Applying Building Information Modelling (BIM) Technology in Pre-Tender Cost Estimation of Construction Projects: A Case Study in Iran
Abstract
:1. Introduction
2. Literature Review
2.1. Cost Estimation Process
2.2. Five-Dimensional (5D) BIM Model and Cost Estimation
2.3. Accuracy, Time Spent and Level of Detail
3. Research Methodology
4. Presentation of Research Findings
- Project number (5) with 19 criteria out of 27 criteria (70.37%)
- Project number (3) with 14 criteria out of 27 criteria (51.85%)
- Project number (2) with 11 criteria out of 27 criteria (40.74%)
- Project number (4) with 9 criteria out of 27 criteria (33.33%)
- Project number (1) with 6 criteria out of 27 criteria (22.22%)
5. Discussion of Research Findings
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rashidi, A.; Tamošaitienė, J.; Ravanshadnia, M.; Sarvari, H. A scientometric analysis of construction bidding research activities. Buildings 2023, 13, 220. [Google Scholar] [CrossRef]
- Christensen, P.; Dysert, L.R.; Bates, J.; Burton, D.; Creese, R.C.; Hollmann, J. Cost Estimate Classification system-as applied in engineering, procurement, and construction for the process industries. AACE Int. Recomm. Pract. 2005, 18, 1–30. [Google Scholar]
- Hatamleh, M.T.; Hiyassat, M.; Sweis, G.J.; Sweis, R.J. Factors affecting the accuracy of cost estimate: Case of Jordan. Eng. Constr. Archit. Manag. 2018, 25, 113–131. [Google Scholar] [CrossRef]
- Ibrahim, A.H.; Elshwadfy, L.M. Factors affecting the accuracy of construction project cost estimation in Egypt. Jordan J. Civ. Eng. 2021, 15, 3. [Google Scholar]
- Khosakitchalert, C.; Yabuki, N.; Fukuda, T. Improving the accuracy of BIM-based quantity takeoff for compound elements. Autom. Constr. 2019, 106, 102891. [Google Scholar] [CrossRef]
- Shaqour, E.N. The role of implementing BIM applications in enhancing project management knowledge areas in Egypt. Ain Shams Eng. J. 2022, 13, 101509. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, B.; Wu, J.; Liu, B.; Wang, Z. A BIM-based quantity calculation framework for frame-shear wall structure. Struct. Eng. Int. 2019, 29, 282–291. [Google Scholar] [CrossRef]
- Cepni, Y.; Akcamete, A.; Klein, R. Automated BIM-based formwork quantity take-off. In Proceedings of the 20th International Conference on Construction Applications of Virtual Reality (CONVR2019), Bangkok, Thailand, 13–15 November 2019; pp. 220–227. [Google Scholar]
- Ashtab, M.; Farzad, M. Aligning Tender Cost Estimation Practices in Iran with BIM. Int. J. Eng. Technol. 2018, 10, 329–334. [Google Scholar] [CrossRef]
- Mahamid, I. Critical determinants of public construction tendering costs. Int. J. Archit. Eng. Constr. 2018, 7, 34–42. [Google Scholar] [CrossRef]
- Ismail, N.A.A.; Rooshdi, R.R.R.M.; Sahamir, S.R.; Ramli, H. Assessing BIM adoption towards reliability in QS cost estimates. Eng. J. 2021, 25, 155–164. [Google Scholar] [CrossRef]
- Zima, K. Impact of information included in the BIM on preparation of Bill of Quantities. Procedia Eng. 2017, 208, 203–210. [Google Scholar] [CrossRef]
- Mislick, G.K.; Nussbaum, D.A. Cost Estimation: Methods and Tools; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Alsugair, A.M.; Alsanabani, N.M.; Al-Gahtani, K.S. Forecasting the Final Contract Cost on the Basis of the Owner’s Cost Estimation Using an Artificial Neural Network. Buildings 2023, 13, 786. [Google Scholar] [CrossRef]
- Project Management Institute. A Guide to the Project Management Body of Knowledge (PMBOK Guide), 6th ed.; Project Management Institute: Newtown Square, PA, USA, 2017. [Google Scholar]
- Potts, K.; Ankrah, N. Construction Cost Management: Learning from Case Studies; Routledge: London, UK, 2014. [Google Scholar]
- Young, C.; Brown, O.W.; Blockwood, J.C. Government Accountability Office Washington Dc Washington United States. Cost Estimating and Assessment Guide: Best Practices for Developing and Managing Program Costs; Government Accountability Office: Washington, DC, USA, 2020; p. 476.
