Low-Carbon Emissions and Cost of Frame Structures for Wooden and Concrete Apartment Buildings: Case Study from Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apartment Building Initial Information
2.2. Alternatives for the Apartment Building’s Structural Solution
2.3. Scope of Quantity, Cost, and Low-Carbon Calculations
2.4. Structural Design and Cost Estimation of the Structural Elements
2.5. Carbon Footprint and Handprint of Structural Elements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Structure | Name | Product; Structural Thickness | m2 | kg/m2 | Structure | Name | Product; Structural Thickness | m2 | kg/m2 |
---|---|---|---|---|---|---|---|---|---|
Exterior wall | Sandwich inner shell | Tb C30/37, XC4, XF1; 150 mm | 4084 | 360 | Intermediate floors | Plastering and leveling | Plan; 40 mm | 10,189 | 80 |
Stone wool insulation | Paroc cos 5 ggt; 220 mm | 4084 | 12.1 | Sound insulation | Step sound insulation board and filter fabric; 30 mm | 10,189 | 2.6 | ||
Sandwich outer shell | Tb C30/37, XC1; 70 mm | 4084 | 168 | Hollow-core slab intermediate floor | OL 320 seamless; 320 mm | 10,189 | 400 | ||
Exterior wall | Sandwich inner shell | Tb C30/37, XC4, XF1; 80 mm | 4782 | 192 | Concrete element intermediate floor | TB slab C30/37 XC1; 260 mm | 427 | 624 | |
Stone wool insulation | Paroc cos 5 ggt; 220 mm | 4782 | 12.1 | Concrete element intermediate floor | TB slab C30/37 XC4, XF1; 260 mm | 3193 | 624 | ||
Sandwich outer shell | Tb C30/37, XC1; 70 mm | 4782 | 168 | Roof structure | Roofing plywood | WISA-Kate Plus; 19 mm | 3452 | 8.3 | |
Partition wall between apartments | TB-element wall | Tb C25/30, XC1; 200 mm | 5334 | 480 | Roof trusses | NR purlin truss | 3452 | 55 | |
Load-bearing partition wall | TB-element wall | Tb C25/30, XC1; 200 mm | 674 | 480 | Mineral wool insulation | Blown stone wool insulation Paroc BLT 6; 460 mm | 3452 | 16.6 | |
Partition wall for balcony | TB-element wall | Tb C30/37, XC4, XF1; 180 mm | 743 | 432 | Hollow-core slab roof | OL 320 seamless; 320 mm | 3452 | 400 | |
Partition wall for a porch | TB-element wall | Tb C30/37, XC4, XF1; 180 mm | 681 | 432 | Stairs | Solid slab staircase | Rudus Element 9 | 36 | 2000 |
Appendix B
Structure | Name | Product; Structural Thickness | m2 | kg/m2 | Structure | Name | Product; Structural Thickness | m2 | kg/m2 |
---|---|---|---|---|---|---|---|---|---|
Exterior wall | CLT panel | CLT 240 L7s BVI; 240 mm | 3559 | 113 | Interior wall | Gypsum board cladding | Gypsum Board GLF 18 Fireline RO; 18 mm | 5334 | 14.8 |
Exterior wall | CLT panel | CLT 180 L5s VI; 180 mm | 4084 | 84.6 | CLT panel | CLT 100 C3s NVI; 100 mm | 5334 | 47 | |
Wind insulation | Insulation Paroc Cortex; 50 mm | 4084 | 4 | Insulation | Paroc extra 50; 50 mm | 5334 | 1.6 | ||
Framing | Framing 28 × 98 at 600 mm spacing; 28 mm | 4084 | 2.5 | CLT panel | CLT 100 C3s NVI; 100 mm | 5334 | 47 | ||
Framing | Framing 28 × 98 at 600 mm spacing; 28 mm | 4084 | 2.5 | Gypsum board cladding | Gypsum Board GLF 18 Fireline RO; 18 mm | 5334 | 14.8 | ||
Stone board cladding | Flexit; 9 mm | 4084 | 14.5 | Load-bearing partition wall | Gypsum board cladding | Gypsum Board GLF 18 Fireline RO; 18 mm | 674 | 14.8 | |
