Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review
Abstract
:1. Introduction
2. Review Methodology
3. Chloride-Induced Corrosion: A Critical Issue
3.1. Relevance
3.2. Modelling
3.3. Experimental Characterization
4. Degradation Models for Lifetime Assessment
4.1. Mechanistic Models
4.2. Probabilistic Models
4.3. Statistical Models
4.4. Metaheuristic Models for Prediction
5. Maintenance of Infrastructure
5.1. Relevance
5.2. Maintenance Modeling and Optimization
- Patch repairs or partial rebuild;
- Corrosion inhibitors;
- Protective coatings;
- Cathodic protection;
- Alternative reinforcements.
5.3. Life-Cycle Cost Assessment
5.4. Sustainable Maintenance
6. The Influence of Field Testing and Monitoring Corrosion
6.1. Relevance
6.2. Monitoring Systems
- Environmental factors: temperature, pH, water content, and oxygen transport.
- Corrosion factors: polarization resistance, Galvanic current, concrete resistivity, and open circuit potential.
6.3. Field Testing
- Electrochemical based;
- Ultrasonic based;
- Acoustic emission (AC) based.
7. Climate Change and Its Future Consequences
7.1. Relevance
7.2. Impact on Port Infrastructure
- Extreme events: changes in intensity and frequency;
- Progressive events: changes in the kinetics of deterioration rates;
- Combination of effects on extreme events and progressive deterioration.
7.2.1. Impact on Waves Agitation
7.2.2. Impact on Ocean Chemistry
7.2.3. Impact on Weather
8. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alcaraz, C.; Zeadally, S. Critical Infrastructure Protection: Requirements and Challenges for the 21st Century. Int. J. Crit. Infrastruct. Prot. 2015, 8, 53–66. [Google Scholar] [CrossRef]
- Yang, Z.; Barroca, B.; Laffréchine, K.; Weppe, A.; Bony-Dandrieux, A.; Daclin, N. A Multi-Criteria Framework for Critical Infrastructure Systems Resilience. Int. J. Crit. Infrastruct. Prot. 2023, 42, 100616. [Google Scholar] [CrossRef]
- Imounga, H.M.; Bastidas-Arteaga, E.; Moutou Pitti, R.; Ekomy Ango, S.; Wang, X.-H. Bayesian Assessment of the Effects of Cyclic Loads on the Chloride Ingress Process into Reinforced Concrete. Appl. Sci. 2020, 10, 2040. [Google Scholar] [CrossRef]
- Fang, C.; Lundgren, K.; Chen, L.; Zhu, C. Corrosion Influence on Bond in Reinforced Concrete. Cem. Concr. Res. 2004, 34, 2159–2167. [Google Scholar] [CrossRef]
- Pommersheim, J.; Clifton, J. Prediction of Concrete Service-Life. Mater. Struct. 1985, 18, 21–30. [Google Scholar] [CrossRef]
- Lenton, T.M.; Foottit, A.; Dlugoglecki, A. Major Tipping Points in the Earth’s Climate System and Consequences for the Insurance Sector; WWF Germany: Berlin, Germany, 2009. [Google Scholar]
- Shen, X.H.; Jiang, W.Q.; Hou, D.; Hu, Z.; Yang, J.; Liu, Q. feng Numerical Study of Carbonation and Its Effect on Chloride Binding in Concrete. Cem. Concr. Compos. 2019, 104, 103402. [Google Scholar] [CrossRef]
- Shen, X.; Liu, Q.; Hu, Z.; Jiang, W.; Lin, X.; Hou, D.; Hao, P. Combine Ingress of Chloride and Carbonation in Marine-Exposed Concrete under Unsaturated Environment: A Numerical Study. Ocean Eng. 2019, 189, 106350. [Google Scholar] [CrossRef]
- Maritime Commision. Life Cycle Management of Port Structures: Recommended Practice for Implementation; PIANC report; PIANC: Brussels, Belgium, 2008; ISBN 978-2-87223-168-3. [Google Scholar]
- Life Cycle Management of Port Structures: General Principles; Bulletin of the Permanent International Association of Navigation Congresses; Permanent International Association of Navigation Congresses; PIANC: Brussels, Belgium, 1998; ISBN 978-2-87223-103-4.
- Boero, J.; Schoefs, F.; Capra, B.; Rouxel, N. Technical Management of French Harbour Structures—Part 1: Description of Built Assets. Rev. Paralia 2009, 2, 6.1–6.11. [Google Scholar] [CrossRef]
- Pereira, D.D. Lifetime Evaluation of Maritime Structures: Application to the Bridge Pier at the Leixões Seaport (In Portugueses). Master Thesis, Universidade do Minho, Braga, Portugal, 2017. [Google Scholar]
- Bastidas-Arteaga, E.; Schoefs, F. Sustainable Maintenance and Repair of RC Coastal Structures. Proc. Inst. Civ. Eng. Eng. 2015, 168, 162–173. [Google Scholar] [CrossRef]
- Denysiuk, R.; Fernandes, J.; Matos, J.C.; Neves, L.C.; Berardinelli, U. A Computational Framework for Infrastructure Asset Maintenance Scheduling. Struct. Eng. Int. 2016, 26, 94–102. [Google Scholar] [CrossRef]
- Falamarzi, A.; Moridpour, S.; Nazem, M. A Review of Rail Track Degradation Prediction Models. Aust. J. Civ. Eng. 2019, 17, 152–166. [Google Scholar] [CrossRef]
- Schoefs, F.; Bastidas-Arteaga, E.; Tran, T.V.; Villain, G.; Derobert, X. Characterization of Random Fields from NDT Measurements: A Two Stages Procedure. Eng. Struct. 2016, 111, 312–322. [Google Scholar] [CrossRef]
- Lecieux, Y.; Rozière, E.; Gaillard, V.; Lupi, C.; Leduc, D.; Priou, J.; Guyard, R.; Chevreuil, M.; Schoefs, F. Monitoring of a Reinforced Concrete Wharf Using Structural Health Monitoring System and Material Testing. J. Mar. Sci. Eng. 2019, 7, 84. [Google Scholar] [CrossRef]
- Del Grosso, A.; Lanata, F.; Brunetti, G.; Pieracci, A. Structural Health Monitoring of Harbour Piers. In Proceedings of the 3rd International Conference on Structural Health Monitoring of Intelligent Infrastructure, Vancouver, Canada, January 2007. [Google Scholar]
- Finno, R.J.; Roboski, J.F. Three-Dimensional Responses of a Tied-Back Excavation through Clay. J. Geotech. Geoenviron. Eng. 2005, 131, 273–282. [Google Scholar] [CrossRef]
- Xu, Y.; Jin, R. Measurement of Reinforcement Corrosion in Concrete Adopting Ultrasonic Tests and Artificial Neural Network. Constr. Build. Mater. 2018, 177, 125–133. [Google Scholar] [CrossRef]
- Naito, C.; Fox, J.; Bocchini, P.; Khazaali, M. Chloride Migration Characteristics and Reliability of Reinforced Concrete Highway Structures in Pennsylvania. Constr. Build. Mater. 2020, 231, 117045. [Google Scholar] [CrossRef]
- Klee, H. The Cement Sustainability Initiative: Recycling Concrete; World Business Council for Sustainable Development (WBCSD): Geneva, Switzerland, 2009. [Google Scholar]