- Khosakitchalert, C.; Yabuki, N.; Fukuda, T. The accuracy enhancement of architectural walls quantity takeoff for schematic BIM models. In Proceedings of the International Symposium on Automation and Robotics in Construction, ISARC, Berlin, Germany, 20–25 July 2018; IAARC Publications: Berlin, Germany, 2018; Volume 35, p. 18. [Google Scholar]
- Abdel-Monem, M.; Alshaer, K.T.; El-Dash, K. Assessing Risk Factors Affecting the Accuracy of Conceptual Cost Estimation in the Middle East. Buildings 2022, 12, 950. [Google Scholar] [CrossRef]
- Liu, H.; Cheng, J.C.; Gan, V.J.; Zhou, S. A knowledge model-based BIM framework for automatic code-compliant quantity take-off. Autom. Constr. 2022, 133, 104024. [Google Scholar] [CrossRef]
- Khosakitchalert, C.; Yabuki, N.; Fukuda, T. Automated modification of compound elements for accurate BIM-based quantity takeoff. Autom. Constr. 2020, 113, 103142. [Google Scholar] [CrossRef]
- Aram, S.; Eastman, C.; Sacks, R. A knowledge-based framework for quantity takeoff and cost estimation in the AEC industry using BIM. In Proceedings of the International Symposium on Automation and Robotics in Construction, ISARC, Sydney, Australia, 9–11 July 2014; IAARC Publications: Berlin, Germany, 2014; Volume 31, p. 1. [Google Scholar]
- Lawrence, M.; Pottinger, R.; Staub-French, S.; Nepal, M.P. Creating flexible mappings between Building Information Models and cost information. Autom. Constr. 2014, 45, 107–118. [Google Scholar] [CrossRef]
- Kim, S.; Chin, S.; Kwon, S. A discrepancy analysis of BIM-based quantity take-off for building interior components. J. Manag. Eng. 2019, 35, 05019001. [Google Scholar] [CrossRef]
- Aragó, A.B.; Hernando, J.R.; Saez, F.J.L.; Bertran, J.C. Quantity surveying and BIM 5D. Its implementation and analysis based on a case study approach in Spain. J. Build. Eng. 2021, 44, 103234. [Google Scholar] [CrossRef]
- Sacks, R.; Eastman, C.; Lee, G.; Teicholz, P. BIM Handbook: A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Yang, S.W.; Moon, S.W.; Jang, H.; Choo, S.; Kim, S.A. Parametric Method and Building Information Modeling-Based Cost Estimation Model for Construction Cost Prediction in Architectural Planning. Appl. Sci. 2022, 12, 9553. [Google Scholar] [CrossRef]
- Bečvarovská, R.; Matějka, P. Comparative analysis of creating traditional quantity takeoff method and using a BIM tool. In Proceedings of the Construction Macroeconomics Conference, Atlanta, Georgia, 19–21 May 2014; Volume 2014. [Google Scholar]
- Peansupap, V.; Thuanthongdee, S. Levels of development in BIM for supporting cost estimation of building construction projects. In Proceedings of the 16th International Conference on Computing in Civil and Building Engineering (ICCCBE), Osaka, Japan, 6–8 July 2016; pp. 671–678. [Google Scholar]
- BIM Forum. Level of Development (LOD) Specification Part 1 & Commentary for Building Information Models and Data. 2019. Available online: https://BIMforum.org/ (accessed on 6 November 2019).