Exterior wall | CLT panel | CLT 180 L5s VI; 180 mm | 1223 | 84.6 | CLT panel | CLT 180 L7s NVI; 180 mm | 674 | 84.6 | |
Wind insulation | Insulation Paroc Cortex; 50 mm | 1223 | 4 | Gypsum board cladding | Gypsum Board GLF 18 Fireline RO; 18 mm | 674 | 14.8 | ||
Framing | Framing 28 × 98 k600; 28 mm | 1223 | 2.5 | Balcony partition wall | CLT panel | CLT 200 L7s VI; 200 mm | 743 | 94 | |
Framing | Framing 28 × 98 k600; 28 mm | 1223 | 2.5 | Mezzanine partition wall | Gypsum board cladding | Flexit; 9 mm | 681 | 14.5 | |
Exterior cladding | Exterior Spruce UYS 28 × 95; 28 mm | 1223 | 12.6 | CLT panel | CLT 180 L7s NVI; 180 mm | 681 | 84.6 | ||
Interior floor | CLT panel | CLT 160 L5s NVI; 160 mm | 8885 | 75.2 | Gypsum board cladding | Flexit; 9 mm | 681 | 14.5 | |
Lightweight frame | 48 × 98 C24, k600; 98 mm | 8885 | 3.8 | Attic apartment | Underlay sheet installation | OSB4 18 1.2 × 2.7; 18 mm | 2328 | 9.9 | |
Insulation | Paroc extra 100; 100 mm | 8885 | 2.9 | Insulation | Paroc BLT 6; 500 mm | 2328 | 18 | ||
Framing | 28 × 48 ST/A, k600; 28 mm | 8885 | 0.77 | Roof trusses | NR purlin truss | 2328 | 55 | ||
Spring beam | acoustic spring hanger; 25 mm | 8885 | 0.75 | CLT panel | CLT 100 L3s NVI; 100 mm | 2328 | 47 | ||
Gypsum board cladding | Gypsum board 2 × 13 GEK; 26 mm | 8885 | 19.8 | Framing | 42 × 98 ST/A, k600; 98 mm | 2328 | 3.7 | ||
Entrance floor | CLT panel | CLT 140 L5s NVI; 140 mm | 1304 | 65.8 | Insulation | Paroc Extra 100; 100 mm | 2328 | 2.9 | |
Gypsum board cladding | Plasterboard Siniat WD; 9.5 mm | 1304 | 8.5 | Framing | 28 × 48 ST/A, k600; 28 mm | 2328 | 0.8 | ||
Framing | framing 48 × 48 ST/A, k600; 48 mm | 1304 | 1.92 | Plasterboard cladding | Plasterboard GEK 13 RO; 13 mm | 2328 | 9.9 | ||
Stone panel cladding | Flexit; 9 mm | 1304 | 14.5 | Roof terrace | Roofing underlayment | OSB4 18 1.2 × 2.7; 18 mm | 442 | 9.9 | |
Entrance floor | CLT panel | CLT 140 L5s NVI; 140 mm | 1424 | 65.8 | Insulation | Paroc BLT 6; 500 mm | 442 | 18 | |
Gypsum board cladding | Gypsum board Siniat WD; 9.5 mm | 1424 | 8.5 | Roof trusses | NR purlin truss | 442 | 55 | ||
Framing | Framing 48 × 48 ST/A, k600; 48 mm | 1424 | 1.92 | CLT panel | CLT 100 L3s NVI; 100 mm | 442 | 47 | ||
Stone panel cladding | Flexit; 9 mm | 1424 | 14.5 | Attic loft | Roofing underlayment | OSB4 18 1.2 × 2.7; 18 mm | 682 | 9.9 | |
Entrance floor | CLT panel | CLT 140 L5s VI; 140 mm | 1769 | 65.8 | Insulation | Paroc BLT 6; 500 mm | 682 | 18 | |
Entrance floor | CLT panel | CLT 140 L5s NVI; 140 mm | 427 | 65.8 | Roof trusses | NR purlin truss | 682 | 55 | |
gypsum board cladding | Gypsum board GLF 15 Fireline RO; 15 mm | 427 | 12.8 | CLT panel | CLT 100 L3s NVI; 100 mm | 682 | 47 | ||
Stairs | Staircase element | CLT-staircase element | 36 (pieces) | 208 | Plasterboard cladding | Plasterboard Siniat WD; 9.5 mm | 682 | 8.5 | |
GLT | GLT | GLT | 456 m3 | - | Framing | 48 × 48 ST/A, k600; 48 mm | 682 | 1.9 | |
Stone panel cladding | Flexit; 9 mm | 682 | 14.5 |
Appendix C. Component-Based Cost Estimate for the Concrete Frame Structure
- Contents of Cost Estimate: Residential Apartment Building Timber Frame Contract, including CLT AKU and PALO surface structures indoors, as well as exterior cladding. Details of the cost calculation are provided below.