- Melchers, R.E. Long-Term Durability of Marine Reinforced Concrete Structures. J. Mar. Sci. Eng. 2020, 8, 290. [Google Scholar] [CrossRef]
- Costa, A.; Appleton, J. Case Studies of Concrete Deterioration in a Marine Environment in Portugal. Cem. Concr. Compos. 2002, 24, 169–179. [Google Scholar] [CrossRef]
- Kwon, S.J.; Na, U.J.; Park, S.S.; Jung, S.H. Service Life Prediction of Concrete Wharves with Early-Aged Crack: Probabilistic Approach for Chloride Diffusion. Struct. Saf. 2009, 31, 75–83. [Google Scholar] [CrossRef]
- Chalhoub, M.S. Effect of Reinforced Concrete Deterioration and Damage on the Seismic Performance of Structures. In Structural Nonlinear Dynamics and Diagnosis; Belhaq, M., Ed.; Springer Proceedings in Physics; Springer International Publishing: Cham, Switzerland, 2015; Volume 168, pp. 77–95. ISBN 978-3-319-19850-7. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Stewart, M.G. Economic Assessment of Climate Adaptation Strategies for Existing Reinforced Concrete Structures Subjected to Chloride-Induced Corrosion. Struct. Infrastruct. Eng. 2016, 12, 432–449. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Stewart, M.G. Damage Risks and Economic Assessment of Climate Adaptation Strategies for Design of New Concrete Structures Subject to Chloride-Induced Corrosion. Struct. Saf. 2015, 52, 40–53. [Google Scholar] [CrossRef]
- Broomfield, J.P. Corrosion of Steel in Concrete: Understanding, Investigation and Repair, 3rd ed.; CRC Press: London, UK, 2023; p. 304. [Google Scholar]
- Stewart, M.G.; Rosowsky, D.V. Time-Dependent Reliability of Deteriorating Reinforced Concrete Bridge Decks. Struct. Saf. 1998, 20, 91–109. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Schoefs, F.; Sánchez-Silva, M. Probabilistic Evaluation of the Sustainability of Maintenance Strategies for RC Structures Exposed to Chloride Ingress. Int. J. Eng. Under Uncertain. Hazards Assess. Mitig. 2010, 2, 61–74. [Google Scholar]
- Gao, X.J.; Wang, X.Y. Impacts of Globalwarming and Sea Level Rise on Service Life of Chloride-Exposed Concrete Structures. Sustainability 2017, 9, 460. [Google Scholar] [CrossRef]
- Angst, U.; Elsener, B.; Larsen, C.K.; Vennesland, Ø. Critical Chloride Content in Reinforced Concrete—A Review. Cem. Concr. Res. 2009, 39, 1122–1138. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Lu, X.; Yang, J.; Azim, I.; Sun, W. Prediction of Chloride Distribution for Offshore Concrete Based on Statistical Analysis. Materials 2020, 13, 174. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, Z.; Zhao, Y.; Zhou, H.; Wang, X.; Zhou, H.; Xing, F.; Li, S.; Zhu, J.; Liu, W. Chloride Distribution and Steel Corrosion in a Concrete Bridge after Long-Term Exposure to Natural Marine Environment. Materials 2020, 13, 3900. [Google Scholar] [CrossRef]
- Tuutti, K. Corrosion of Steel in Concrete. Doctoral Thesis, Division of Building Materials, Swedish Cement and Concrete Research Institute, Stockholm, Sweden, 1982. [Google Scholar]
- Yang, Y.; Peng, J.; Cai, C.S.; Tang, H. Probabilistic Analysis of Corrosion Initiation in Existing Reinforced Concrete Structures with Imprecise Random Field. Structures 2023, 52, 877–888. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, H.; He, Z.; Yang, L.; Zhao, L.; Wen, C. Experimental Investigation on Chloride-Ion Penetration Resistance of Slag Containing Fiber-Reinforced Concrete under Drying-Wetting Cycles. Constr. Build. Mater. 2021, 274, 121829. [Google Scholar] [CrossRef]
- Molyneaux, T.C.K.; Law, D.W.; Collins, F.; Blin, F.; Zou, R.; Siamphukdee, K. Probabilistic Modelling of the Deterioration of Reinforced Concrete Port Infrastructure. Key Eng. Mater. 2013, 569–570, 207–214. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E. Probabilistic Service Life Modeling of RC Structures Subjected to the Combined Effect of Chloride-Induced Corrosion and Cyclic. Loading.Doctoral Thesis, Universidad de los Andes, Bogotá, Colombia, 2009. [Google Scholar]
- Misawa, T.; Hashimoto, K.; Shimodaira, S. The Mechanism of Formation of Iron Oxide and Oxyhydroxides in Aqueous Solutions at Room Temperature. Corros. Sci. 1974, 14, 131–149. [Google Scholar] [CrossRef]
- Wang, G.; Wu, Q.; Li, X.-Z.; Xu, J.; Xu, Y.; Shi, W.-H.; Wang, S.-L. Microscopic Analysis of Steel Corrosion Products in Seawater and Sea-Sand Concrete. Materials 2019, 12, 3330. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.; Huang, H.; Wu, Z. Modelling of Long-Term Performance of RC Beams under Coupling Steel Corrosion and Bond Deterioration. Structures 2023, 57, 105159. [Google Scholar] [CrossRef]
- Mansfeld, F. Recording and Analysis of AC Impedance Data for Corrosion Studies. Corrosion 1981, 37, 301–307. [Google Scholar] [CrossRef]
- Esteban Lefler, F.; Rey Romero, V.D. Reinforced Concrete Caissons for Port Structures in Spain. Proc. Inst. Civ. Eng.-Marit. Eng. 2009, 162, 73–81. [Google Scholar] [CrossRef]
- Medeiros, M.H.F.; Gobbi, A.; Réus, G.C.; Helene, P. Reinforced Concrete in Marine Environment: Effect of Wetting and Drying Cycles, Height and Positioning in Relation to the Sea Shore. Constr. Build. Mater. 2013, 44, 452–457. [Google Scholar] [CrossRef]
- So, K.K.L.; Cheung, M.M.S.; Zhang, E.X.Q. Life-Cycle Cost Management of Concrete Bridges. Proc. Inst. Civ. Eng.-Bridg. Eng. 2009, 162, 103–117. [Google Scholar] [CrossRef]
- Chen, H.-P.; Alani, A.M. Reliability and Optimised Maintenance for Sea Defences. Proc. Inst. Civ. Eng.-Marit. Eng. 2012, 165, 51–64. [Google Scholar] [CrossRef]
- Ukrainczyk, N.; Ukrainczyk, V. A Neural Network Method for Analysing Concrete Durability. Mag. Concr. Res. 2008, 60, 475–486. [Google Scholar] [CrossRef]
- Mehta, P.K. Durability—Critical Issues for the Future. Concr. Int. 1997, 19, 27–33. [Google Scholar]
- Poupard, O.; L’Hostis, V.; Catinaud, S.; Petre-Lazar, I. Corrosion Damage Diagnosis of a Reinforced Concrete Beam after 40 Years Natural Exposure in Marine Environment. Cem. Concr. Res. 2006, 36, 504–520. [Google Scholar] [CrossRef]
- Stanish, K.; Hooton, D.; Thomas, M. Testing the Chloride Penetration Resistance of Concrete: A Literature Review, 1997.
