighi, V.; Ferguson, R.; Telling, M. Restricted dynamics in polymer-filler systems. Phys. B Condens. Matter 2001, 301, 110–114. [Google Scholar] [CrossRef]
- Attallah, M.S.; Mohammed, R.A.; Abdel-Rahim, R.H. Characterization of Unsaturated Polyester Filled with Waste Coconut Shells, Walnut Shells, and Carbon Fibers. Fluid Dyn. Mater. Process. 2023, 19, 2449–2469. [Google Scholar] [CrossRef]
Characteristic | UPR | PMEC Catalyst |
---|---|---|
Gross formula | C8H18O6 | |
Appearance | Liquid | Clear, colorless liquid |
Color | Pale blue | Transparent |
Odor | Odor of styrene | / |
Flash point (°C) | 23 < T < 60 | / |
Solubility (s) | Insoluble in water | / |
Viscosity (mPa·s) | 1800–2500 at 25 °C | 24 at 20 °C |
Specific gravity (-) | 1.17 | / |
Density (g/cm3) | 1.0852 | 1.180 |
Total active oxygen | / | 8.8–9.0% |
Compressive strength (MPa) | 80 | / |
Elastic modulus (GPa) | 2 | / |
Electrical conductivity (mS/cm) | 3.7 | / |
Thermal conductivity (W/m·K) | 0.28 | / |
Chemical Composition (%) | |
---|---|
Silicon dioxide (SiO2) | 0.73 |
Aluminum oxide (Al2O3) | 0.23 |
Ferric oxide (Fe2O3) | 0.15 |
Calcium oxide (CaO) | 56.01 |
Magnesium oxide (MgO) | 1.96 |
Sodium oxide (Na2O) | 0.43 |
Potassium oxide (K2O) | 0.01 |
Sulfur trioxide (SO3) | 0.01 |
Chloride (Cl−) | 0.12 |
Loss on ignition | 40.35 |
Physical Properties | |
SSB (cm2/g) | 5307 |
Density (g/cm3) | 2.79 |
Composite | 0 UPR/MW | 5 UPR/MW | 10 UPR/MW | 15 UPR/MW | 20 UPR/MW |
---|---|---|---|---|---|
Td_0 | 209 | 216 | 218 | 222 | 227 |
Td_max | 417 | 422 | 422 | 423 | 424 |
Td_final | 473 | 473 | 474 | 476 | 479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baghloul, R.; Babouri, L.; Hebhoub, H.; Boukhelf, F.; El Mendili, Y. Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste. Buildings 2024, 14, 3877. https://doi.org/10.3390/buildings14123877
Baghloul R, Babouri L, Hebhoub H, Boukhelf F, El Mendili Y. Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste. Buildings. 2024; 14(12):3877. https://doi.org/10.3390/buildings14123877
Chicago/Turabian StyleBaghloul, Rahima, Laidi Babouri, Houria Hebhoub, Fouad Boukhelf, and Yassine El Mendili. 2024. "Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste" Buildings 14, no. 12: 3877. https://doi.org/10.3390/buildings14123877
APA StyleBaghloul, R., Babouri, L., Hebhoub, H., Boukhelf, F., & El Mendili, Y. (2024). Assessment of Mechanical Behavior and Microstructure of Unsaturated Polyester Resin Composites Reinforced with Recycled Marble Waste. Buildings, 14(12), 3877. https://doi.org/10.3390/buildings14123877