Model Test on the Collapse Evolution Law of Tunnel Excavation in Composite Strata with a Cavity
Abstract
:1. Introduction
2. Model Test Method
2.1. Test Apparatus
2.2. Similar Law
2.3. Test Scheme
3. Model Test Results
3.1. Effect of Distance between Cavity and Vault in Model Test
3.2. Effect of the Distance between Interface and Vault in Model Test
4. Numerical Simulation of Failure Pattern
4.1. Model Establishment
4.2. Numerical Results Analysis
4.2.1. Effect of Distance between Cavity and Vault in Numerical Simulation
4.2.2. Effect of Distance between Interface and Vault in Numerical Simulation
5. Discussion of Failure Mechanism and Collapsed Arch
6. Conclusions
- Tunnel excavation causes the collapse of the strata in the arch-loosening zone, and the presence of pressure arches suppresses the deformation of the surrounding rock.
- The presence of a cavity deteriorates the stratigraphic conditions and contributes to the emergence of cracks, which leads to secondary collapses after temporary stabilization.
- When hd < D, small-scale collapse occurs during tunnel excavation, and timely measures should be taken to reinforce the unstable zone and control the collapse within the shallow disturbance zone to prevent secondary collapse.
- The thickness of the rock layer affects the height of the collapsed arch. A stable arched structure is difficult to form when the hs is less than 2/3 D. Therefore, special attention should be paid during construction in shallow buried areas, and if necessary, grouting reinforcement should be carried out on the strata.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, H.; Ren, X.; Mao, Q.; Hu, Q.; Wang, W. Shield Subway Tunnel Deformation Detection Based on Mobile Laser Scanning. Autom. Constr. 2019, 106, 102889. [Google Scholar] [CrossRef]
- Li, Q.; Song, L.; List, G.F.; Deng, Y.; Zhou, Z.; Liu, P. A New Approach to Understand Metro Operation Safety by Exploring Metro Operation Hazard Network (MOHN). Saf. Sci. 2017, 93, 50–61. [Google Scholar] [CrossRef]
- Qi, H.; Zhou, Z.; Yuan, J.; Li, N.; Zhou, J. Accident Pattern Recognition in Subway Construction for the Provision of Customized Safety Measures. Tunn. Undergr. Space Technol. 2023, 137, 105157. [Google Scholar] [CrossRef]
- Lin, D.; Nelson, J.D.; Cui, J. Exploring Influencing Factors on Metro Development in China from Urban and Economic Perspectives. Tunn. Undergr. Space Technol. 2021, 112, 103877. [Google Scholar] [CrossRef]
- Zhang, C.; Yue, Y.; Wang, M. Influence of Pipeline Leakage on Ground Collapse and Its Control during Adjacent Tunnelling. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2015, 48, 351–356. [Google Scholar]
- Wu, Y.Q.; Wang, K.; Zhang, L.Z.; Peng, S.H. Sand-Layer Collapse Treatment: An Engineering Example from Qingdao Metro Subway Tunnel. J. Clean. Prod. 2018, 197, 19–24. [Google Scholar] [CrossRef]
- Yan, F.; Qiu, W.; Sun, K.; Jiang, S.; Huang, H.; Hong, Y.; Hou, Z. Investigation of a Large Ground Collapse, Water Inrush and Mud Outburst, and Countermeasures during Subway Excavation in Qingdao: A Case Study. Tunn. Undergr. Space Technol. 2021, 117, 104127. [Google Scholar] [CrossRef]