- Pang, L.; Li, Q. Service Life Prediction of RC Structures in Marine Environment Using Long Term Chloride Ingress Data: Comparison between Exposure Trials and Real Structure Surveys. Constr. Build. Mater. 2016, 113, 979–987. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Chateauneuf, A.; Sánchez-Silva, M.; Bressolette, P.; Schoefs, F. Influence of Weather and Global Warming in Chloride Ingress into Concrete: A Stochastic Approach. Struct. Saf. 2010, 32, 238–249. [Google Scholar] [CrossRef]
- Martín-Pérez, B.; Pantazopoulou, S.J.; Thomas, M.D.A. Numerical Solution of Mass Transport Equations in Concrete Structures. Comput. Struct. 2001, 79, 1251–1264. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Bastidas-Arteaga, E.; Amiri, O.; El Soueidy, C.P. An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions. Int. J. Concr. Struct. Mater. 2017, 11, 199–213. [Google Scholar] [CrossRef]
- Cherif, R.; Hamami, A.E.A.; Aït-Mokhtar, A. Global Quantitative Monitoring of the Ion Exchange Balance in a Chloride Migration Test on Cementitious Materials with Mineral Additions. Cem. Concr. Res. 2020, 138, 106240. [Google Scholar] [CrossRef]
- Cherif, R.; Hamami, A.E.A.; Aït-Mokhtar, A.; Bosschaerts, W. Thermodynamic Equilibria-Based Modelling of Reactive Chloride Transport in Blended Cementitious Materials. Cem. Concr. Res. 2022, 156, 106770. [Google Scholar] [CrossRef]
- Truong, Q.C.; El Soueidy, C.-P.; Hawchar, L.; Li, Y.; Bastidas-Arteaga, E. Modelling Two-Dimensional Chloride Diffusion in Repaired RC Structures for Sustainable Maintenance Management. Structures 2023, 51, 895–909. [Google Scholar] [CrossRef]
- Lindvall, A. Probabilistic Performance Based Durability Design of Concrete Structures: Statistical Quantification of the Variables in the Limit State Functions, Rep. No. BE95-1347. 2000; pp. 1–10.
- Cardoso, M.; Alexander, C.L. The Feasibility of Using Bipolar Electrochemistry to Study Pitting and Crevice Corrosion of Stainless Steels in Cementitious Materials. ECS Meet. Abstr. 2022, MA2022-02, 749. [Google Scholar] [CrossRef]
- Schiessl, P.; Bamforth, P.; Baroghel-Bouny, V.; Corley, G.; Faber, M.; Forbes, J.; Gehlen, C.; Helene, P.; Helland, S.; Ishida, T.; et al. Fib Bulletin 34. Model Code for Service Life Design; fib Bulletins; FIB, The International Federation for Structural Concrete: Lausanne, Switzerland, 2006; ISBN 2883940746. [Google Scholar]
- Rahimi, A. A Normative Performance Concept, Based on Fib Model, for Durability Design Regarding Chloride-Induced Corrosion. In Building for the Future: Durable, Sustainable, Resilient; Ilki, A., Çavunt, D., Çavunt, Y.S., Eds.; Lecture Notes in Civil Engineering; Springer Nature Switzerland: Cham, Switzerland, 2023; Volume 349, pp. 1631–1639. ISBN 978-3-031-32518-2. [Google Scholar]
- Kuosa, H.; Ferreira, R.M.; Holt, E.; Leivo, M.; Vesikari, E. Effect of Coupled Deterioration by Freeze-Thaw, Carbonation and Chlorides on Concrete Service Life. Cem. Concr. Compos. 2014, 47, 32–40. [Google Scholar] [CrossRef]
- Zhu, W.; François, R.; Fang, Q.; Zhang, D. Influence of Long-Term Chloride Diffusion in Concrete and the Resulting Corrosion of Reinforcement on the Serviceability of RC Beams. Cem. Concr. Compos. 2016, 71, 144–152. [Google Scholar] [CrossRef]
- Ji, Y.; Hu, Y.; Zhang, L.; Bao, Z. Laboratory Studies on Influence of Transverse Cracking on Chloride-Induced Corrosion Rate in Concrete. Cem. Concr. Compos. 2016, 69, 28–37. [Google Scholar] [CrossRef]
- Laurens, S.; Hénocq, P.; Rouleau, N.; Deby, F.; Samson, E.; Marchand, J.; Bissonnette, B. Steady-State Polarization Response of Chloride-Induced Macrocell Corrosion Systems in Steel Reinforced Concrete—Numerical and Experimental Investigations. Cem. Concr. Res. 2016, 79, 272–290. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, G.; Ye, H.; Zeng, Q.; Zhang, Z.; Tian, Z.; Jin, X.; Jin, N.; Chen, Z.; Wang, J. Corrosion of Steel Rebar in Concrete Induced by Chloride Ions under Natural Environments. Constr. Build. Mater. 2023, 369, 130504. [Google Scholar] [CrossRef]
- Van Nguyen, C.; Hieu Bui, Q.; Lambert, P. Experimental and Numerical Evaluation of the Structural Performance of Corroded Reinforced Concrete Beams under Different Corrosion Schemes. Structures 2022, 45, 2318–2331. [Google Scholar] [CrossRef]
- Moradi-Marani, F.; Shekarchi, M.; Dousti, A.; Mobasher, B. Investigation of Corrosion Damage and Repair System in a Concrete Jetty Structure. J. Perform. Constr. Facil. 2010, 24, 294–301. [Google Scholar] [CrossRef]
- Touil, B.; Ghomari, F.; Khelidj, A.; Bonnet, S.; Amiri, O. Durability Assessment of the Oldest Concrete Structure in the Mediterranean Coastline: The Ghazaouet Harbour. Mar. Struct. 2022, 81, 103121. [Google Scholar] [CrossRef]
- Castro-Borges, P.; Mendoza-Rangel, J.M. Influence of Climate Change on Concrete Durability in Yucatan Peninsula. Corros. Eng. Sci. Technol. 2010, 45, 61–69. [Google Scholar] [CrossRef]
- Yokota, H.; Kato, E.; Iwanami, M. Chloride-Induced Corrosion of Reinforcement and Its Effect on Performance of Structures. Int. J. Model. Identif. Control 2009, 7, 179–184. [Google Scholar] [CrossRef]
- Otieno, M.; Beushausen, H.; Alexander, M. Chloride-Induced Corrosion of Steel in Cracked Concrete—Part I: Experimental Studies under Accelerated and Natural Marine Environments. Cem. Concr. Res. 2016, 79, 373–385. [Google Scholar] [CrossRef]
- Balestra, C.E.T.; Reichert, T.A.; Pansera, W.A.; Savaris, G. Chloride Profile Modeling Contemplating the Convection Zone Based on Concrete Structures Present for More than 40 years in Different Marine Aggressive Zones. Constr. Build. Mater. 2019, 198, 345–358. [Google Scholar] [CrossRef]
- Wu, L.; Li, W.; Yu, X. Time-Dependent Chloride Penetration in Concrete in Marine Environments. Constr. Build. Mater. 2017, 152, 406–413. [Google Scholar] [CrossRef]
- LNEC. E465, BETÕES—Metodologia Para Estimar as Propriedades de Desempenho Do Betão Que Permitem Satisfazer a Vida Útil de Projecto de Estruturas de Betão Armado Ou Pré-Esforçado Sob as Exposições Ambientais XC e XS; Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 2005. [Google Scholar]
- Violetta, B. Life-365 Service Life Prediction Model. Concr. Int. 2002, 24, 53–57. [Google Scholar]
