Experimental and Numerical Investigation on Flexural Strengthening of Precast Concrete Corbel Connections with Fiber-Reinforced Plastic Sheet
Abstract
:1. Introduction
2. Experimental Testing Program
2.1. Description of the Test Specimens
2.2. Preparation of the Test Archetypes
2.3. Material Properties
2.4. Test Setup and Instrumentation
3. Experimental Results
4. Numerical Modeling and Analysis
4.1. Simulation of the Archetypes
4.2. Analysis of the Illustrative Examples
5. Conclusions
- Strengthening the PC-1 specimen’s connection with L-shaped FRP sheets at the top and bottom minimally impacted the flexural capacity due to the high shear–stress concentration. Relying solely on the spiral U-shaped FRP sheets without a mechanical anchorage for reinforcing the PC-2 connection did not significantly improve the bending capacity due to the occurring debonding. However, incorporating spiral sheets in PC-2 enhanced the debonding capacity of the fibers by up to 100%, extending the ultimate strain from εu = 0.001 to εu = 0.002. The PC-3 connection increased the moment capacity to 81% of a fixed connection’s flexural capacity, effectively controlling debonding with an anchoring system. Mechanical anchors notably amplified the ultimate separation capacity of the FRP sheets by 530%, increasing the ultimate separation strain from 0.001 to over 0.0053, accounting for 34% of the ultimate tensile strain of the FRPs.
- The number and thickness of the FRP layers affect the ultimate debonding strain. Mechanical anchors over U-shaped FRP sheets delayed reinforcement yielding. Theoretical analysis for the PC-3 archetype, based on the experimental findings, revealed 35% mobilization of the FRP’s ultimate capacity, with simulation results showing a 41% contribution, indicating a 6% difference between the numerical modeling and theoretical outcomes. The ultimate strain from simulating PC-3 corresponds to an 86% agreement with the ACI-440 strain for simple beams. Additionally, U-shaped FRP sheets can potentially transform a pinned connection into a fully fixed one, significantly enhancing the flexural strength, surpassing that of the cast-in-place FC specimen by approximately 1.19 to 1.5 times.
- The ultimate moment capacity of the connection is enhanced by increasing the bond length of the U-shaped sheet. Similarly, expanding the width of the U-shaped sheet augments the resisting moment of the connection to a certain degree, resulting in an increased bearing capacity of the connection. Additionally, in neither of the archetypes did the FRP sheet strain reach beyond the ultimate strain at the peak load, thereby preventing any tearing. Consequently, there is potential to increase the number of sheet layers across all the samples, if separation or buckling does not occur until the sheet’s ultimate strain.
- Full wrap or side sheets at the end of the U-shaped sheet had minimal impact on the stress reduction or load-bearing capacity. Spirals over the beam and corbel side sheets significantly reduced stress in the U-shaped sheet. However, column-side FRP sheets and full wrap on the column or corbel had a negligible impact on stress reduction or moment resistance. Longitudinal beam reinforcement ratios directly influenced the load-bearing capacity. The concrete strength affected the stiffness more than the rotational moment capacity, while an increased FRP fiber elastic modulus enhanced the connection stiffness.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Neuberger, Y.M.; de Lima Araújo, D. An improved analytical model for two-step corbels in a precast concrete system. Eng. Struct. 2023, 284, 115947. [Google Scholar] [CrossRef]
