Crack Width Recognition of Tunnel Tube Sheet Based on YOLOv8 Algorithm and 3D Imaging
Abstract
:1. Introduction
2. Characterization Test of Industrial Cameras on Inspection Vehicles
2.1. Characterization Test Preparation
2.2. Feasibility Analysis of Imaging Crack Identification
3. Pixel Resolution Correction
4. Experimental Analysis of Tunnel Tube Sheet Crack Imaging
4.1. Imaging Test of Shield Segment Crack
4.2. Pipe Sheet Crack Image Processing
4.3. Pipe Sheet Crack Shape Extraction Based on YOLOv8 Modeling
4.4. Calculation of Crack Width
5. Test and Verify the Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, F.W.; Feng, A.J. 2022 China Urban Rail Transit Data Statistics and Development Analysis. Tunn. Constr. 2023, 43, 521–528, rear insertion 1-rear insertion 8. [Google Scholar]
- Li, Z.H.; Tang, C. Analysis of Intelligent Identification Algorithm for Shield Tunnel Cracks Based on High Definition Industrial Camera. Surv. Mapp. Bull. 2021, 8, 83–87+101. [Google Scholar]
- Jiang, S.S. Image Detection of Subway Tunnel Crack Diseases Based on Deep Learning; East China Normal University: Shanghai, China, 2022. [Google Scholar]
- Wang, J.H.; Jie, Q.Y.; Liu, J. Junichiro Koizumi. Current Situation of Railway Tunnel Diseases and Operation Management in Japan and Suggestions for the Development of Tunnel Operation and Maintenance Technology in China. Tunn. Constr. 2020, 40, 1824–1833. [Google Scholar]
- Xue, Y.D.; Gao, J.; Li, Y.C.; Huang, H.W. optimization of subway tunnel lining defect detection model based on deep learning. J. Hunan Univ. (Nat. Sci. Ed.) 2020, 47, 137–146. [Google Scholar]
- Huang, H.; Sun, Y.; Xue, Y.; Wang, F. Inspection equipment study for subway tunnel defects by grey-scale image processing. Adv. Eng. Inform. 2017, 32, 188–201. [Google Scholar] [CrossRef]
- Li, Y.; Yang, N. An Improved Crack Identification Method for Asphalt Concrete Pavement. Appl. Sci. 2023, 13, 8696. [Google Scholar] [CrossRef]
- Nhat-Duc, H.; Nguyen, Q.; Tran, V. Automatic recognition of asphalt pavement cracks using metaheuristic optimized edge detection algorithms and convolution neural network. Autom. Constr. 2018, 94, 203–213. [Google Scholar] [CrossRef]
- Lee, T.; Yoon, Y.; Chun, C.; Ryu, S. CNN-Based Road-Surface Crack Detection Model That Responds to Brightness Changes. Electronics 2021, 10, 1402. [Google Scholar] [CrossRef]
- Wu, Q.; Song, Z.; Chen, H.; Lu, Y.; Zhou, L. A Highway Pavement Crack Identification Method Based on an Improved U-Net Model. Appl Sci. 2023, 13, 7227. [Google Scholar] [CrossRef]
- Li, P.; Xia, H.; Zhou, B.; Yan, F.; Guo, R. A Method to Improve the Accuracy of Pavement Crack Identification by Combining a Semantic Segmentation and Edge Detection Model. Appl. Sci. 2022, 12, 4714. [Google Scholar] [CrossRef]
- Li, D.; Xie, Q.; Gong, X.; Yu, Z.; Xu, J.; Sun, Y.; Wang, J. Automatic defect detection of metro tunnel surfaces using a vision-based inspection system. Adv. Eng. Inform. 2021, 47, 101206. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Suh, G.; Mahmoudkhani, S.; Büyüköztürk, O. Autonomous Structural Visual Inspection Using Region-Based Deep Learning for Detecting Multiple Damage Types. Comput.-Aided Civ. Infrastruct. Eng. 2018, 33, 731–747. [Google Scholar] [CrossRef]
- Kim, B.; Cho, S. Image-based concrete crack assessment using mask and region-based convolutional neural network. Struct. Control Health Monit. 2019, 26, e2381. [Google Scholar] [CrossRef]