- Xu, Y.; Gao, Y.; Yu, H.; Ma, H.; Xu, M.; Xu, Z.; Feng, T. Time Variation Law of Chlorine Diffusion Coefficient of Marine Concrete Structures in Tidal Zone and Its Influence on Service Life. J. Build. Eng. 2023, 76, 107379. [Google Scholar] [CrossRef]
- Yu, H. ChaDuraLife V1.0 Life Prediction Model and Software of Concrete Structures in Chloride Environment, version 1.0; Nanjing University of Aeronautics and Astronautics: Nanjing, China, 2015. [Google Scholar]
- Srikanth, I.; Arockiasamy, M. Deterioration Models for Prediction of Remaining Useful Life of Timber and Concrete Bridges: A Review. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 152–173. [Google Scholar] [CrossRef]
- Villain, G.; Sbartaï, Z.M.; Dérobert, X.; Garnier, V.; Balayssac, J.-P. Durability Diagnosis of a Concrete Structure in a Tidal Zone by Combining NDT Methods: Laboratory Tests and Case Study. Constr. Build. Mater. 2012, 37, 893–903. [Google Scholar] [CrossRef]
- Ožbolt, J.; Kušter, M.; Balabanić, G.; Oršanić, F. Numerical Modelling of Degradation of Reinforced Concrete Structures Exposed to Cracking and Chlorides. In Assessment, Upgrading and Refurbishment of Infrastructures; IABSE: Rotterdam, The Netherlands, 2013; pp. 204–205. [Google Scholar]
- Bui, H.T.; Tan, K.H. Time-Dependent Nonuniform Numerical Model of Corrosion Process and Consequent Corrosion-Induced Concrete Cracking under Chloride Attack. Structures 2023, 52, 332–347. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Bressolette, P.; Chateauneuf, A.; Sánchez-Silva, M. Probabilistic Lifetime Assessment of RC Structures under Coupled Corrosion-Fatigue Deterioration Processes. Struct. Saf. 2009, 31, 84–96. [Google Scholar] [CrossRef]
- Homer, R.M.; Law, D.W.; Molyneaux, T.C.K. Probability Distribution Functions for Cover Used in 3-D Model Simulating Concrete Deterioration in Port Assets. J. Phys. Conf. Ser. 2015, 628, 012038. [Google Scholar] [CrossRef]
- Yu, B.; Ning, C.; Li, B. Probabilistic Durability Assessment of Concrete Structures in Marine Environments: Reliability and Sensitivity Analysis. China Ocean Eng. 2017, 31, 63–73. [Google Scholar] [CrossRef]
- Pereira, D.D.; Moreira, V.N.; Camões, A.; Matos, J.C. Assessing the Life Cycle of Existing Maritime Structures—Application to a Harbour Bridge in Porto Port. In High Tech Concrete: Where Technology and Engineering Meet; Hordijk, D.A., Lukovic, M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1707–1714. ISBN 978-3-319-59471-2/978-3-319-59470-5. [Google Scholar]
- Pang, S.; Yu, M.; Zhu, H.; Yi, C. The Corrosion Probability and Flexural Strength of an RC Beam under Chloride Ingress Considering the Randomness of Temperature and Humidity. Materials 2020, 13, 2260. [Google Scholar] [CrossRef] [PubMed]
- Gagniuc, P.A. Markov Chains: From Theory to Implementation and Experimentation; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781119387596. [Google Scholar]
- Lounis, Z.; Daigle, L.; Cusson, D.; Almansour, H. A multi-objective approach for the management of aging critical highway bridges. In Aging Infrastructures Workshop; Columbia University: New York, NY, USA, 2009; pp. 1–20. [Google Scholar]
- Tolliver, D.; Lu, P. Analysis of Bridge Deterioration Rates: A Case Study of the Northern Plains Region. J. Transp. Res. Forum 2011, 50, 87–100. [Google Scholar] [CrossRef]
- Zakeri, J.-A.; Shahriari, S. Developing A Deterioration Probabilistic Model for Rail Wear. Int. J. Traffic Transp. Eng. 2012, 1, 13–18. [Google Scholar]
- Ranjith, S.; Setunge, S.; Gravina, R.; Venkatesan, S. Deterioration Prediction of Timber Bridge Elements Using the Markov Chain. J. Perform. Constr. Facil. 2013, 27, 319–325. [Google Scholar] [CrossRef]
- Kotze, R.; Ngo, H.; Seskis, J. Improved Bridge Deterioration Models, Predictive Tools and Costs; Austroads Ltd.: Sydney, Australia, 2015; ISBN 978-1-925294-46-0. [Google Scholar]
- Muñoz, Y.F.; Paz, A.; Fuente-Mella, H.D.; La; Fariña, J.V.; Sales, G.M. Estimating Bridge Deterioration for Small Data Sets Using Regression and Markov Models. Int. J. Urban Civ. Eng. 2016, 2016, 663–670. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Schoefs, F. Stochastic Improvement of Inspection and Maintenance of Corroding Reinforced Concrete Structures Placed in Unsaturated Environments. Eng. Struct. 2012, 41, 50–62. [Google Scholar] [CrossRef]
- Zhang, Y.; Kim, C.W.; Tee, K.F.; Lam, J.S.L. Optimal Sustainable Life Cycle Maintenance Strategies for Port Infrastructures. J. Clean. Prod. 2017, 142, 1693–1709. [Google Scholar] [CrossRef]
- Mauch, M.; Madanat, S. Semiparametric Hazard Rate Models of Reinforced Concrete Bridge Deck Deterioration. J. Infrastruct. Syst. 2001, 7, 49–57. [Google Scholar] [CrossRef]
- Kaveh, A.; Eslamlou, A.D. Introduction. In Metaheuristic Optimization Algorithms in Civil Engineering: New Applications. Studies in Computational Intelligence; Springer: Cham, Switzerland, 2020; Volume 900, pp. 1–7. [Google Scholar]
- Mašović, S.; Hajdin, R. Modelling of Bridge Elements Deterioration for Serbian Bridge Inventory. Struct. Infrastruct. Eng. 2014, 10, 976–987. [Google Scholar] [CrossRef]
- Morcous, G.; Rivard, H.; Hanna, A.M. Modeling Bridge Deterioration Using Case-Based Reasoning. J. Infrastruct. Syst. 2002, 8, 86–95. [Google Scholar] [CrossRef]
- Dong, Y.; Frangopol, D.M.; Sabatino, S. Optimizing Bridge Network Retrofit Planning Based on Cost-Benefit Evaluation and Multi-Attribute Utility Associated with Sustainability. Earthq. Spectra 2015, 31, 2255–2280. [Google Scholar] [CrossRef]
- Elbehairy, H.; Elbeltagi, E.; Hegazy, T.; Soudki, K. Comparison of Two Evolutionary Algorithms for Optimization of Bridge Deck Repairs. Comput. Civ. Infrastruct. Eng. 2006, 21, 561–572. [Google Scholar] [CrossRef]
- Elbehairy, H. Bridge Management System with Integrated Life Cycle Cost Optimization. Doctotal Thesis, University of Waterloo, Waterloo, ON, Canada, 2007. [Google Scholar]
- Sataloff, R.T.; Johns, M.M.; Kost, K.M. Neural Networks in a Softcomputing Framework; Springer: London, UK, 2006; ISBN 1-84628-302-7. [Google Scholar]
- Hasan, M.S. Deterioration Prediction of Concrete Bridge Components Using Artificial Intelligence and Stochastic Methods. Doctoral Thesis, RMIT University, Melbourne, Australia, 2015. [Google Scholar]