- Ghayeb, H.H.; Razak, H.A.; Sulong, N.R. Performance of dowel beam-to-column connections for precast concrete systems under seismic loads: A review. Constr. Build. Mater. 2020, 237, 117582. [Google Scholar] [CrossRef]
- Akguzel, U.; Pampanin, S. Assessment and design procedure for the seismic retrofit of reinforced concrete beam-column joints using FRP composite materials. J. Compos. Constr. 2012, 16, 21–34. [Google Scholar] [CrossRef]
- Huang, C.; Song, J.; Zhang, N.; Lee, G.C. Seismic performance of precast prestressed concrete bridge girders using field-cast ultrahigh-performance concrete connections. J. Bridge Eng. 2019, 24, 04019046. [Google Scholar] [CrossRef]
- Sritharan, S.; Aaleti, S.; Henry, R.S.; Liu, K.Y.; Tsai, K.C. Precast concrete wall with end columns (PreWEC) for earthquake resistant design. Earthq. Eng. Struct. Dyn. 2015, 44, 2075–2092. [Google Scholar] [CrossRef]
- Singhal, S.; Chourasia, A.; Chellappa, S.; Parashar, J. Precast reinforced concrete shear walls: State of the art review. Struct. Concr. 2019, 20, 886–898. [Google Scholar] [CrossRef]
- Abaev, Z.; Valiev, A.; Kodzaev, M. Modeling of the precast concrete hollow-core floor diaphragm with tie beams under seismic action. In AIP Conference Proceedings; AIP Publishing: New York, NY, USA, 2023; Volume 2833. [Google Scholar]
- Kurama, Y.C.; Sritharan, S.; Fleischman, R.B.; Restrepo, J.I.; Henry, R.S.; Cleland, N.M.; Ghosh, S.K.; Bonelli, P. Seismic-resistant precast concrete structures: State of the art. J. Struct. Eng. 2018, 144, 03118001. [Google Scholar] [CrossRef]
- Del Vecchio, C.; Di Ludovico, M.; Balsamo, A.; Prota, A.; Manfredi, G.; Dolce, M. Experimental investigation of exterior RC beam-column joints retrofitted with FRP systems. J. Compos. Constr. 2014, 18, 04014002. [Google Scholar] [CrossRef]
- Aninthaneni, P.K.; Dhakal, R.P.; Marshall, J.; Bothara, J. Experimental investigation of “dry” jointed precast concrete frame sub-assemblies with steel angle and tube connections. Bull. Earthq. Eng. 2020, 18, 3659–3681. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; Hao, H. Dynamic response of precast concrete beam with wet connection subjected to impact loads. Eng. Struct. 2019, 191, 247–263. [Google Scholar] [CrossRef]
- Martins, R.; Carmo, R.D.; Costa, H.; Júlio, E. A review on precast structural concrete walls and connections. Adv. Struct. Eng. 2023, 26, 2600–2620. [Google Scholar] [CrossRef]
- Zhang, J.; Ding, C.; Rong, X.; Yang, H.; Wang, K.; Zhang, B. Experimental seismic study of precast hybrid SFC/RC beam–column connections with different connection details. Eng. Struct. 2020, 208, 110295. [Google Scholar] [CrossRef]
- Psycharis, I.N.; Mouzakis, H.P. Shear resistance of pinned connections of precast members to monotonic and cyclic loading. Eng. Struct. 2012, 41, 413–427. [Google Scholar] [CrossRef]
- Holly, I.; Abrahoim, I. Connections and joints in precast concrete structures. Slovak J. Civ. Eng. 2020, 28, 49–56. [Google Scholar] [CrossRef]
- Iverson, J.K.; Hawkins, N.M. Performance of Precast/Prestressed Concrete Building Structures During the Northridge Earthquake. PCI J. 1994, 39, 65–76. [Google Scholar] [CrossRef]