- Estimated Total Price: Self-cost price is EUR 9,114,500, with VAT of 0%
- Calculation content based on architectural plan drafts are dated 24 May 2023.
- The basic floor area has been calculated for five levels, resulting in a total residential floor area of approximately 9677 m2 in the timber-built floors.
- The discrepancies in ground floor layouts and the spaces in concrete floors have not been accounted for. According to the architectural plans, the area is 8678 m2 because part of the ground floor consists of other spaces.
Construction Type | Structural Layer | Product |
---|---|---|
Balcony, 3559 m2 | CLT Exterior Claddings | CLT 240 L7s BVI Surface treatment only |
Storehouse, 4084 m2 | CLT Insulation Battening Battening Exterior cladding | CLT 180 L5s VIParoc Cortex 50 28 × 98, k600 28 × 98, k600 Stone panel cladding |
Exit, 1223 m2 | CLT Insulation Battening Battening Exterior cladding | CLT 180 L5s VI Paroc Cortex 50 28 × 98, k600 28 × 98, k600 Spruce UYS 28 × 95 P+2xP |
Construction Type | Structural Layer | Product |
---|---|---|
Partition walls, 5334 m2 | Interior cladding panel CLT Insulation CLT Interior cladding panel | Plasterboard GLF 18 FireLine RO CLT 100 C3a NVI Paroc Extra 50 CLT 100 C3a NVI Plasterboard GLF 18 FireLine RO |
Structural wall inside, 674 m2 | Interior cladding panel CLT Interior cladding panel | Plasterboard GLF 18 FireLine RO CLT 180 L7s NVI Plasterboard GLF 18 FireLine RO |
Balcony VS, 743 m2 | Exterior cladding CLT Exterior cladding | Surface treatment only CLT 180 L7s VI Surface treatment only |
Shed VS, 681 m2 | Exterior cladding CLT Exterior cladding | Stone panel cladding CLT 180 L7s NVI Stone panel cladding |
Construction Type | Structural Layer | Product |
---|---|---|
Intermediate floors, 8885 m2 | CLT Frame Insulation Battening Interior Cladding Panel Insulation | CLT 160 L5s NVI 48 × 98 C24, k600 Paroc Extra 100 28 × 48, k600 Spring frame 25 mm + 2 × GEK 13 Vapor barrier |
Intermediate floor entry alcove, 1304 m2 | CLT Wind barrier Battening Exterior cladding | CLT 140 L5s NVI Siniat Weather Defence 9.5 mm gypsum board 48 × 48 ST/A, k600 Stone panel cladding |
Intermediate floor gallery corridor, 1424 m2 | CLT Wind barrier Battening Exterior cladding | CLT 140 L5s NVI Siniat Weather Defence 9.5 mm gypsum board Stone panel cladding |
Intermediate floor balcony, 1769 m2 | Cladding Waterproofing CLT Exterior cladding | Balcony spaces Balcony membrane waterproofing CLT 140 L5s VI Surface treatment only |
Intermediate floor stairwell, 427 m2 | CLT Interior cladding panel | CLT 140 L5s NVI Plasterboard GLF 15 FireLine RO |
Construction Type | Structural Layer | Product |
---|---|---|
Attic floor insulation layers, 2328 m2 | roof underlayment sheets insulation frame CLT battening insulation battening interior cladding panel | OSB4 18 mm 1.2 × 2.7 blow-in insulation 500 mm roof trusses installed, complex shape CLT 100 L3s NVI 42 × 98, k600 Paroc Extra 100 28 × 48, k600 plasterboard GEK 13 RO |
Attic floor balcony, 442 m2 | roof underlayment installation insulation frame CLT exterior cladding | OSB4 18 mm 1.2 × 2.7 blow-in insulation 500 mm roof trusses installed, complex shape CLT 100 L3s VI Surface treatment only |
Attic floor shelter, 682 m2 | roof underlayment installation insulation frame CLT wind barrier battening exterior cladding | OSB4 18 mm 1.2 × 2.7 blow-in insulation 500 mm roof trusses installed, complex shape CLT 100 L3s NVI Siniat Weather Defence 9.5 mm 48 × 48 ST/A, k600 gypsum board |
Appendix D
Structure | Name | Product; Structural Thickness | Structure | Name | Product; Structural Thickness |
---|---|---|---|---|---|
Exterior wall | Sandwich inner shell | Tb C30/37, XC4, XF1; 150 mm | Partition wall of the storage closet | Tb-element wall | Tb C30/37, XC4, XF1; 180 mm |