- Kubat, M. An Introduction to Machine Learning; Springer: Berlin, Germary, 2017; ISBN 9783319639130. [Google Scholar]
- Ukrainczyk, N.; Banjad, I.; Ukrainczyk, V. Application of Neural Network in Predicting Damage of Concrete Structures Caused by Chlorides. In Proceedings of the International Symposium: Durability and Maintenance of Concrete Structures, Dubrovnik, Croatia, 21–23 October 2004; pp. 187–194. [Google Scholar]
- Asghshahr, M.S.; Rahai, A.; Ashrafi, H. Prediction of Chloride Content in Concrete Using ANN and CART. Mag. Concr. Res. 2016, 68, 1085–1098. [Google Scholar] [CrossRef]
- Roxas, C.L.C.; Lejano, B.A. An artificial neural network model for the corrosion current density of steel in mortar mixed with seawater. GEOMATE J. 2019, 16, 79–84. [Google Scholar] [CrossRef]
- Chou, J.-S.; Ngo, N.-T.; Chong, W.K. The Use of Artificial Intelligence Combiners for Modeling Steel Pitting Risk and Corrosion Rate. Eng. Appl. Artif. Intell. 2017, 65, 471–483. [Google Scholar] [CrossRef]
- Mohammadi, E.; Kashani, A.; Kim, T.; Arashpour, M. Concrete Chloride Diffusion Modelling Using Marine Creatures-Based Metaheuristic Artificial Intelligence. J. Clean. Prod. 2022, 374, 134021. [Google Scholar] [CrossRef]
- Rincon, L.F.; Matos, J.C.; Pereira, E.; Marcelino, J.; Santos, L.O.; Muñoz, Y.F.; Bastidas-Arteaga, E. Novel Trends on the Assessment and Management of Maritime Infrastructures: Outcomes from GIIP Project. In Proceedings of the Eighth World Conference on Structural Control and Monitoring (8WCSCM), Orlando, FL, USA, 5–8 June 2022. [Google Scholar]
- Rakotovao Ravahatra, N.; de Larrard, T.; Duprat, F.; Bastidas-Arteaga, E.; Schoefs, F. A Cost-Benefit Methodology for Selecting Analytical Reinforced Concrete Corrosion Onset Models. Adv. Civ. Eng. 2020, 2020. [Google Scholar] [CrossRef]
- Tantele, E.A.; Onoufriou, T. Optimum Preventative Maintenance Strategies Using Genetic Algorithms and Bayesian Updating. Ships Offshore Struct. 2009, 4, 299–306. [Google Scholar] [CrossRef]
- Zen, K. Corrosion and Life Cycle Management of Port Structures. Corros. Sci. 2005, 47, 2353–2360. [Google Scholar] [CrossRef]
- Val, D.V. Effect of Different Limit States on Life-Cycle Cost of RC Structures in Corrosive Environment. J. Infrastruct. Syst. 2005, 11, 231–240. [Google Scholar] [CrossRef]
- Kurth, J.C.; Krauss, P.D.; Foster, S.W. Corrosion Management of Maritime Infrastructure. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 2–14. [Google Scholar] [CrossRef]
- James, A.; Bazarchi, E.; Chiniforush, A.A.; Panjebashi Aghdam, P.; Hosseini, M.R.; Akbarnezhad, A.; Martek, I.; Ghodoosi, F. Rebar Corrosion Detection, Protection, and Rehabilitation of Reinforced Concrete Structures in Coastal Environments: A Review. Constr. Build. Mater. 2019, 224, 1026–1039. [Google Scholar] [CrossRef]
- Peng, K.D.; Huang, B.T.; Xu, L.Y.; Hu, R.L.; Dai, J.G. Flexural Strengthening of Reinforced Concrete Beams Using Geopolymer-Bonded Small-Diameter CFRP Bars. Eng. Struct. 2022, 256, 113992. [Google Scholar] [CrossRef]
- Schrecker, M.; Viljoen, D.; van der Spuy, P. Case Study of Concrete Repairs on Jetty in Port Nolloth, Northern Cape. MATEC Web Conf. 2018, 199, 10001. [Google Scholar] [CrossRef]
- Andrade, C.; Izquierdo, D. Benchmarking through an Algorithm of Repair Methods of Reinforcement Corrosion: The Repair Index Method. Cem. Concr. Compos. 2005, 27, 727–733. [Google Scholar] [CrossRef]
- Lee, H.-S.; Singh, J.; Kang, I.; Yun, S.; Ismail, M. An Efficient and Economical Repair Strategy for Life Cycle Cost Assessment of RC Structure Deteriorated by Chloride Attack. Int. J. Sustain. Build. Technol. Urban Dev. 2017, 8, 332–348. [Google Scholar] [CrossRef]
- Torti, M.; Sacconi, S.; Venanzi, I.; Ubertini, F. Monitoring-Informed Life-Cycle Cost Analysis of Deteriorating RC Bridges under Repeated Earthquake Loading. J. Struct. Eng. 2022, 148, 04022145. [Google Scholar] [CrossRef]
- Chiu, C.-K.; Noguchi, T.; Kanematsu, M. Effects of Maintenance Strategies on the Life-Cycle Performance and Cost of a Deteriorating RC Building with High-Seismic Hazard. J. Adv. Concr. Technol. 2010, 8, 157–170. [Google Scholar] [CrossRef]
- Yang, L.; Li, K.; Pang, X. Design and Optimization of Maintenance Strategies for a Long Life-Span Port Project. Mater. Struct. 2013, 46, 161–172. [Google Scholar] [CrossRef]
- Li, K.F.; Yang, L.H.; Li, Q.W.; Wu, P. Maintenance Design and Optimization of Long Service Life Port Structures Considering Crack Control Levels. Adv. Struct. Eng. 2014, 17, 471–480. [Google Scholar] [CrossRef]
- Farahani, A. Life Cycle Cost GA Optimization of Repaired Reinforced Concrete Structures Located in a Marine Environment. J. Soft Comput. Civ. Eng. 2020, 4, 41–50. [Google Scholar] [CrossRef]
- Cadenazzi, T.; Lee, H.; Suraneni, P.; Nolan, S.; Nanni, A. Evaluation of Probabilistic and Deterministic Life-Cycle Cost Analyses for Concrete Bridges Exposed to Chlorides. Clean. Eng. Technol. 2021, 4, 100247. [Google Scholar] [CrossRef]
- Mullard, J.A.; Stewart, M.G. Life-Cycle Cost Assessment of Maintenance Strategies for RC Structures in Chloride Environments. J. Bridg. Eng. 2012, 17, 353–362. [Google Scholar] [CrossRef]
- Navarro, I.; Yepes, V.; Martí, J. Life Cycle Cost Assessment of Preventive Strategies Applied to Prestressed Concrete Bridges Exposed to Chlorides. Sustainability 2018, 10, 845. [Google Scholar] [CrossRef]
- Val, D.V.; Stewart, M.G. Life-Cycle Cost Analysis of Reinforced Concrete Structures in Marine Environments. Struct. Saf. 2003, 25, 343–362. [Google Scholar] [CrossRef]
- Frangopol, D.M.; Liu, M. Maintenance and Management of Civil Infrastructure Based on Condition, Safety, Optimization, and Life-Cycle Cost. Struct. Infrastruct. Eng. 2007, 3, 29–41. [Google Scholar] [CrossRef]
- Zabalza Bribián, I.; Aranda Usón, A.; Scarpellini, S. Life Cycle Assessment in Buildings: State-of-the-Art and Simplified LCA Methodology as a Complement for Building Certification. Build. Environ. 2009, 44, 2510–2520. [Google Scholar] [CrossRef]