- Tao, M.; Zhao, H.; Li, X.; Li, X.; Du, K. Failure Characteristics and Stress Distribution of Pre-Stressed Rock Specimen with Circular Cavity Subjected to Dynamic Loading. Tunn. Undergr. Space Technol. 2018, 81, 1–15. [Google Scholar] [CrossRef]
- Li, A.; Liu, Y.; Dai, F.; Liu, K.; Wei, M. Continuum Analysis of the Structurally Controlled Displacements for Large-Scale Underground Caverns in Bedded Rock Masses. Tunn. Undergr. Space Technol. 2020, 97, 103288. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, J.; Yang, F. Field Investigation and Numerical Analysis of Landslide Induced by Tunneling. Eng. Fail. Anal. 2015, 47, 25–33. [Google Scholar] [CrossRef]
- Huang, S.; Liu, Q.; Liu, Y.; Kang, Y.; Cheng, A.; Ye, Z. Frost Heaving and Frost Cracking of Elliptical Cavities (Fractures) in Low-Permeability Rock. Eng. Geol. 2018, 234, 1–10. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, D.; Wang, M.; Li, Q.; Liu, S. Catastrophe Mechanism and Control Technology of Ground Collapse Induced by Urban Tunneling. Tunn. Undergr. Space Technol. 2010, 31, 303–309. [Google Scholar]
- Liu, H.; Yue, Y.; Lian, Y.; Meng, X.; Du, Y.; Cui, J. Reverse-Time Migration of GPR Data for Imaging Cavities behind a Reinforced Shield Tunnel. Tunn. Undergr. Space Technol. 2024, 146, 105649. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, H.; Lin, C.; Meng, X.; Liu, C.; Zhang, X.; Cui, J.; Du, Y. Automatic Recognition of Defects behind Railway Tunnel Linings in GPR Images Using Transfer Learning. Meas. J. Int. Meas. Confed. 2024, 224, 113903. [Google Scholar] [CrossRef]
- Kravitz, B.; Mooney, M.; Karlovsek, J.; Danielson, I.; Hedayat, A. Void Detection in Two-Component Annulus Grout behind a Pre-Cast Segmental Tunnel Liner Using Ground Penetrating Radar. Tunn. Undergr. Space Technol. 2019, 83, 381–392. [Google Scholar] [CrossRef]
- Qin, H.; Zhang, D.; Tang, Y.; Wang, Y. Automatic Recognition of Tunnel Lining Elements from GPR Images Using Deep Convolutional Networks with Data Augmentation. Autom. Constr. 2021, 130, 103830. [Google Scholar] [CrossRef]
- Loupos, K.; Doulamis, A.D.; Stentoumis, C.; Protopapadakis, E.; Makantasis, K.; Doulamis, N.D.; Amditis, A.; Chrobocinski, P.; Victores, J.; Montero, R.; et al. Autonomous Robotic System for Tunnel Structural Inspection and Assessment. Int. J. Intell. Robot. Appl. 2018, 2, 43–66. [Google Scholar] [CrossRef]
- Carranza-Torres, C.; Reich, T. Analytical and Numerical Study of the Stability of Shallow Underground Circular Openings in Cohesive Ground. Eng. Geol. 2017, 226, 70–92. [Google Scholar] [CrossRef]
- Huang, F.; Zhao, L.H.; Ling, T.H.; Yang, X.L. Rock Mass Collapse Mechanism of Concealed Karst Cave beneath Deep Tunnel. Int. J. Rock Mech. Min. Sci. 2017, 91, 133–138. [Google Scholar] [CrossRef]
- Xu, S.; Lei, H.; Li, C.; Liu, H.; Lai, J.; Liu, T. Model Test on Mechanical Characteristics of Shallow Tunnel Excavation Failure in Gully Topography. Eng. Fail. Anal. 2021, 119, 104978. [Google Scholar] [CrossRef]
- Li, G.; Ma, F.; Guo, J.; Zhao, H. Experimental Research on Deformation Failure Process of Roadway Tunnel in Fractured Rock Mass Induced by Mining Excavationng the Distinct Element Method. Environ. Earth Sci. 2022, 81, 243. [Google Scholar] [CrossRef]