- Olsen, D.; Taylor, J.M. Quantity take-off using building information modeling (BIM), and its limiting factors. Procedia Eng. 2017, 196, 1098–1105. [Google Scholar] [CrossRef]
- Lee, X.S.; Tsong, C.W.; Khamidi, M.F. 5D Building information modelling–a practicability review. In MATEC Web of Conferences 2016; EDP Sciences: Les Ulis, France, 2016; Volume 66, p. 00026. [Google Scholar]
- Skitmore, R.M. Early Stage Construction Price Forecasting: A Review of Performance; RICS Books: London, UK, 1991. [Google Scholar]
- Monteiro, A.; Martins, J.P. A survey on modeling guidelines for quantity takeoff-oriented BIM-based design. Autom. Constr. 2013, 35, 238–253. [Google Scholar] [CrossRef]
- Cheung, F.K.; Rihan, J.; Tah, J.; Duce, D.; Kurul, E. Early stage multi-level cost estimation for schematic BIM models. Autom. Constr. 2012, 27, 67–77. [Google Scholar] [CrossRef]
- Cho, J.; Chun, J. Cost estimating methods for RC structures by quantity takeoff and quantity prediction in the design development stage. J. Asian Archit. Build. Eng. 2015, 14, 65–72. [Google Scholar] [CrossRef]
- Lim, C.; Hong, W.K.; Lee, D.; Kim, S. Automatic rebar estimation algorithms for integrated project delivery. J. Asian Archit. Build. Eng. 2016, 15, 411–418. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, Z.; Zhang, X. Semi-automatic and specification-compliant cost estimation for tendering of building projects based on IFC data of design model. Autom. Constr. 2013, 30, 126–135. [Google Scholar] [CrossRef]
- Means, R.S. RSMeans Construction Cost Data; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Sattineni, A.; Bradford, R.H. Estimating with BIM: A survey of US construction companies. In Proceedings of the 28th ISARC, Seoul, Republic of Korea, 29 June–2 July 2011; Volume 564, p. 569. [Google Scholar]
- Smith, P. Project cost management with 5D BIM. Procedia-Soc. Behav. Sci. 2016, 226, 193–200. [Google Scholar] [CrossRef]
- Firat, C.E.; Arditi, D.; Hämäläinen, J.P.; Stenstrand, J.; Kiiras, J. Quantity take-off in model-based systems. In Proceedings of the 27th CIB W78 Conference, Cairo, Egypt, 16–18 November 2010; CIB: Cairo, Egypt, 2010. [Google Scholar]
- Franco, J.; Mahdi, F.; Abaza, H. Using building information modeling (BIM) for estimating and scheduling, adoption barriers. Univers. J. Manag. 2015, 3, 376–384. [Google Scholar] [CrossRef]
- Hardin, B.; McCool, D. BIM and Construction Management: Proven Tools, Methods, and Workflows; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Chen, B.; Jiang, S.; Qi, L.; Su, Y.; Mao, Y.; Wang, M.; Cha, H.S. Design and implementation of quantity calculation method based on BIM data. Sustainability 2022, 14, 7797. [Google Scholar] [CrossRef]
- Wahab, A.; Wang, J. Factors-driven comparison between BIM-based and traditional 2D quantity takeoff in construction cost estimation. Eng. Constr. Archit. Manag. 2022, 29, 702–715. [Google Scholar] [CrossRef]