- Tee, K.F.; Khan, L.R.; Chen, H.P.; Alani, A.M. Reliability Based Life Cycle Cost Optimization for Underground Pipeline Networks. Tunn. Undergr. Sp. Technol. 2014, 43, 32–40. [Google Scholar] [CrossRef]
- Losada, M.A.; Benedicto, I.M. Target Design Levels for Maritime Structures. J. Waterw. Port Coast. Ocean Eng. 2005, 131, 171–180. [Google Scholar] [CrossRef]
- Årskog, V.; Fossdal, S.; Gjørv, O.E. Life-Cycle Assessment of Repair and Maintenance Systems for Concrete Structures. In International Workshop on Sustainable Develeopment and Concrete Technology, Beijing, China, 20–21 May 2004; Center for Transportation Research and Education, Iowa State University: Ames, IA, USA, 2004; pp. 193–200. ISBN 0-9652310-7-0. [Google Scholar]
- Huang, M.; Ling, Z.; Sun, C.; Lei, Y.; Xiang, C.; Wan, Z.; Gu, J. Two-Stage Damage Identification for Bridge Bearings Based on Sailfish Optimization and Element Relative Modal Strain Energy. Struct. Eng. Mech. 2023, 86, 715–730. [Google Scholar] [CrossRef]
- Figueira, R. Electrochemical Sensors for Monitoring the Corrosion Conditions of Reinforced Concrete Structures: A Review. Appl. Sci. 2017, 7, 1157. [Google Scholar] [CrossRef]
- Martínez, I.; Andrade, C. Examples of Reinforcement Corrosion Monitoring by Embedded Sensors in Concrete Structures. Cem. Concr. Compos. 2009, 31, 545–554. [Google Scholar] [CrossRef]
- Pereira, E.; Figueira, R.; Salta, M.M.; Da Fonseca, I.T. A Galvanic Sensor for Monitoring the Corrosion Condition of the Concrete Reinforcing Steel: Relationship between the Galvanic and the Corrosion Currents. Sensors 2009, 9, 8391–8398. [Google Scholar] [CrossRef]
- Rincon, L.; Habeeb, B.; Bastidas-Arteaga, E.; Eustáquio, E.; Hamami, A.; Marcelino, J.; Santos, L.O.; Matos, J.C.; Muñoz, Y.F. Time Series Analysis for Database Completion and Forecast of Sensors Measurements: Application to Concrete Structures. In Proceedings of the Journées de Fiabilité des Matériaux et Structures JFMS2023, La Rochelle, France, 7–8 June 2023. [Google Scholar]
- Catbas, F.N.; Aktan, A.E. Condition and Damage Assessment: Issues and Some Promising Indices. J. Struct. Eng. 2002, 128, 1026–1036. [Google Scholar] [CrossRef]
- Andrade, C.; Muñoz, J.; Rosell, J. Corrosion Rate Values in Real Structures and Their Statistical Distribution. In Proceedings of the 14th International Conference on Applications of Statistics and Probability in Civil Engineering (ICASP14), Dublin, Ireland, 9–13 July 2023. [Google Scholar]
- Deng, Z.; Huang, M.; Wan, N.; Zhang, J. The Current Development of Structural Health Monitoring for Bridges: A Review. Buildings 2023, 13, 1360. [Google Scholar] [CrossRef]
- Scherff, M.; Hake, F.; Alkhatib, H. Adaptation of Deeplab V3+ For Damage Detection on Port Infrastructure Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, XLVIII-M–1-2023, 301–308. [Google Scholar] [CrossRef]
- Imran, M.M.H.; Jamaludin, S.; Ayob, A.F.M.; Ali, A.A.I.M.; Ahmad, S.Z.A.S.; Akhbar, M.F.A.; Suhrab, M.I.R.; Zainal, N.; Norzeli, S.M.; Mohamed, S.B. Application of Artificial Intelligence in Marine Corrosion Prediction and Detection. J. Mar. Sci. Eng. 2023, 11, 256. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Shahzad, D.; Heravi, A.; Qayyum, S.; Akram, J. Civil Infrastructure Damage and Corrosion Detection: An Application of Machine Learning. Buildings 2022, 12, 156. [Google Scholar] [CrossRef]
- Oktavianus, Y.; Sofi, M.; Lumantarna, E.; Maizuar, M.; Mendis, P.A.; Duffield, C.; Rajabifard, A.; Widyastuti, H. Use of Non-Destructive Methods: Case Studies of Marine Port and Bridges Structures in Surabaya. Electron. J. Struct. Eng. 2018, 18, 13–22. [Google Scholar] [CrossRef]
- Schoefs, F.; Bastidas-Arteaga, E.; Tran, T.V. Optimal Embedded Sensor Placement for Spatial Variability Assessment of Stationary Random Fields. Eng. Struct. 2017, 152, 35–44. [Google Scholar] [CrossRef]
- Hellier, C.J. Handbook of Nondestructive Evaluation, Second Edition, 2nd ed.; McGraw-Hill Education: New York, NY, USA, 2013; ISBN 9780071777148. [Google Scholar]
- Polder, R.B. Test Methods for on Site Measurement of Resistivity of Concrete—A RILEM TC-154 Technical Recommendation. Constr. Build. Mater. 2001, 15, 125–131. [Google Scholar] [CrossRef]
- Andrade Perdrix, M.; del, C.; D’Andrea, R. The Use of Electrical Resistivity as a NDT for the Specification of Concrete Durability. In Proceedings of the 6th international conference on concrete under severe conditions (CONSEC '10), Mérida, Mexico, 7–9 June 2010; Taylor & Francis. CRC Press: Boca Raton, FL, USA, 2010; pp. 195–200. [Google Scholar] [CrossRef]
- Andrade, C.; Alonso, C. Test Methods for On-Site Corrosion Rate Measurement of Steel Reinforcement in Concrete by Means of the Polarization Resistance Method. Mater. Struct. 2004, 37, 623–643. [Google Scholar] [CrossRef]
- Elsener, B.; Andrade, C.; Gulikers, J.; Polder, R.; Raupach, M. Half-Cell Potential Measurements—Potential Mapping on Reinforced Concrete Structures. Mater. Struct. 2003, 36, 461–471. [Google Scholar] [CrossRef]
- Kewalramani, M.A.; Gupta, R. Concrete Compressive Strength Prediction Using Ultrasonic Pulse Velocity through Artificial Neural Networks. Autom. Constr. 2006, 15, 374–379. [Google Scholar] [CrossRef]
- Trtnik, G.; Kavcic, F.; Turk, G. Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks. Ultrasonics 2008, 49, 53–60. [Google Scholar] [CrossRef]
- Linfoot, E.H. Principles of Optics. Opt. Acta Int. J. Opt. 1961, 8, 181–182. [Google Scholar] [CrossRef]
- Verstrynge, E.; Van Steen, C.; Vandecruys, E.; Wevers, M. Steel Corrosion Damage Monitoring in Reinforced Concrete Structures with the Acoustic Emission Technique: A Review. Constr. Build. Mater. 2022, 349, 128732. [Google Scholar] [CrossRef]
- Torres Martín, J.E.; Rebolledo Ramos, N.; Chinchón-Payá, S.; Helices Arcila, I.; Silva Toledo, A.; Sánchez Montero, J.; Llorente Sanjuán, M.; Agulló Soto, S.; Otero García, F.; de Haan, L. Durability of a Reinforced Concrete Structure Exposed to Marine Environment at the Málaga Dock. Case Stud. Constr. Mater. 2022, 17, e01582. [Google Scholar] [CrossRef]
- Report of the Conference of the Parties on Its 21st Session, Held in Paris from 30 November to 13 December 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/10.pdf (accessed on 16 January 2024).