- Vazquez-Nicolas, J.M.; Zamora, E.; González-Hernández, I.; Lozano, R.; Sossa, H. PD+SMC Quadrotor Control for Altitude and Crack Recognition Using Deep Learning. Int. J. Control Autom. Syst. 2020, 18, 834–844. [Google Scholar] [CrossRef]
- Gonthina, M.; Chamata, R.; Duppalapudi, J.; Lute, V. Deep CNN-based concrete cracks identification and quantification using image processing techniques. Asian J. Civ. Eng. 2023, 24, 727–740. [Google Scholar] [CrossRef]
- Altabey, W.A.; Noori, M.; Wang, T.; Ghiasi, R.; Kuok, S.; Wu, Z. Deep Learning-Based Crack Identification for Steel Pipelines by Extracting Features from 3D Shadow Modeling. Appl. Sci. 2021, 11, 6063. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Ahn, E.; Shin, M.; Sim, S. Crack identification method for concrete structures considering angle of view using RGB-D camera-based sensor fusion. Struct. Health Monit. 2020, 20, 500–512. [Google Scholar] [CrossRef]
- Kim, I.; Jeon, H.; Baek, S.; Hong, W.; Jung, H. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle. Sensors 2018, 18, 1881. [Google Scholar] [CrossRef] [PubMed]
- Terven, J.; Córdova-Esparza, D.; Romero-González, J. A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS. Mach Learn. Know Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Yang, H.; Yang, L.; Wu, T.; Meng, Z.; Huang, Y.; Wang, P.S.; Li, P.; Li, X. Automatic Detection of Bridge Surface Crack Using Improved YOLOv5s. Int. J. Pattern Recognit. 2022, 36, 2250047. [Google Scholar] [CrossRef]
- Yu, G.; Zhou, X. An Improved YOLOv5 Crack Detection Method Combined with a Bottleneck Transformer. Mathematics 2023, 11, 2377. [Google Scholar] [CrossRef]
- Ling, L.; Xue, F.; Zhang, J.; Huan, Y.; Chen, F. Intelligent detection of fine cracks on sleepers based on improved YOLOv5 model of cascade fusion. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 2023, 237, 1273–1283. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; An, P.; Hong, H.; Hu, J.; Huang, T. UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios. Sensors 2023, 23, 7190. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Han, Q.; Jin, Q.; Li, J.; Zhang, Y. LCA-YOLOv8-Seg: An Improved Lightweight YOLOv8-Seg for Real-Time Pixel-Level Crack Detection of Dams and Bridges. Appl. Sci. 2023, 13, 10583. [Google Scholar] [CrossRef]
- Rahman, S.; Rony, J.H.; Uddin, J.; Samad, M.A. Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography. J. Imaging 2023, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Design Standards for Shield Tunnel Engineering. China—National Standards—State Administration for Market Regulation CN-GB. 2022. Available online: https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/202110/20211025_762616.html (accessed on 1 December 2023).
- Qian, Y.X.; Cheng, X.W.; Gao, X.D.; Liang, W.; Li, X.Y. Analysis of the Impact of Vibration on the Imaging Quality of Aviation CCD Cameras. Electro Opt. Control 2008, 15, 55–58, 66. [Google Scholar]
- Jiang, G.Y. Collected Works on Evaluation and Inspection of Optical System; Imaging Quality Collection of Documents on Evaluation and Inspection of Imaging Quality of Optical Systems. 1988. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=d3b96107521f449f88d0ba9030d19c93&site=xueshu_se (accessed on 1 December 2023).