- Valinejadshoubi, M.; Moselhi, O.; Iordanova, I.; Valdivieso, F.; Bagchi, A. Automated system for high-accuracy quantity takeoff using BIM. Autom. Constr. 2024, 157, 105155. [Google Scholar] [CrossRef]
- Sherafat, B.; Taghaddos, H.; Shafaghat, E. Enhanced Automated Quantity Take-Off in Building Information Modeling Enhanced automated quantity take-off in building information modeling. Sci. Iran. 2022, 29, 1024–1037. [Google Scholar]
- Hasan, A.N.; Rasheed, S.M. The benefits of and challenges to implement 5D BIM in construction industry. Civ. Eng. J. 2019, 5, 412. [Google Scholar] [CrossRef]
- Leicht, R.M.; Messner, J.I. Comparing traditional schematic design documentation to a schematic building information model. In Proceedings of the Bringing ITCKnowledge to Work: 2Proceedings of the 24th W78 Conference, Maribor, Slovenia, 26–29 June 2007; Volume 2007. [Google Scholar]
- Vitásek, S.; Žák, J. BIM for cost estimation. In Advances and Trends in Engineering Sciences and Technologies III; CRC Press: Boca Raton, FL, USA, 2019; pp. 657–662. [Google Scholar]
- Fazeli, A.; Dashti, M.S.; Jalaei, F.; Khanzadi, M. An integrated BIM-based approach for cost estimation in construction projects. Eng. Constr. Archit. Manag. 2021, 28, 2828–2854. [Google Scholar] [CrossRef]
- Sarvari, H.; Asaadsamani, P.; Olawumi, T.O.; Chan, D.W.M.; Rashidi, A.; Beer, M. Perceived barriers to implementing building information modeling in Iranian Small and Medium-Sized Enterprises (SMEs): A Delphi survey of construction experts. Archit. Eng. Des. Manag. 2024, 1–21. [Google Scholar] [CrossRef]
- Khoshfetrat, R.; Sarvari, H.; Chan, D.W.M.; Rakhshanifar, M. Critical risk factors for implementing building information modelling (BIM): A Delphi-based survey. Int. J. Constr. Manag. 2022, 22, 2375–2384. [Google Scholar] [CrossRef]
- Asgari Siahboomy, M.; Sarvari, H.; Chan, D.W.M.; Nassereddine, H.; Chen, Z. A multi-criteria optimization study for locating industrial warehouses with the integration of BIM and GIS data. Archit. Eng. Des. Manag. 2021, 17, 478–495. [Google Scholar] [CrossRef]
- Sarvari, H.; Chan, D.W.M.; Rakhshanifar, M.; Banaitiene, N.; Banaitis, A. Evaluating the impact of building information modeling (BIM) on mass house building projects. Buildings 2020, 10, 35. [Google Scholar] [CrossRef]
Code | Checklist Items | References |
---|---|---|
1. Drawing and modelling | ||
1.1 | Correct use of tools | [12,20,45] |
1.2 | Accuracy in drawing details | [8,12,45,46] |
1.3 | Insertion point and orientation | [45] |
1.4 | Checking the interferences in the model and fixing them through the clash detection tool | [22,45] |
1.5 | Compliance with modelling standards | [25,45] |
1.6 | Modelling based on execution plan (BEP) | [8,12,45] |
1.7 | Appropriate adjustment of the model’s level of detail (LOD) | [47] |
2. Geometric information | ||
2.1 | Greater LOD in a product model | [12,24,46] |