- Qin, Y.; Lai, J.; Cao, X.; Zan, W.; Feng, Z.; Xie, Y.; Zhang, W. Experimental Study on the Collapse Evolution Law of Unlined Tunnel in Boulder-Cobble Mixed Formation. Tunn. Undergr. Space Technol. 2023, 139, 105164. [Google Scholar] [CrossRef]
- Zhang, S.; Bao, T.; Liu, C. Model Tests and Numerical Modeling of the Failure Behavior of Composite Strata Caused by Tunneling under Pipeline Leakage Conditions. Eng. Fail. Anal. 2023, 149, 107287. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, S.; Zhang, D.; Zhang, K.; Wang, Z. Model Tests on Progressive Collapse Mechanism of a Shallow Subway Tunnel in Soft Upper and Hard Lower Composite Strata. Tunn. Undergr. Space Technol. 2023, 131, 104824. [Google Scholar] [CrossRef]
- Yang, S.Q.; Chen, M.; Fang, G.; Wang, Y.C.; Meng, B.; Li, Y.H.; Jing, H.W. Physical Experiment and Numerical Modelling of Tunnel Excavation in Slanted Upper-Soft and Lower-Hard Strata. Tunn. Undergr. Space Technol. 2018, 82, 248–264. [Google Scholar] [CrossRef]
- Xiang, Y.; Liu, H.; Zhang, W.; Chu, J.; Zhou, D.; Xiao, Y. Application of Transparent Soil Model Test and DEM Simulation in Study of Tunnel Failure Mechanism. Tunn. Undergr. Space Technol. 2018, 74, 178–184. [Google Scholar] [CrossRef]
- Hao, W.U.; Zhao, G.Y. Failure Behavior of Horseshoe-Shaped Tunnel in Hard Rock under High Stress: Phenomenon and Mechanisms. Trans. Nonferrous Met. Soc. China (Engl. Ed.) 2022, 32, 639–656. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, D.; Fang, Q.; Zhang, S.; Sun, Z. Investigation of Progressive Failure Mechanism of Tunnel Lining with Material Defects Using Discrete Element Method. Theor. Appl. Fract. Mech. 2023, 125, 103832. [Google Scholar] [CrossRef]
- Kudai, K.; Sassa, S.; Yang, S.; Takada, K. Influence of Soil and Hydraulic Conditions on the Processes of Internal Erosion, Cavity Formation and Collapse behind Coastal Structures. Coast. Eng. 2021, 170, 104013. [Google Scholar] [CrossRef]
- Shiau, J.; Leung, P.C.; Keawsawasvong, S.; Seehavong, S.; Sugawara, J. Ground Stability of Ellipsoidal Cavity Due to Pipeline Defects. Appl. Eng. Sci. 2023, 16, 100163. [Google Scholar] [CrossRef]
- Zhou, L.; Ma, L.; Zhu, Z.; Dong, Y.; Huang, J.; Cui, S. Study of the Coupling Effect of Elliptical Cavities and Cracks on Tunnel Stability under Dynamic Loads. Theor. Appl. Fract. Mech. 2022, 121, 103502. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.F.; Wang, Y.; Bai, X.; Lai, J. Characteristics and Failure Analysis of a Railway Tunnel Collapse Influenced by Cavity in Phyllite Strata. Eng. Fail. Anal. 2022, 142, 106794. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, C.; Zhang, Y.; Yang, J.; Feng, T. Damaging Behavior Investigation of an Operational Tunnel Structure Induced by Cavities around Surrounding Rocks. Eng. Fail. Anal. 2019, 99, 203–209. [Google Scholar] [CrossRef]
- Huang, F.; Wu, C.; Jang, B.A.; Hong, Y.; Guo, N.; Guo, W. Instability Mechanism of Shallow Tunnel in Soft Rock Subjected to Surcharge Loads. Tunn. Undergr. Space Technol. 2020, 99, 103350. [Google Scholar] [CrossRef]