Mineral wool insulation | Paroc cos 5 ggt; 220 mm | Intermediate floor | Surface leveling | Planar; 40 mm | |
Sandwich outer shell | Tb C30/37, XC1; 70 mm | Sound insulation | Footstep sound insulation board and filtering fabric; 30 mm | ||
Exterior wall | Sandwich inner shell | Tb C30/37, XC4, XF1; 80 mm | Hollow-core slab intermediate floor | OL 320 seamless; 320 mm | |
Mineral wool insulation | Paroc cos 5 ggt; 220 mm | Intermediate floor | Concrete element intermediate floor | Tb-slab C30/37 XC1; 260 mm | |
Sandwich outer shell | Tb C30/37, XC1; 70 mm | Intermediate floor | Concrete element intermediate floor | Tb-slab C30/37 XC4, XF1; 260 mm | |
The wall between the apartments | Tb-element wall | Tb C25/30, XC1; 200 mm | Upper floor | Roofing plywood | WISA-Kate Plus; 19 mm |
Load-bearing partition wall | Tb-element wall | Tb C25/30, XC1; 200 mm | Roof trusses | NR-purlin truss | |
Partition wall for balcony | Tb-element wall | Tb C30/37, XC4, XF1; 180 mm | Mineral wool insulation | Blown stone wool insulation Paroc BLT 6; 460 mm | |
Stairs | Solid slab staircase | Rudus Elemento 9 | Hollow-core slab roof | OL 320 seamless; 320 mm |
Appendix E
Structure | Name | Product; Structural Thickness | Structure | Name | Product; Structural Thickness |
---|---|---|---|---|---|
Exterior wall | CLT panel | CLT 240 L7s BVI; 240 mm | Entrance floor/level | CLT panel | CLT 140 L5s NVI; 140 mm |
Exterior wall | CLT panel | CLT 180 L5s VI; 180 mm | Plasterboard cladding | Siniat WD plasterboard; 9.5 mm | |
Wind barrier insulation | Eriste Paroc Cortex; 50 mm | Battening | 48 × 48 ST/A, k600; 48 mm | ||
Framing | 28 × 98 k600; 28 mm | Stone board cladding | Flexit; 9 mm | ||
Framing | 28 × 98 k600; 28 mm | Attic floor | CLT panel | CLT 140 L5s NVI; 140 mm | |
Stone panel cladding | Flexit; 9 mm | Plasterboard cladding | Siniat WD plasterboard; 9.5 mm | ||
Exterior wall | CLT panel | CLT 180 L5s VI; 180 mm | Battening | 48 × 48 ST/A, k600; 48 mm | |
Wind barrier insulation | Paroc Cortex insulation; 50 mm | Stone board cladding | Flexit; 9 mm | ||
Framing | 28 × 98 k600; 28 mm | Balcony floor | CLT panel | CLT 140 L5s VI; 140 mm | |
Framing | 28 × 98 k600; 28 mm | Balcony floor | CLT panel | CLT 140 L5s NVI; 140 mm | |
Exterior cladding | Exterior. Spruce UYS 28 × 95; 28 mm | Plasterboard cladding | Plasterboard GLF 15 Fireline RO; 15 mm | ||
Interior wall | Plasterboard cladding | Plasterboard GLF 18 Fireline RO; 18 mm | Ceiling/floor structure | Underlay boarding | OSB4 18 1.2 × 2.7; 18 mm |
CLT panel | CLT 100 C3s NVI; 100 mm | Insulation | Paroc BLT 6; 500 mm | ||
Insulation | Paroc extra 50; 50 mm | Roof trusses | NR purlin truss | ||
CLT panel | CLT 100 C3s NVI; 100 mm | CLT panel | CLT 100 L3s NVI; 100 mm | ||
Plasterboard cladding | Plasterboard GLF 18 Fireline RO; 18 mm | Battening | 42 × 98 ST/A, k600; 98 mm | ||
Load-bearing partition | Plasterboard cladding | Plasterboard GLF 18 Fireline RO; 18 mm | Insulation | Paroc Extra 100; 100 mm | |
CLT panel | CLT 180 L7s NVI; 180 mm | Battening | 28 × 48 ST/A, k600; 28 mm | ||
Plasterboard cladding | Plasterboard GLF 18 Fireline RO; 18 mm | Plasterboard cladding | plasterboard GEK 13 RO; 13 mm | ||
Balcony partition | CLT panel | CLT 200 L7s VI; 200 mm | Balcony ceiling | Underlayment boarding | OSB4 18 1.2 × 2.7; 18 mm |
Attic partition | Stone panel cladding | Slolid board; 9 mm | Insulation | Paroc BLT 6; 500 mm | |
CLT-levy | CLT 180 L7s NVI; 180 mm | Roof trusses | NR purlin truss | ||
Stone panel cladding | Slolid board; 9 mm | CLT panel | CLT 100 L3s NVI; 100 mm | ||
Intermediate floor | CLT panel | CLT 160 L5s NVI; 160 mm | Attic floor | Subroofing | OSB4 18 1.2 × 2.7; 18 mm |
Light frame | 48 × 98 C24, k600; 98 mm | Insulation | Paroc BLT 6; 500 mm | ||