2.2 | Display additional icons | [8,24] |
2.3 | Style and visibility | [8,11] |
2.4 | Appropriate adjustment of the geometry level of the model (LOG) | [46] |
2.5 | Correct classification of used families | [47] |
3. Semantic information | ||
3.1 | Appropriate level of information (LOI) | [12,24] |
3.2 | Defining the technical specifications of materials and equipment with appropriate accuracy | [20,24] |
3.3 | Proper classification of specifications and non-geometric information in the model | [22,25] |
4. Parameters | ||
4.1 | Proper definition of parameter names | [8,27] |
4.2 | Group or category of parameters | [27] |
4.3 | Correct definition of dimensions or size parameters | [24,27] |
4.4 | Correct definition of engineering parameters | [20,27] |
4.5 | Correct definition of user-specific parameters | [22,24,27] |
5. Classification | ||
5.1 | Classification mapping | [25,48] |
5.2 | Accurate definition and appropriate matching of the catalogue for the model | [20,48] |
5.3 | Determining the details of the execution method and the specifications of the materials based on the catalogue items | [5,18] |
5.4 | Correct and complete definition of the resources used | [18,22] |
6. Documentation | ||
6.1 | Correct categorization and organization of each discipline in Project Browser | [49] |
6.2 | Management of sheets of each discipline | [11] |
6.3 | Organization of modelled item estimation lists | [11] |
Drawing and Modelling | Geometric Information | Semantic Information | Parameters | Classification | Documentation | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.2 | 1.3 | 1.4 | 1.5 | 1.6 | 1.7 | 2.1 | 2.2 | 2.3 | 2.4 | 2.5 | 3.1 | 3.2 | 3.3 | 4.1 | 4.2 | 4.3 | 4.4 | 4.5 | 5.1 | 5.2 | 5.3 | 5.4 | 6.1 | 6.2 | 6.3 | |
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||||||||||
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ||||||||||||||
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | |||||||||||||||||||
✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
No. | Sector | Code | Quantity | Unit | Unit Cost (IRR) | Total Cost (IRR) | |
---|---|---|---|---|---|---|---|
1 | 8 | In-situ concrete | 08.01.02 | 164.06 | m3 | 3,797,000 | 622,918,734 |
2 | 08.01.06 | 468.56 | m3 | 4,349,000 | 2,037,784,836 | ||
3 | 08.01.07 | 762.74 | m3 | 4,470,000 | 3,409,464,160 | ||
4 | 9 | steel structure | 09.01.01 | 85,030.20 | kg | 170,000 | 14,455,134,170 |
5 | 09.02.20 | 16,238.25 | kg | 143,000 | 2,322,069,250 | ||
6 | 12 | concrete blocks | 12.05.03 | 3654.57 | m2 | 802,000 | 2,930,967,406 |
7 | 12.05.05 | 5102.68 | m2 | 605,500 | 3,089,672,013 | ||
8 | 18 | coating and plastering | 18.02.02 | 1894.75 | m2 | 206,000 | 390,319,365 |
9 | 18.02.10 | 1894.75 | m2 | 181,000 | 342,950,510 | ||
10 | 19 | woodwork | 19.15.02 | 51.66 | m2 | 1,890,000 | 97,637,400 |
11 | 20 | ceramics and tiles | 20.03.21 | 326.47 | m2 | 1,215,000 | 396,662,265 |