- Huang, F.; Zhu, H.; Xu, Q.; Cai, Y.; Zhuang, X. The Effect of Weak Interlayer on the Failure Pattern of Rock Mass around Tunnel-Scaled Model Tests and Numerical Analysis. Tunn. Undergr. Space Technol. 2013, 35, 207–218. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, H.; Su, H.; Xie, J. Effect of a Fault Fracture Zone on the Stability of Tunnel-Surrounding Rock. Int. J. Geomech. 2017, 17, 04016135. [Google Scholar] [CrossRef]
- Wang, J.; Tian, N.; Lin, G.; Feng, K.; Xie, H. Face Failure of Deep EPB Shield Tunnels in Dry Graded Cobble-Rich Soil: A DEM Study. Tunn. Undergr. Space Technol. 2024, 147, 105622. [Google Scholar] [CrossRef]
- Yin, Z.Y.; Wang, P.; Zhang, F. Effect of Particle Shape on the Progressive Failure of Shield Tunnel Face in Granular Soils by Coupled FDM-DEM Method. Tunn. Undergr. Space Technol. 2020, 100, 103394. [Google Scholar] [CrossRef]
- Chen, L.; Jin, A.; Wu, S.; Chu, C.; Li, X. Numerical Study on Spalling Failure of Rock Surrounding Deep Buried Tunnel Based on DEM. Comput. Geotech. 2022, 145, 104653. [Google Scholar] [CrossRef]
- Cundall, P.A. A Computer Model for Simulating Progressive, Large-Scale Movement in Blocky Rock System. Proc. Int. Symp. Rock Mech. 1971, 8, 129–136. [Google Scholar]
- Fakhimi, A.; Carvalho, F.; Ishida, T.; Labuz, J.F. Simulation of Failure around a Circular Opening Using CWFS Model. Int. J. Rock Mech. Min. Sci. 2002, 39, 507–515. [Google Scholar]
- Li, X.; Chen, R.; Liu, L.; Zhou, C.; Bate, B. A Non-Darcy Flow CFD–DEM Method for Simulating Ground Collapse Induced by Leakage through Underground Pipeline Defect. Comput. Geotech. 2023, 162, 105695. [Google Scholar] [CrossRef]
- Gutiérrez-Ch, J.G.; Senent, S.; Zeng, P.; Jimenez, R. DEM Simulation of Rock Creep in Tunnels Using Rate Process Theory. Comput. Geotech. 2022, 142, 104559. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Pan, P.; Chen, H.; Wang, D.; Chen, P. Computers and Geotechnics Failure Analysis of Soil-Rock Mixture Slopes Using Coupled MPM-DEM Method. Comput. Geotech. 2024, 169, 106226. [Google Scholar] [CrossRef]
- Tong, B.; Yoo, C. Application of Digital Image Correlations (DIC) Technique on Geotechnical Reduced-Scale Model Tests. J. Korean Geosynth. Soc. 2022, 21, 33–48. [Google Scholar]
- Iglesia, G.R.; Einstein, H.H.; Whitman, R.V. Investigation of Soil Arching with Centrifuge Tests. J. Geotech. Geoenviron. Eng. 2014, 140, 04013005. [Google Scholar] [CrossRef]
- Khatami, H.; Deng, A.; Jaksa, M. An Experimental Study of the Active Arching Effect in Soil Using the Digital Image Correlation Technique. Comput. Geotech. 2019, 108, 183–196. [Google Scholar] [CrossRef]
- Liu, T.; Xie, Y.; Feng, Z.; Luo, Y.; Wang, K.; Xu, W. Better Understanding the Failure Modes of Tunnels Excavated in the Boulder-Cobble Mixed Strata by Distinct Element Method. Eng. Fail. Anal. 2020, 116, 104712. [Google Scholar] [CrossRef]
- De Frias Lopez, R.; Silfwerbrand, J.; Jelagin, D.; Birgisson, B. Force Transmission and Soil Fabric of Binary Granular Mixtures. Geotechnique 2016, 66, 578–583. [Google Scholar] [CrossRef]