Insulation | Paroc extra 100; 100 mm | Roof trusses | NR purlin truss | ||
Battening | 28 × 48 ST/A, k600; 28 mm | CLT panel | CLT 100 L3s NVI; 100 mm | ||
Spring slat | Acoustic spring slat; 25 mm | Plasterboard cladding | Siniat WD plasterboard; 9.5 mm | ||
Plasterboard cladding | Plasterboard 2 × 13 GEK; 26 mm | Battening | 48 × 48 ST/A, k600; 48 mm | ||
Stairs | Staircase Element | CLT Staircase Element | Stone board cladding | Flexit; 9 mm | |
GLT | GLT | GLT |
References
- Andersen, C.E.; Hoxha, E.; Rasmussen, F.N.; Sørensen, C.G.; Birgisdóttir, H. Evaluating the environmental performance of 45 real-life wooden buildings: A comprehensive analysis of low-impact construction practices. Build. Environ. 2024, 250, 111201. [Google Scholar] [CrossRef]
- Tuppura, A.; Palomäki, K.; Grönman, K.; Lakanen, L.; Pätäri, S.; Vatanen, S.; Soukka, R. Communicating positive environmental impacts–User experiences of the carbon handprint approach. J. Clean. Prod. 2024, 434, 140292. [Google Scholar] [CrossRef]
- Räihä, J.; Clarke, S.; Sankelo, P.; Ruokamo, E.; Kangas, H.L. The importance of organization type: Construction sector perceptions of low-carbon policies and measures. Environ. Sci. Policy 2024, 151, 103602. [Google Scholar] [CrossRef]
- Rasmussen, F.N.; Birgisdóttir, H.; Malmqvist, T.; Kuittinen, M.; Häkkinen, T. Embodied carbon in building regulation–Development and implementation in Finland, Sweden and Denmark. In The Routledge Handbook of Embodied Carbon in the Built Environment; Routledge: London, UK, 2023; pp. 85–102. [Google Scholar]
- Chen, L.; Zhang, Y.; Chen, Z.; Dong, Y.; Jiang, Y.; Hua, J.; Liu, Y.; Osman, A.I.; Farghali, M.; Huang, L.; et al. Biomaterials technology and policies in the building sector: A review. Environ. Chem. Lett. 2024, 22, 715–750. [Google Scholar] [CrossRef]
- Sivonen, M.H.; Kivimaa, P. Politics in the energy-security nexus: An epistemic governance approach to the zero-carbon energy transition in Finland, Estonia, and Norway. Environ. Sociol. 2024, 10, 55–72. [Google Scholar] [CrossRef]
- Mustajoki, J.; Liesiö, J.; Kajanus, M.; Eskelinen, T.; Karkulahti, S.; Kee, T.; Kesänen, A.; Kettunen, T.; Wuorisalo, J.; Marttunen, M. A portfolio decision analysis approach for selecting a subset of interdependent actions: The case of a regional climate roadmap in Finland. Sci. Total Environ. 2024, 912, 169548. [Google Scholar] [CrossRef]
- Asdrubali, F.; Grazieschi, G.; Roncone, M.; Thiebat, F.; Carbonaro, C. Sustainability of building materials: Embodied energy and embodied carbon of masonry. Energies 2023, 16, 1846. [Google Scholar] [CrossRef]
- Karjalainen, M.; Ilgın, H.E.; Metsäranta, L.; Norvasuo, M. Wooden Facade Renovation and Additional Floor Construction for Suburban Development in Finland. In Zero-Energy Buildings; InTech Open Access Publisher: London, UK, 2022. [Google Scholar] [CrossRef]
- Karjalainen, M.; Ilgın, H.E.; Metsäranta, L.; Norvasuo, M. Suburban Residents’ Preferences for Livable Residential Area in Finland. Sustainability 2021, 13, 11841. [Google Scholar] [CrossRef]
- Ilgın, H.E.; Karjalainen, M. Perceptions, Attitudes, and Interests of Architects in the Use of Engineered Wood Products for Construction: A Review. In Engineered Wood Products for Construction; Gong, M., Ed.; InTech Open Access Publisher: London, UK, 2021. [Google Scholar] [CrossRef]
- de Melo, P.C.; Caldas, L.R.; Masera, G.; Pittau, F. The potential of carbon storage in bio-based solutions to mitigate the climate impact of social housing development in Brazil. J. Clean. Prod. 2023, 433, 139862. [Google Scholar] [CrossRef]
- Husgafvel, R.; Sakaguchi, D. Circular Economy Development in the Wood Construction Sector in Finland. Sustainability 2023, 15, 7871. [Google Scholar] [CrossRef]