12 | 20.03.22 | 263.65 | m2 | 1,313,000 | 346,176,783 | ||
13 | 20.03.24 | 951.05 | m2 | 1,401,000 | 1,332,425,253 | ||
14 | 22 | stonework | 22.03.20 | 753.67 | m2 | 2,589,000 | 1,951,261,454 |
15 | 23 | plastic and polymer | 23.02.05 | 449.06 | m2 | 3,236,000 | 1,453,145,216 |
16 | 23.03.50 | 26.08 | m2 | 2,403,000 | 62,666,996 | ||
17 | 24 | glass | 24.01.05 | 364.86 | m2 | 1,000,000 | 364,856,000 |
18 | 24.01.08 | 3.28 | m2 | 1,733,000 | 5,680,774 |
No. | Sector | Code | Quantity | Unit | Unit Cost (IRR) | Total Cost (IRR) | |
---|---|---|---|---|---|---|---|
1 | 8 | In-situ concrete | 08.01.02 | 166.23 | m3 | 3,797,000 | 631,171,572 |
2 | 08.01.06 | 460.15 | m3 | 4,349,000 | 2,001,174,084 | ||
3 | 08.01.07 | 754.77 | m3 | 4,470,000 | 3,373,810,271 | ||
4 | 9 | steel structure | 09.01.01 | 84,767.40 | kg | 170,000 | 14,410,458,000 |
5 | 09.02.20 | 15,281.78 | kg | 143,000 | 2,185,294,126 | ||
6 | 12 | concrete blocks | 12.05.03 | 3654.57 | m2 | 802,000 | 2,930,967,406 |
7 | 12.05.05 | 5167.94 | m2 | 605,500 | 3,129,189,802 | ||
8 | 18 | coating and plastering | 18.02.02 | 1884.74 | m2 | 206,000 | 388,256,585 |
9 | 18.02.10 | 1884.74 | m2 | 181,000 | 341,138,068 | ||
10 | 19 | woodwork | 19.15.02 | 60.34 | m2 | 1,890,000 | 114,044,303 |
11 | 20 | ceramics and tiles | 20.03.21 | 305.60 | m2 | 1,215,000 | 371,309,261 |
12 | 20.03.22 | 248.78 | m2 | 1,313,000 | 326,646,643 | ||
13 | 20.03.24 | 997.41 | m2 | 1,401,000 | 1,397,374,290 | ||
14 | 22 | stonework | 22.03.20 | 823.67 | m2 | 2,589,000 | 2,132,491,454 |
15 | 23 | plastic and polymer | 23.02.05 | 441.97 | m2 | 3,236,000 | 1,430,208,537 |
16 | 23.03.50 | 31.19 | m2 | 2,403,000 | 74,937,571 | ||
17 | 24 | glass | 24.01.05 | 403.31 | m2 | 1,000,000 | 403,308,866 |
18 | 24.01.08 | 3.87 | m2 | 1,733,000 | 6,701,511 |
No. | Sector | Code | Actual Condition | BIM-Based Estimation | Manual Estimation | ||||
---|---|---|---|---|---|---|---|---|---|
Quantity | Unit | Variance | % | Variance | % | ||||
1 | 8 | In-situ concrete | 08.01.02 | 175.11 | m3 | 8.877 | 5.069 | 11.050 | 6.311 |
2 | 08.01.06 | 448.13 | m3 | 12.019 | 2.682 | 20.437 | 4.561 | ||
3 | 08.01.07 | 752.90 | m3 | 1.871 | 0.248 | 9.847 | 1.308 | ||
4 | 9 | steel structure | 09.01.01 | 83,923.27 | kg | 844.134 | 1.006 | 1106.935 | 1.319 |
5 | 09.02.20 | 15,603.76 | kg | 321.980 | 2.063 | 634.490 | 4.066 | ||
6 | 12 | concrete blocks | 12.05.03 | 3698.68 | m2 | 44.103 | 1.192 | 44.103 | 1.192 |
7 | 12.05.05 | 5253.14 | m2 | 85.193 | 1.622 | 150.458 | 2.864 | ||
8 | 18 | coating and plastering | 18.02.02 | 1873.56 | m2 | 11.177 | 0.597 | 21.190 | 1.131 |
9 | 18.02.10 | 1873.56 | m2 | 11.177 | 0.597 | 21.190 | 1.131 | ||
10 | 19 | woodwork | 19.15.02 | 66.45 | m2 | 6.109 | 9.194 | 14.790 | 22.257 |
11 | 20 | ceramics and tiles | 20.03.21 | 285.46 | m2 | 20.148 | 7.058 | 41.015 | 14.368 |
12 | 20.03.22 | 233.27 | m2 | 15.510 | 6.649 | 30.385 | 13.026 | ||