- Wu, G.; Feng, D.C.; Wang, C.L. Ductile Precast Concrete Frame with Dry-Connections. In Novel Precast Concrete Structure Systems; Springer Nature: Singapore, 2023; pp. 33–86. [Google Scholar]
- Xie, L.; Wu, J.; Zhang, J.; Liu, C. Experimental study on mechanical behaviour of replaceable energy dissipation connectors for precast concrete frames. Structures 2021, 33, 3147–3162. [Google Scholar] [CrossRef]
- Mostofinejad, D.; Arefian, B. Generic assessment of effective bond length of FRP-concrete joint based on the initiation of debonding: Experimental and analytical investigation. Compos. Struct. 2021, 277, 114625. [Google Scholar] [CrossRef]
- Aninthaneni, P.K.; Dhakal, R.P.; Marshall, J.; Bothara, J. Nonlinear cyclic behaviour of precast concrete frame sub-assemblies with “dry” end plate connection. Structures 2018, 14, 124–136. [Google Scholar] [CrossRef]
- Li, Z.Y.; Kang, S.B.; He, H.; Lu, W.Q.; Liu, H.J.; Lu, C.J. Seismic behaviour of precast concrete beam-column connections with bolted end plates. Structures 2023, 58, 105343. [Google Scholar] [CrossRef]
- Rajeswari, M.; Jaya, K.P. Cyclic performance of emulative precast beam to column connection with corbel using dowel bar. Rev. Constr. 2022, 21, 354–367. [Google Scholar]
- Nimse, R.B.; Joshi, D.D.; Patel, P.V. Experimental study on precast beam column connections constructed using RC corbel and steel billet under progressive collapse scenario. In Structures Congress; ASCE: Reston, VA, USA, 2015; pp. 1101–1117. [Google Scholar]
- Bahrami, S.; Madhkhan, M.; Shirmohammadi, F.; Nazemi, N. Behavior of two new moment resisting precast beam to column connections subjected to lateral loading. Eng. Struct. 2017, 132, 808–821. [Google Scholar] [CrossRef]
- Dasgupta, A. Retrofitting of concrete structure with fiber reinforced polymer. Int. J. 2018, 4, 42–49. [Google Scholar]
- Saadatmanesh, H.; Ehsani, M. Fiber composite plates can strengthen beams. Concr. Int. 1997, 12, 65–76. [Google Scholar]
- Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [Google Scholar] [CrossRef]
- Aljidda, O.; Alnahhal, W.; El Refai, A. Bond Durability of Near-Surface-Mounted BFRP and GFRP Bars in Aggressive Environments. J. Compos. Constr. 2023, 27, 04023055. [Google Scholar] [CrossRef]
- Li, J.; Bakoss, S.L.; Samali, B.; Ye, L. Reinforcement of concrete beam–column connections with hybrid FRP sheet. Compos. Struct. 1999, 47, 805–812. [Google Scholar] [CrossRef]
- Shrestha, R.; Smith, S.T.; Samali, B. Strengthening RC beam–column connections with FRP strips. Proc. Inst. Civ. Eng. -Struct. Build. 2009, 162, 323–334. [Google Scholar] [CrossRef]
- Allam, K.; Mosallam, A.S.; Salama, M.A. Experimental evaluation of seismic performance of interior RC beam-column joints strengthened with FRP composites. Eng. Struct. 2019, 196, 109308. [Google Scholar] [CrossRef]
- Antonopoluos, C.P.; Triantafillou, T.C. Analysis of FRP-Strengthened RC Beam-Column Joints. Compos. Constr. 2002, 6, 41–51. [Google Scholar] [CrossRef]
- Gergely, I.; Pantelides, C.P.; Reaveley, L.D. Shear Strengthening of RC T-joints Using CFRP Composites. Compos. Constr. 2000, 4, 56–64. [Google Scholar] [CrossRef]
- Parvin, A.; Granata, P. External Fiber Composite Reinforcement of Concrete Structural Members. In Adaptive Structures, Eighth Japan/US Conference Proceedings; CRC Press: Boca Raton, FL, USA, 1998; pp. 942–948. [Google Scholar]
- Antonopoluos, C.P.; Triantafillou, T.C. Experimental Investigation of FRP-Strengthened RC Beam-Column Joints. Compos. Constr. 2003, 6, 39–49. [Google Scholar] [CrossRef]