- Räty, T.; Häkkinen, T.; Pesu, J. Assessment Methods for Long-Term Biochar Storage—Preliminary Study on Wood Products; Natural Resources Institute Finland: Helsinki, Finland; Finnish Environment Institute: Helsinki, Finland, 2021; Available online: http://urn.fi/URN:NBN:fi-fe2021081843543 (accessed on 14 April 2024). (In Finnish)
- Xia, Y.; Tao, L.; Guo, Q. Low Carbon Design Strategy of Regional Airport Terminal Based on Building Carbon Emission Calculation Standard. In International Civil Engineering and Architecture Conference; Springer: Singapore, 2023; pp. 641–653. [Google Scholar]
- Franco, C.R.; Page-Dúrese, D.S. Decreasing the urban carbon footprint with woody biomass biochar in the united states of america. Carbon Footpr. 2023, 2, 18. [Google Scholar] [CrossRef]
- Zaid, O.; Alsharari, F.; Ahmed, M. Utilization of engineered biochar as a binder in carbon negative cement-based composites: A review. Constr. Build. Mater. 2024, 417, 135246. [Google Scholar] [CrossRef]
- Karjalainen, M.; Ilgın, H.E.; Somelar, D. Wooden Extra Stories in Concrete Block of Flats in Finland as an Ecologically Sensitive Engineering Solution. In Ecological Engineering—Addressing Climate Challenges and Risks; InTech Open Access Publisher: London, UK, 2021. [Google Scholar] [CrossRef]
- De Araujo, V. Timber construction as a multiple valuable sustainable alternative: Main characteristics, challenge remarks and affirmative actions. Int. J. Constr. Manag. 2023, 23, 1334–1343. [Google Scholar] [CrossRef]
- Kuzman, M.K.; Lähtinen, K.; Sandberg, D. Initiatives Supporting Timber Constructions in Finland, Slovenia and Sweden. In Proceedings of the IUFRO 2017 Division 5 Conference “Forest Sector Innovations for a Greener Future”, Vancouver, BC, Canada, 12–16 June 2017; p. 18. [Google Scholar]
- Riala, M.; Ilola, L. Multi-storey timber construction and bioeconomy—Barriers and opportunities. Scand. J. For. Res. 2014, 29, 367–377. [Google Scholar] [CrossRef]
- Jussila, J.; Lähtinen, K. Effects of institutional practices on delays in construction—Views of Finnish homebuilder families. Hous. Stud. 2019, 35, 1167–1193. [Google Scholar] [CrossRef]
- Toppinen, A.; Röhr, A.; Pätäri, S.; Lähtinen, K.; Toivonen, R. The future of wooden multistory construction in the forest bioeconomy—A Delphi study from Finland and Sweden. J. For. Econ. 2018, 31, 3–10. [Google Scholar] [CrossRef]
- Toivonen, R.; Vihemäki, H.; Toppinen, A. Policy narratives on wooden multi-storey construction and implications for technology innovation system governance. For. Policy Econ. 2021, 125, 102409. [Google Scholar] [CrossRef]
- Čuček, L.; Klemeš, J.J.; Kravanja, Z. Overview of environmental footprints. In Assessing and Measuring Environmental Impact and Sustainability; Klemeš, J.J., Ed.; Butterworth-Heinemann: Oxford, UK, 2015; Chapter 5; pp. 131–193. [Google Scholar]
- Cohen, M.A. Habitat II: A critical assessment. Environ. Impact Assess. Rev. 1996, 16, 429–433. [Google Scholar] [CrossRef]
- Cohen, M.A. From Habitat II to Pachamama: A growing agenda and diminishing expectations for Habitat III. Environ. Urban. 2016, 28, 35–48. [Google Scholar] [CrossRef]
- Wiedmann, T.; Barrett, J. A Review of the Ecological Footprint Indicator—Perceptions and Methods. Sustainability 2010, 2, 1645–1693. [Google Scholar] [CrossRef]
- Best, A.; Giljum, S.; Simmons, C.; Blobel, D.; Lewis, K.; Hammer, M.; Cavalieri, S.; Lutter, S.; Maguire, C. Potential of the Ecological Footprint for Monitoring Environmental Impacts from Natural Resource Use: Analysis of the Potential of the Ecological Footprint and Related Assessment Tools for Use in the EU’s Thematic Strategy on the Sustainable Use of Natural Resources. Report to the European Commission, DG Environment. 2008. Available online: https://ec.europa.eu/environment/archives/natres/pdf/footprint.pdf (accessed on 14 April 2024).