13 | 20.03.24 | 1153.53 | m2 | 156.120 | 13.534 | 202.480 | 17.553 | ||
14 | 22 | stonework | 22.03.20 | 871.86 | m2 | 48.186 | 5.527 | 118.186 | 13.556 |
15 | 23 | plastic and polymer | 23.02.05 | 439.76 | m2 | 2.212 | 0.503 | 9.300 | 2.115 |
16 | 23.03.50 | 34.95 | m2 | 3.768 | 10.780 | 8.874 | 25.389 | ||
17 | 24 | glass | 24.01.05 | 425.37 | m2 | 22.060 | 5.186 | 60.513 | 14.226 |
18 | 24.01.08 | 4.08 | m2 | 0.213 | 5.221 | 0.802 | 19.657 | ||
Total variance (%) | 4.374 | 9.224 |
No. | Sector | Code | BIM-Based Estimation | Manual Estimation | Variance | ||
---|---|---|---|---|---|---|---|
Time Spent | Time Spent | Hours | (%) | ||||
1 | 8 | In-situ concrete | 08.01.02 | 0:04 | 0:11 | 0:07 | 63.64 |
2 | 08.01.06 | 0:07 | 0:35 | 0:28 | 80.00 | ||
3 | 08.01.07 | 0:06 | 0:12 | 0:06 | 50.00 | ||
4 | 9 | steel structure | 09.01.01 | 0:18 | 1:14 | 0:56 | 75.68 |
5 | 09.02.20 | 0:14 | 1:36 | 1:22 | 85.42 | ||
6 | 12 | concrete blocks | 12.05.03 | 0:04 | 0:35 | 0:31 | 88.57 |
7 | 12.05.05 | 0:06 | 0:56 | 0:50 | 89.29 | ||
8 | 18 | coating and plastering | 18.02.02 | 0:08 | 1:45 | 1:23 | 79.05 |
9 | 18.02.10 | 0:14 | |||||
10 | 19 | woodwork | 19.15.02 | 0:08 | 0:25 | 0:17 | 68.00 |
11 | 20 | ceramics and tiles | 20.03.21 | 0:08 | 1:11 | 1:03 | 88.73 |
12 | 20.03.22 | 0:10 | 0:20 | 0:10 | 50.00 | ||
13 | 20.03.24 | 0:07 | 0:13 | 0:06 | 46.15 | ||
14 | 22 | stonework | 22.03.20 | 0:06 | 0:10 | 0:04 | 40.00 |
15 | 23 | plastic and polymer | 23.02.05 | 0:09 | 0:27 | 0:18 | 66.67 |
16 | 23.03.50 | 0:10 | 0:10 | 0:00 | 0.00 | ||
17 | 24 | glass | 24.01.05 | 0:06 | 1:12 | 1:06 | 91.67 |
18 | 24.01.08 | 0:09 | 0:43 | 0:34 | 79.07 | ||
Total | 2:34 | 11:55 | 9:21 | 78.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rashidi, A.; Chan, D.W.M.; Ravanshadnia, M.; Sarvari, H.; Tajaddini, A. Applying Building Information Modelling (BIM) Technology in Pre-Tender Cost Estimation of Construction Projects: A Case Study in Iran. Buildings 2024, 14, 1260. https://doi.org/10.3390/buildings14051260
Rashidi A, Chan DWM, Ravanshadnia M, Sarvari H, Tajaddini A. Applying Building Information Modelling (BIM) Technology in Pre-Tender Cost Estimation of Construction Projects: A Case Study in Iran. Buildings. 2024; 14(5):1260. https://doi.org/10.3390/buildings14051260
Chicago/Turabian StyleRashidi, Amirreza, Daniel W. M. Chan, Mehdi Ravanshadnia, Hadi Sarvari, and Abbas Tajaddini. 2024. "Applying Building Information Modelling (BIM) Technology in Pre-Tender Cost Estimation of Construction Projects: A Case Study in Iran" Buildings 14, no. 5: 1260. https://doi.org/10.3390/buildings14051260
APA StyleRashidi, A., Chan, D. W. M., Ravanshadnia, M., Sarvari, H., & Tajaddini, A. (2024). Applying Building Information Modelling (BIM) Technology in Pre-Tender Cost Estimation of Construction Projects: A Case Study in Iran. Buildings, 14(5), 1260. https://doi.org/10.3390/buildings14051260