- Zhong, X.G.; Peng, X.; Shen, M. Feasibility Study on Bridge Crack Width Identification Based on Unmanned Aerial. Veh. Imaging J. Civ. Eng. 2019, 52, 52–61. [Google Scholar]
- Pan, X.D. Research on a Deep Learning Based System for Detecting and Evaluating Apparent Defects in Subway Tunnels; Shandong University: Jinan, China, 2023. [Google Scholar]
- Yin, G.S.; Gao, J.G.; Shi, M.H.; Jin, M.Z.; Tuo, H.L.; Li, C.; Zhang, B. A method for identifying tunnel cracks under image segmentation. J. Transp. Eng. 2022, 22, 148–159. [Google Scholar]
- Geng, H.T.; Liu, Z.Y.; Jiang, J.; Fan, Z.C.; Li, J.X. An embedded road crack detection algorithm based on improved YOLOv8. Comput. Appl. 2023, 1–8. Available online: http://www.joca.cn/CN/10.11772/j.issn.1001-9081.2023050635 (accessed on 1 December 2023).
- Cheng, C.X.; Qiao, Q.Y.; Luo, X.L.; Yu, S.J. Target detection algorithm for UAV aerial images based on improved YOLOv8. Radio Eng. 2023. Available online: https://link.cnki.net/urlid/13.1097.TN.20231127.1157.002 (accessed on 1 December 2023).
- Peng, X. Research on Bridge Crack Shape and Width Recognition Based on Unmanned Aerial Vehicle Imaging. Master’s Thesis, Hunan University of Science and Technology, Xiangtan, China, 2017. [Google Scholar]
Items | Maximum Value | Minimum | Average |
---|---|---|---|
Y-line displacement (mm) | 0.1215 | 0.0165 | 0.0674 |
Z-line displacement (mm) | 0.1252 | 0.0152 | 0.0756 |
Resultant displacement of Y and Z direction vectors (mm) | 0.1745 | 0.0224 | 0.1013 |
(microns) | 2.7607 | 0.3545 | 1.6029 |
0.8012 | 0.9965 | 0.9301 |
Items | Maximum Value | Minimum | Average |
---|---|---|---|
(mm) | 0.1208 | 0.0538 | 0.0762 |
(microns) | 0.7518 | 0.3348 | 0.4742 |
0.9844 | 0.9969 | 0.9938 |
Items | Maximum Value | Minimum | Average |
---|---|---|---|
(XOY plane/mm) | 0.1108 | 0.0596 | 0.0874 |
(rad) | |||
(microns) | 0.2089 | 0.0604 | 0.1299 |
(XOZ plane/mm) | 0.1095 | 0.0686 | 0.0727 |
(rad) | |||
(microns) | 0.204 | 0.0801 | 0.09 |
(μm) | 0.292 | 0.101 | 0.158 |
0.9976 | 0.9997 | 0.9993 |
Items | Maximum Value | Minimum | Average |
---|---|---|---|
(mm) | 0.0029 | 0.0015 | 0.0024 |
(rad) | |||
(microns) | 2.7273 | 1.4124 | 2.256 |
0.8058 | 0.945 | 0.8644 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Li, Q.; Li, S.; Kang, F.; Wan, G.; Wu, T.; Wang, S. Crack Width Recognition of Tunnel Tube Sheet Based on YOLOv8 Algorithm and 3D Imaging. Buildings 2024, 14, 531. https://doi.org/10.3390/buildings14020531
Xu X, Li Q, Li S, Kang F, Wan G, Wu T, Wang S. Crack Width Recognition of Tunnel Tube Sheet Based on YOLOv8 Algorithm and 3D Imaging. Buildings. 2024; 14(2):531. https://doi.org/10.3390/buildings14020531
Chicago/Turabian StyleXu, Xunqian, Qi Li, Shue Li, Fengyi Kang, Guozhi Wan, Tao Wu, and Siwen Wang. 2024. "Crack Width Recognition of Tunnel Tube Sheet Based on YOLOv8 Algorithm and 3D Imaging" Buildings 14, no. 2: 531. https://doi.org/10.3390/buildings14020531
APA StyleXu, X., Li, Q., Li, S., Kang, F., Wan, G., Wu, T., & Wang, S. (2024). Crack Width Recognition of Tunnel Tube Sheet Based on YOLOv8 Algorithm and 3D Imaging. Buildings, 14(2), 531. https://doi.org/10.3390/buildings14020531