- Hoekstra, A.Y. Water Neutral: Reducing and Offsetting the Impacts of Water Footprints; Value of Water Research Report Series No 28; UNESCO-IHE Institute for Water Education: Delft, The Netherlands, 2008; Available online: https://research.utwente.nl/en/publications/water-neutral-reducing-and-ofsetting-water-footprints (accessed on 14 April 2024).
- Čuček, L.; Klemeš, J.J.; Kravanja, Z. A review of footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. 2012, 34, 9–20. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Fang, K.; Heijungs, R.; de Snoo, G.R. Theoretical exploration for the combination of the ecological, energy, carbon, and water footprints: Overview of a footprint family. Ecol. Indic. 2014, 36, 508–518. [Google Scholar] [CrossRef]
- Auger, C.; Hilloulin, B.; Boisserie, B.; Thomas, M.; Guignard, Q.; Rozière, E. Open-Source Carbon Footprint Estimator: Development and University Declination. Sustainability 2021, 13, 4315. [Google Scholar] [CrossRef]
- Kanafani, K.; Kjær Zimmermann, R.; Nygaard Rasmussen, F.; Birgisdóttir, H. Learnings from Developing a Context-Specific LCA Tool for Buildings—The Case of LCAbyg 4. Sustainability 2021, 13, 1508. [Google Scholar] [CrossRef]
- Wang, J.; Lin, P.-C. Should the Same Products Consumed in Different Retail Channels Have an Identical Carbon Footprint? An Environmental Assessment of Consumer Preference of Retail Channels and Mode of Transport. Sustainability 2021, 13, 615. [Google Scholar] [CrossRef]
- Šerešová, M.; Kočí, V. Proposal of Package-to-Product Indicator for Carbon Footprint Assessment with Focus on the Czech Republic. Sustainability 2020, 12, 3034. [Google Scholar] [CrossRef]
- Mouton, L.; Allacker, K.; Röck, M. Bio-based building material solutions for environmental benefits over conventional construction products–Life cycle assessment of regenerative design strategies (1/2). Energy Build. 2023, 282, 112767. [Google Scholar] [CrossRef]
- Feng, H.; Kassem, M.; Greenwood, D.; Doukari, O. Whole building life cycle assessment at the design stage: A BIM-based framework using environmental product declaration. Int. J. Build. Pathol. Adapt. 2023, 41, 109–142. [Google Scholar] [CrossRef]
- Backes, J.G.; Traverso, M.; Horvath, A. Environmental assessment of a disruptive innovation: Comparative cradle-to-gate life cycle assessments of carbon-reinforced concrete building component. Int. J. Life Cycle Assess. 2023, 28, 16–37. [Google Scholar] [CrossRef]
- Nouri, H.; Safehian, M.; Mir Mohammad Hosseini, S.M. Life cycle assessment of earthen materials for low-cost housing a comparison between rammed earth and fired clay bricks. Int. J. Build. Pathol. Adapt. 2023, 41, 364–377. [Google Scholar] [CrossRef]
- Fang, Y.K.; Wang, H.C.; Fang, P.H.; Liang, B.; Zheng, K.; Sun, Q.; Li, X.Q.; Zeng, R.; Wang, A.J. Life cycle assessment of integrated bioelectrochemical-constructed wetland system: Environmental sustainability and economic feasibility evaluation. Resour. Conserv. Recycl. 2023, 189, 106740. [Google Scholar] [CrossRef]
- Rinne, R.; Ilgın, H.E.; Karjalainen, M. Comparative Study on Life-Cycle Assessment and Carbon Footprint of Hybrid, Concrete and Timber Apartment Buildings in Finland. Int. J. Environ. Res. Public Health 2022, 19, 774. [Google Scholar] [CrossRef]
- Joensuu, T.; Leino, R.; Heinonen, J.; Saari, A. Developing Buildings’ Life Cycle Assessment in Circular Economy-Comparing methods for assessing carbon footprint of reusable components. Sustain. Cities Soc. 2022, 77, 103499. [Google Scholar] [CrossRef]
- Ramage, M.H.; Burridge, H.; Busse-Wicher, M.; Fereday, G.; Reynolds, T.; Shah, D.U.; Wu, G.; Yu, L.; Fleming, P.; Densley-Tingley, D.; et al. The wood from the trees: The use of timber in construction. Renew. Sustain. Energy Rev. 2017, 68, 333–359. [Google Scholar] [CrossRef]