- Capellán-Pérez, I.; Arto, I.; Polanco-Martínez, J.M.; González-Eguino, M.; Neumann, M.B. Likelihood of Climate Change Pathways under Uncertainty on Fossil Fuel Resource Availability. Energy Environ. Sci. 2016, 9, 2482–2496. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global Flood Risk under Climate Change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Rianna, G.; Gervasio, H.; Nogal, M. Multi-Region Lifetime Assessment of Reinforced Concrete Structures Subjected to Carbonation and Climate Change. Structures 2022, 45, 886–899. [Google Scholar] [CrossRef]
- Ipcc Global Warming of 1.5°C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915794-0.
- Intergovernmental Panel On Climate Change (Ipcc). The Ocean and Cryosphere in a Changing Climate. A Special Report of the Intergovernmental Panel on Climate Change, 1st ed.; Cambridge University Press: Cambridge, UK, 2022; ISBN 978-1-00-915796-4. [Google Scholar]
- Setola, R. New Threats and Research Problems for Critical Infrastructure. Int. J. Crit. Infrastruct. Prot. 2023, 42, 100629. [Google Scholar] [CrossRef]
- Valenzuela, Y.B.; Rosas, R.S.; Mazari, M.; Risse, M.; Rodriguez-Nikl, T. Resilience of Road Infrastructure in Response to Extreme Weather Events. In Proceedings of the International Conference on Sustainable Infrastructure 2017, American Society of Civil Engineers, Reston, VA, USA, 24 October 2017; pp. 349–360. [Google Scholar]
- Wang, T.; Qu, Z.; Yang, Z.; Nichol, T.; Dimitriu, D.; Clarke, G.; Bowden, D. How Can the UK Road System Be Adapted to the Impacts Posed by Climate Change? By Creating a Climate Adaptation Framework. Transp. Res. Part D Transp. Environ. 2019, 77, 403–424. [Google Scholar] [CrossRef]
- Schweikert, A.; Chinowsky, P.; Kwiatkowski, K.; Espinet, X. The Infrastructure Planning Support System: Analyzing the Impact of Climate Change on Road Infrastructure and Development. Transp. Policy 2014, 35, 146–153. [Google Scholar] [CrossRef]
- Markolf, S.A.; Hoehne, C.; Fraser, A.; Chester, M.V.; Underwood, B.S. Transportation Resilience to Climate Change and Extreme Weather Events—Beyond Risk and Robustness. Transp. Policy 2019, 74, 174–186. [Google Scholar] [CrossRef]
- Tsavdaroglou, M.; Al-Jibouri, S.H.S.; Bles, T.; Halman, J.I.M. Proposed Methodology for Risk Analysis of Interdependent Critical Infrastructures to Extreme Weather Events. Int. J. Crit. Infrastruct. Prot. 2018, 21, 57–71. [Google Scholar] [CrossRef]
- Zhang, N.; Alipour, A. Flood Risk Assessment and Application of Risk Curves for Design of Mitigation Strategies. Int. J. Crit. Infrastruct. Prot. 2022, 36, 100490. [Google Scholar] [CrossRef]
- World Meteorological Organization about the IPCC. Available online: https://www.ipcc.ch/about/ (accessed on 8 February 2024).
- Asnake, A.B.; Ayana, M.T.; Awass, A.A.; Goshime, D.W. Transformation of Climate and Its Sway on Hydro-Climatology Using Representative Concentration Pathways (RCP) in Geba Catchment of Ethiopia. Model. Earth Syst. Environ. 2021, 7, 2439–2451. [Google Scholar] [CrossRef]
- Ma, W.; Jia, W.; Zhou, Y.; Liu, F.; Wang, J. Prediction of Suitable Future Natural Areas for Highland Barley on the Qinghai-Tibet Plateau under Representative Concentration Pathways (RCPs). Sustainability 2022, 14, 6617. [Google Scholar] [CrossRef]
- Manapragada, N.V.S.K.; Shukla, A.K.; Pignatta, G.; Yenneti, K.; Shetty, D.; Nayak, B.K.; Boorla, V. Development of the Indian Future Weather File Generator Based on Representative Concentration Pathways. Sustainability 2022, 14, 15191. [Google Scholar] [CrossRef]
- IPCC, 2019. Special Report on the Ocean and Cryosphere in a Changing Climate; Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 3–35. [Google Scholar] [CrossRef]
- Syed, F.S.; Latif, M.; Al-Maashi, A.; Ghulam, A. Regional Climate Model RCA4 Simulations of Temperature and Precipitation over the Arabian Peninsula: Sensitivity to CORDEX Domain and Lateral Boundary Conditions. Clim. Dyn. 2019, 53, 7045–7064. [Google Scholar] [CrossRef]
- Sierra, J.P.; Genius, A.; Lionello, P.; Mestres, M.; Mösso, C.; Marzo, L. Modelling the Impact of Climate Change on Harbour Operability: The Barcelona Port Case Study. Ocean Eng. 2017, 141, 64–78. [Google Scholar] [CrossRef]
- Permanent International Association of Navigation Congresses. Life Cycle Management of Port Structures—General Principles; PIANC report; PIANC: Brussels, Belgium, 2008; ISBN 978-2-87223-168-3. [Google Scholar]
- Wright, S. Climate Change Risk Management for Ports. In Proceedings of the Ports 2013, American Society of Civil Engineers, Reston, VA, USA, 12 August 2013; pp. 272–281. [Google Scholar]
- Bastidas-Arteaga, E. Towards Climate Change Adaptation of Existing and New Deteriorating Infrastructure. Lect. Notes Civ. Eng. 2021, 153, 39–51. [Google Scholar] [CrossRef]
- Becker, A.; Inoue, S.; Fischer, M.; Schwegler, B. Climate Change Impacts on International Seaports: Knowledge, Perceptions, and Planning Efforts among Port Administrators. Clim. Chang. 2012, 110, 5–29. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.; Tignow, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. (Eds.) Technical Summary. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p, ISBN 978-92-9169-138-8. [Google Scholar]
- Cao, L.; Caldeira, K.; Jain, A.K. Effects of Carbon Dioxide and Climate Change on Ocean Acidification and Carbonate Mineral Saturation. Geophys. Res. Lett. 2007, 34, 2006GL028605. [Google Scholar] [CrossRef]
- Ridgwell, A.; Schmidt, D.N. Past Constraints on the Vulnerability of Marine Calcifiers to Massive Carbon Dioxide Release. Nat. Geosci. 2010, 3, 196–200. [Google Scholar] [CrossRef]
- Hunting, A.; Setunge, S.; Kong, D. The Effects of Ocean Salinity Variance Due to Climate Change on Australian Seaport Infrastructure. Appl. Mech. Mater. 2013, 438–439, 157–165. [Google Scholar] [CrossRef]
- Luo, J.; Huang, M.; Lei, Y. Temperature Effect on Vibration Properties and Vibration-Based Damage Identification of Bridge Structures: A Literature Review. Buildings 2022, 12, 1209. [Google Scholar] [CrossRef]
- Xia, Y.; Hao, H.; Zanardo, G.; Deeks, A. Long Term Vibration Monitoring of an RC Slab: Temperature and Humidity Effect. Eng. Struct. 2006, 28, 441–452. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, J.; Hu, J.; Ye, Z.; Deng, Z.; Wan, N. Nonlinear Modeling of Temperature-Induced Bearing Displacement of Long-Span Single-Pier Rigid Frame Bridge Based on DCNN-LSTM. Case Stud. Therm. Eng. 2024, 53, 103897. [Google Scholar] [CrossRef]
- Stewart, M.G.; Bastidas-Arteaga, E. Introduction to Climate Adaptation Engineering. In Climate Adaptation Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–36. ISBN 9780128167823. [Google Scholar]
- Nogal, M.; Bastidas-Arteaga, E.; dos Santos Gervásio, H.M. Consideration of Climate Change-Induced Corrosion by Structural Codes. In Proceedings of the IABSE Congress, Christchurch 2021: Resilient Technologies for Sustainable Infrastructure, Christchurch, New Zealand, 3–5 February 2021; International Association for Bridge and Structural Engineering (IABSE): Zurich, Switzerland, 2021; pp. 1064–1070. [Google Scholar]