- de Frias Lopez, R.; Ekblad, J.; Silfwerbrand, J. Resilient Properties of Binary Granular Mixtures: A Numerical Investigation. Comput. Geotech. 2016, 76, 222–233. [Google Scholar] [CrossRef]
- Mercuri, M.; Pathirage, M.; Gregori, A.; Cusatis, G. Influence of Self-Weight on Size Effect of Quasi-Brittle Materials: Generalized Analytical Formulation and Application to the Failure of Irregular Masonry Arches. Int. J. Fract. 2023, 1–28. [Google Scholar] [CrossRef]
Parameter | Symbol | Definition | Ratio |
---|---|---|---|
Dimension | l | 1:20 | |
Unit weight | γ | 1:1 | |
Elastic modulus | E | 1:20 | |
Passion’s ratio | µ | 1:1 | |
Friction angle | f | 1:1 | |
Cohesion | c | 1:20 |
Strata | Type | Unit Weight (kN/m3) | Elastic Modulus (Gpa) | Poisson’s Ratio | Friction Angle (°) | Cohesion (kPa) |
---|---|---|---|---|---|---|
Soil | Prototype | 18 | 60 | 0.35 | 32 | 40 |
Similar materials | 18.4 | 2.58 | 0.32 | 32.5 | 2 | |
Rock | Prototype | 20 | 3100 | 0.32 | 35 | 640 |
Similar materials | 20.1 | 1500 | 0.30 | 34.2 | 32 |
Group | Case | Distance between Vault and Cavity (hd) | Distance between Vault and Interface (hr) | Remarks |
---|---|---|---|---|
A | 1 | / | 10 cm | No underground cavity |
B | 2 | 10 cm | 10 cm | Interface location fixed |
3 | 20 cm | |||
4 | 30 cm | |||
C | 5 | 20 cm | 5 cm | Cavity location fixed |
3 | 10 cm | |||
6 | 20 cm |
Parameter | Rock | Soil |
---|---|---|
Particle density/(Kg/m−3) | 2000 | 1800 |
Normal contact stiffness, kn/(MPa) | 100 | 50 |
Tangential contact stiffness, ks/(MPa) | 100 | 50 |
Normal bonding stiffness, pb_kn/(MPa) | 100 | 50 |
Tangential bonding stiffness, pb_ks/(MPa) | 100 | 50 |
Normal bonding strength, pb_ten/(KPa) | 200 | 80 |
Tangential bonding strength, pb_coh/(KPa) | 200 | 80 |
Internal friction angle, pb_fa/(°) | 35 | 32.5 |
Elastic modulus/(MPa) | 3100 | 60 |
Cohesive force/(KPa) | 640 | 40 |
Internal friction angle/(°) | 35 | 32 |
Poisson’s ratio | 0.32 | 0.35 |
Case | Distance between Vault and Interface (hr) | Soil Thickness | Distance between Vault and Cavity (hd) |
---|---|---|---|
Scheme A | 2 m | 13 m | No underground cavity |
Scheme B | 2 m | 13 m | 2 m |
Scheme C | 2 m | 13 m | 4 m |
Scheme D | 2 m | 13 m | 4.5 m |
Scheme E | 2 m | 13 m | 6 m |
Scheme F | 1 m | 14 m | 4 m |
Scheme G | 4 m | 11 m | 4 m |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Gao, J.; Wang, Z.; Liu, C. Model Test on the Collapse Evolution Law of Tunnel Excavation in Composite Strata with a Cavity. Buildings 2024, 14, 932. https://doi.org/10.3390/buildings14040932
Zhang C, Gao J, Wang Z, Liu C. Model Test on the Collapse Evolution Law of Tunnel Excavation in Composite Strata with a Cavity. Buildings. 2024; 14(4):932. https://doi.org/10.3390/buildings14040932
Chicago/Turabian StyleZhang, Changan, Jianlei Gao, Zhengzhong Wang, and Chang Liu. 2024. "Model Test on the Collapse Evolution Law of Tunnel Excavation in Composite Strata with a Cavity" Buildings 14, no. 4: 932. https://doi.org/10.3390/buildings14040932
APA StyleZhang, C., Gao, J., Wang, Z., & Liu, C. (2024). Model Test on the Collapse Evolution Law of Tunnel Excavation in Composite Strata with a Cavity. Buildings, 14(4), 932. https://doi.org/10.3390/buildings14040932