- Harmon, T.G.; Kim, Y.J.; Johnson, T.; Stark, A. Bond of Surface-Mounted Fiber-Reinforced Polymer Reinforcement for Concrete Structures. ACI Struct. J. 2003, 57, 557–564. [Google Scholar]
- Tumialan, G.; Serra, P.; Nanni, A.; Belarbi, A. Concrete Cover Delamination in Reinforced Concrete Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets. In Fiber Reinforced Polymer Reinforcement for Reinforced Concrete Structures, Proceedings of the Fourth International Symposium, SP-188; Dolan, C.W., Rizkalla, S.H., Nanni, A., Eds.; American Concrete Institute: Farmington Hills, MI, USA, 1999; pp. 725–735. [Google Scholar]
- ACI Committee. Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2008. [Google Scholar]
- Mass, G.R. Proportioning mass concrete incorporating Pozzolans using ACI 211.1. Concr. Int. 1982, 4, 48–55. [Google Scholar]
- Hernandez, D.A.; Orlandi, M.O. Mechanical properties of composites materials SIKACARBODURS512, SIKADUR 30 and SIKADUR 330. In Proceedings of the 22o CBECiMat–Congresso Brasileiro de Engenharia e Ciência dos Materiais, Natal, RN, Brasil, 6–10 November 2016. [Google Scholar]
- Holzenkampfer, O. Ingenieurmodelle des Verbundes Geklebter Bewehrung fur Betonbauteile. Ph.D. Thesis, TU Braunschweig, Braunschweig, Germany, 1994. (In German). [Google Scholar]
- Sharif, A.; Al-Sulaimani, G.J.; Basunbul, I.A.; Baluch, M.H.; Ghaleb, B.N. Strengthening of Initially Loaded Reinforced Concrete Beams Using FRP Plates. ACI Struct. J. 1994, 91, 160–168. [Google Scholar]
- Arya, C.; Farmer, N. Design guidelines for flexural strengthening of concrete members using FRP composites. In FRPRCS-5: Fibre-Reinforced Plastics for Reinforced Concrete Structures, Proceedings of the Fifth International Conference on Fibre-Reinforced Plastics for Reinforced Concrete Structures, Cambridge, UK, 16–18 July 2001; Thomas Telford Publishing: London, UK, 2001; Volume 1, pp. 167–176. [Google Scholar]
- ACI Committee 440. Guide for the design and construction of externally bonded FRP systems for strengthened concrete structures, ACI 440.2R-02. In Structures Congress 2005: Metropolis and Beyond; ASCE: Reston, VA, USA, 2005. [Google Scholar]
Archetype | f′c (MPa) | ρfb (%) | ρfw (%) |
---|---|---|---|
FC | 21.3 | 0.00 | 0.00 |
PC-1 | 23.2 | 0.25 | 0.11 |
PC-2 | 23.1 | 0.22 | 0.22 |
PC-3 | 21.1 | 0.22 | 0.22 |
Type | E (GPa) | W(g/m2) | γ (g/m3) | Fu (MPa) | εu (%) | t (mm) |
---|---|---|---|---|---|---|
SikaWrap-200C * | 230 | 200 ± 5% | 1.80 | 3900 | 1.55 | 0.11 |
Archetype | Lx (mm) | Wx (mm) | Mu (kN.mm) | Mu/Mu, FC | εu(U-Shap) | ε/εu |
---|---|---|---|---|---|---|
FC (1) | - | - | 24 | 1.00 | - | - |
PC-3 (1) | 300 | 50 | 19.5 | 0.81 | - | - |
PC-4, PC-13, PC-22, PC-31 | 200 | 50 | 28.5 | 1.19 | 0.0111 | 0.72 |
PC-5, PC-14, PC-23, PC-32 | 200 | 130 | 95.2 | 1.21 | 0.0105 | 0.68 |
PC-6, PC-15, PC-24, PC-33 | 200 | 200 | 29.2 | 1.22 | 0.0099 | 0.64 |
PC-7, PC-16, PC-25, PC-34 | 300 | 50 | 31.2 | 1.30 | 0.0122 | 0.79 |
PC-8, PC-17, PC-26, PC-35 | 300 | 130 | 32.3 | 1.35 | 0.0115 | 0.74 |
PC-9, PC-18, PC-27, PC-36 | 300 | 200 | 32.5 | 1.35 | 0.0108 | 0.7 |
PC-10, PC-19, PC-28, PC-37 | 400 | 50 | 34.1 | 1.42 | 0.0131 | 0.84 |
PC-11, PC-20, PC-29, PC-38 | 400 | 130 | 35.0 | 1.46 | 0.0115 | 0.74 |
PC-12, PC-21, PC-30, PC-39 | 400 | 200 | 35.4 | 1.47 | 0.0104 | 0.67 |
PC-40 (2) | 200 | 50 | 29.7 | 1.24 | 0.0074 | 0.48 |
PC-41 (2) | 200 | 130 | 29.4 | 1.23 | 0.0081 | 0.52 |
PC-42 (2) | 200 | 200 | 29.5 | 1.23 | 0.0089 | 0.57 |