- Panahi, R.; Ng, A.K.Y.; Pang, J. Climate Change Adaptation in the Port Industry: A Complex of Lingering Research Gaps and Uncertainties. Transp. Policy 2020, 95, 10–29. [Google Scholar] [CrossRef]
- Zhang, Y.; Lam, J.S.L. Estimating Economic Losses of Industry Clusters Due to Port Disruptions. Transp. Res. Part A Policy Pract. 2016, 91, 17–33. [Google Scholar] [CrossRef]
- Bastidas-Arteaga, E.; Chateauneuf, A.; Sánchez-Silva, M.; Bressolette, P.; Schoefs, F. A Comprehensive Probabilistic Model of Chloride Ingress in Unsaturated Concrete. Eng. Struct. 2011, 33, 720–730. [Google Scholar] [CrossRef]
Damage Category | Reinforced Concrete Structure State | Technique Used |
---|---|---|
0 | No corrosion E > −200 mV | ASTM C 876-91 |
1 | Possible corrosion E < −200 mV | ASTM C 876-91 |
2 | Cracks < 0.2 mm | Visual inspection |
3 | Cracks > 0.2 mm, staining on the concrete surface | Visual inspection |
4 | Large cracks, spalling, bond loss between steel and concrete, reinforcement corroded on the surface | Visual inspection |
5 | Spalling of concrete cover, significant loss of rebar cross-section, corrosion of prestressing steel | Visual inspection |
Article | Main Topic | Highlights |
---|---|---|
[17] | Monitoring Systems | - Monitoring systems focus on environmental factors (temperature, pH, water content, oxygen transport) and corrosion factors (polarization resistance, galvanic current, concrete resistivity, open circuit potential). - Challenges include interpreting sensor data due to external factors like temperature and moisture. |
[141] | Monitoring Systems | - Difficulty in interpreting sensor data due to external factors. - Examples of corrosion monitoring using electrochemical sensors. - Importance of considering environmental factors for system reliability. |
[144] | Monitoring of Port Structures | - Structural health monitoring system for a port wharf in Saint-Nazaire, France. |
[145] | Monitoring of Various Structures | - Preliminary analysis of bridges, marine structures, and a power plant. - Identifying annual average corrosion rate despite climate variations. |
[150] | Field Testing (Destructive and NDT) | - Three techniques used for corrosion evaluation: electrochemical-based, ultrasonic-based, acoustic emission-based. |
[157] | Ultrasonic-based NDT | - Application of ultrasonic-based NDT and ANN for rebar’s corrosion-induced damage prediction. |
[160] | Acoustic Emission-based NDT | - Review of protocols for RC corrosion monitoring based on acoustic emission. - Importance of the use of the technique and highlighted the absence of standard procedures. |
[150] | Combined Use of NDT Techniques | - Methodology for condition assessment of critical infrastructure using various NDT methods. |
[122] | Rehabilitation of Jetty | - Combined use of Ferro-scanning, core samples, NDT, and visual inspection for rehabilitation assessment. - Detection of delamination and extensive cracking indicating high corrosion-related deterioration. |
[71] | In-situ Tests on 100-year-old Port | - Influence of chloride penetration on structure’s deterioration. - Importance of tests such as ultrasonic pulse velocity, concrete resistivity, corrosion potential. - Immediate repair advised based on chloride concentrations exceeding critical values. |
[16] | Randomness of Results | - Characterization of randomness and spatial variability of material properties, load conditions, or deterioration processes. - Optimization of the number and location of NDT measurements. - Focus on behavioral control rather than parameter identification for long-term monitoring. |
Article | Main Topic | Highlights |
---|---|---|
[181] | Risks to port infrastructure due to changes in wave agitation | Sea-level rise and changes in wave agitation can reduce port operability, affecting productivity and risk |
[184] | Three axes of influence: extreme events, progressive events, and combination of both | Visible challenges during natural disasters, but progressive deterioration may have a larger long-term impact. Sea-level rise could put trillions of dollars’ worth of assets at risk |
[185] | Evaluation of port administrators’ knowledge, attitudes, and planning activities | Long-term capital planning at ports makes addressing climate change challenging. Lack of specific information hinders decision making |
[187] | Ocean acidification and changes in seawater chemistry | Ocean acidification due to human emissions has reduced pH, affecting the chemical composition and potentially harming marine organisms. |
[188] | Changes in ionic composition and speciation of metals in seawater | Potential impacts, though currently poorly documented, on corrosion and vulnerability of port infrastructure |
[189] | Correlation between climate change, salinity, and corrosion in port infrastructure | Increased corrosion initiation and more frequent operational downtime with rising salinity due to climate change |
[54] | Need for countermeasures to minimize the impact on RC structures | Emphasis on implementing countermeasures to minimize the impact of climate change on reinforced concrete structures |
[27] | Analysis of adaptation of existing RC structures to different climates | Cost–benefit ratio demonstrates the framework’s effectiveness in evaluating adaptability to different climatic conditions |
[194] | Potential strategies for addressing corrosion induced by climate change in structural codes | Discussion on potential strategies in structural codes to address corrosion induced by climate change |
[195] | Barriers in implementing climate change adaptation measures in infrastructure | Research highlights that while the importance of barriers in climate change adaptation measures has been emphasized, it is still in an early stage |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rincon, L.F.; Moscoso, Y.M.; Hamami, A.E.A.; Matos, J.C.; Bastidas-Arteaga, E. Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review. Buildings 2024, 14, 562. https://doi.org/10.3390/buildings14030562
Rincon LF, Moscoso YM, Hamami AEA, Matos JC, Bastidas-Arteaga E. Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review. Buildings. 2024; 14(3):562. https://doi.org/10.3390/buildings14030562
Chicago/Turabian StyleRincon, Luis F., Yina M. Moscoso, Ameur El Amine Hamami, José C. Matos, and Emilio Bastidas-Arteaga. 2024. "Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review" Buildings 14, no. 3: 562. https://doi.org/10.3390/buildings14030562
APA StyleRincon, L. F., Moscoso, Y. M., Hamami, A. E. A., Matos, J. C., & Bastidas-Arteaga, E. (2024). Degradation Models and Maintenance Strategies for Reinforced Concrete Structures in Coastal Environments under Climate Change: A Review. Buildings, 14(3), 562. https://doi.org/10.3390/buildings14030562