- Sotayo, A.; Bradley, D.; Bather, M.; Sareh, P.; Oudjene, M.; El-Houjeyri, I.; Harte, A.M.; Mehra, S.; O’Ceallaigh, C.; Haller, P.; et al. Review of state of the art of dowel laminated timber members and densified wood materials as sustainable engineered wood products for construction and building applications. Dev. Built Environ. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Ilgın, H.E.; Karjalainen, M.; Mikkola, P. Views of Cross-Laminated Timber (CLT) Manufacturer Representatives around the World on CLT Practices and Its Future Outlook. Buildings 2023, 13, 2912. [Google Scholar] [CrossRef]
- Wimbadi, R.W.; Djalante, R. From decarbonization to low carbon development and transition: A systematic literature review of the conceptualization of moving toward net-zero carbon dioxide emission (1995–2019). J. Clean. Prod. 2020, 256, 120307. [Google Scholar] [CrossRef]
- Zhou, S.; Tong, Q.; Pan, X.; Cao, M.; Wang, H.; Gao, J.; Ou, X. Research on low-carbon energy transformation of China necessary to achieve the Paris agreement goals: A global perspective. Energy Econ. 2021, 95, 105137. [Google Scholar] [CrossRef]
- Kabeyi, M.J.B.; Olanrewaju, O.A. Sustainable energy transition for renewable and low carbon grid electricity generation and supply. Front. Energy Res. 2022, 9, 743114. [Google Scholar] [CrossRef]
- Marfella, G.; Winson-Geideman, K. Timber and multi-storey buildings: Industry perceptions of adoption in Australia. Buildings 2021, 11, 653. [Google Scholar] [CrossRef]
- Cheng, B.; Lu, K.; Li, J.; Chen, H.; Luo, X.; Shafique, M. Comprehensive assessment of embodied environmental impacts of buildings using normalized environmental impact factors. J. Clean. Prod. 2022, 334, 130083. [Google Scholar] [CrossRef]
- Roos, A.; Hurmekoski, E.; Häyrinen, L.; Jussila, J.; Lähtinen, K.; Mark-Herbert, C.; Nagy, E.; Toivonen, R.; Toppinen, A. Beliefs on environmental impact of wood construction. Scand. J. For. Res. 2023, 38, 49–57. [Google Scholar] [CrossRef]
- Rasmussen, F.N.; Birkved, M.; Birgisdóttir, H. Low-carbon design strategies for new residential buildings–lessons from architectural practice. Archit. Eng. Des. Manag. 2020, 16, 374–390. [Google Scholar] [CrossRef]
- Winchester, N.; Reilly, J.M. The economic and emissions benefits of engineered wood products in a low-carbon future. Energy Econ. 2020, 85, 104596. [Google Scholar] [CrossRef]
- Bazzocchi, F.; Ciacci, C.; Di Naso, V. Evaluation of environmental and economic sustainability for the building envelope of low-carbon schools. Sustainability 2021, 13, 1702. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laitinen, M.; Ilgın, H.E.; Karjalainen, M.; Saari, A. Low-Carbon Emissions and Cost of Frame Structures for Wooden and Concrete Apartment Buildings: Case Study from Finland. Buildings 2024, 14, 1194. https://doi.org/10.3390/buildings14051194
Laitinen M, Ilgın HE, Karjalainen M, Saari A. Low-Carbon Emissions and Cost of Frame Structures for Wooden and Concrete Apartment Buildings: Case Study from Finland. Buildings. 2024; 14(5):1194. https://doi.org/10.3390/buildings14051194
Chicago/Turabian StyleLaitinen, Miika, Hüseyin Emre Ilgın, Markku Karjalainen, and Arto Saari. 2024. "Low-Carbon Emissions and Cost of Frame Structures for Wooden and Concrete Apartment Buildings: Case Study from Finland" Buildings 14, no. 5: 1194. https://doi.org/10.3390/buildings14051194
APA StyleLaitinen, M., Ilgın, H. E., Karjalainen, M., & Saari, A. (2024). Low-Carbon Emissions and Cost of Frame Structures for Wooden and Concrete Apartment Buildings: Case Study from Finland. Buildings, 14(5), 1194. https://doi.org/10.3390/buildings14051194