PC-43 (2) | 300 | 50 | 32.2 | 1.34 | 0.0081 | 0.52 |
PC-44 (2) | 300 | 130 | 32.7 | 1.37 | 0.0092 | 0.59 |
PC-45(2) | 300 | 200 | 32.8 | 1.37 | 0.0097 | 0.63 |
PC-46 (2) | 400 | 50 | 35.1 | 1.46 | 0.0087 | 0.56 |
PC-47 (2) | 400 | 130 | 35.7 | 1.49 | 0.0092 | 0.59 |
PC-48 (2) | 400 | 200 | 35.9 | 1.50 | 0.0093 | 0.6 |
PC-49 (2) | 200 | 50 | 29.6 | 1.23 | 0.0087 | 0.56 |
PC-50 (2) | 200 | 130 | 29.4 | 1.23 | 0.0088 | 0.57 |
PC-51 (2) | 200 | 200 | 29.3 | 1.22 | 0.0088 | 0.57 |
PC-52 (2) | 300 | 50 | 3.21 | 0.13 | 0.0097 | 0.62 |
PC-53 (2) | 300 | 130 | 32.7 | 1.36 | 0.0097 | 0.62 |
PC-54 (2) | 300 | 200 | 32.7 | 1.36 | 0.0097 | 0.62 |
PC-55 (2) | 400 | 50 | 35.0 | 0.15 | 0.0102 | 0.66 |
PC-56 (2) | 400 | 130 | 35.6 | 1.48 | 0.0104 | 0.67 |
PC-57 (2) | 400 | 200 | 35.8 | 1.49 | 0.0105 | 0.68 |
PC-58 (3) | 200 | 50 | 29.3 | 1.23 | 0.0111 | 0.72 |
PC-59 (3) | 200 | 130 | 29.8 | 1.25 | 0.0105 | 0.68 |
PC-60 (3) | 200 | 200 | 30.1 | 1.26 | 0.0099 | 0.64 |
PC-61 (3) | 300 | 50 | 32.1 | 1.34 | 0.0122 | 0.79 |
PC-62 (3) | 300 | 130 | 33.3 | 1.39 | 0.0115 | 0.74 |
PC-63 (3) | 300 | 200 | 33.4 | 1.39 | 0.0108 | 0.7 |
PC-64 (3) | 400 | 50 | 35.1 | 1.46 | 0.0131 | 0.84 |
PC-65 (3) | 400 | 130 | 36.0 | 1.50 | 0.0115 | 0.74 |
PC-66 (3) | 400 | 200 | 36.4 | 1.51 | 0.0104 | 0.67 |
PC-67 (2,3), PC-76 (2,3) | 200 | 50 | 28.2 | 1.19 | 0.0107 | 0.69 |
PC-68 (2,3), PC-77 (2,3) | 200 | 130 | 27.5 | 1.15 | 0.0097 | 0.62 |
PC-69 (2,3), PC-78 (2,3) | 200 | 200 | 27.4 | 1.15 | 0.009 | 0.58 |
PC-70 (2,3), PC-79 (2,3) | 300 | 50 | 32.1 | 1.34 | 0.0122 | 0.79 |
PC-71 (2,3), PC-80 (2,3) | 300 | 130 | 31.3 | 1.31 | 0.0108 | 0.7 |
PC-72 (2,3), PC-81 (2,3) | 300 | 200 | 30.9 | 1.29 | 0.01 | 0.64 |
PC-73 (2,3), PC-82 (2,3) | 400 | 50 | 34.3 | 1.43 | 0.0128 | 0.82 |
PC-74 (2,3), PC-83 (2,3) | 400 | 130 | 36.6 | 1.53 | 0.0117 | 0.75 |
PC-75 (2,3), PC-84 (2,3) | 400 | 200 | 37.1 | 1.54 | 0.0106 | 0.68 |
PC-85 (2,3) | 200 | 50 | 32.2 | 1.36 | 0.0122 | 0.79 |
PC-86 (2,3) | 200 | 130 | 32.6 | 1.36 | 0.0115 | 0.74 |
PC-87 (2,3) | 200 | 200 | 32.9 | 1.38 | 0.0108 | 0.7 |
PC-88 (2,3) | 300 | 50 | 35.3 | 1.47 | 0.0134 | 0.93 |
PC-89 (2,3) | 300 | 130 | 36.5 | 1.53 | 0.0126 | 0.81 |
PC-90 (2,3) | 300 | 200 | 36.5 | 1.52 | 0.0118 | 0.76 |
PC-91 (2,3) | 400 | 50 | 38.6 | 1.61 | 0.0144 | 0.93 |
PC-92 (2,3) | 400 | 130 | 39.4 | 1.65 | 0.0126 | 0.81 |
PC-93 (2,3) | 400 | 200 | 39.9 | 1.66 | 0.0114 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahgozar, N.; Rahgozar, N. Experimental and Numerical Investigation on Flexural Strengthening of Precast Concrete Corbel Connections with Fiber-Reinforced Plastic Sheet. Buildings 2024, 14, 387. https://doi.org/10.3390/buildings14020387
Rahgozar N, Rahgozar N. Experimental and Numerical Investigation on Flexural Strengthening of Precast Concrete Corbel Connections with Fiber-Reinforced Plastic Sheet. Buildings. 2024; 14(2):387. https://doi.org/10.3390/buildings14020387
Chicago/Turabian StyleRahgozar, Nima, and Navid Rahgozar. 2024. "Experimental and Numerical Investigation on Flexural Strengthening of Precast Concrete Corbel Connections with Fiber-Reinforced Plastic Sheet" Buildings 14, no. 2: 387. https://doi.org/10.3390/buildings14020387
APA StyleRahgozar, N., & Rahgozar, N. (2024). Experimental and Numerical Investigation on Flexural Strengthening of Precast Concrete Corbel Connections with Fiber-Reinforced Plastic Sheet. Buildings, 14(2), 387. https://doi.org/10.3390/buildings14020387