Perceptual Evaluation of Street Quality in Underdeveloped Ethnic Areas: A Random Forest Method Combined with Human–Machine Confrontation Framework Provides Insights for Improved Urban Planning—A Case Study of Lhasa City
Abstract
1. Introduction
2. Literature Review
2.1. A Study of City Development and Streets in Underdeveloped Ethnic Areas
2.2. Geospatial Big Data and Street Environment Perception
2.3. Deep Learning and Street Quality Evaluation Research
3. Data and Method
3.1. Study Areas
3.2. Research Framework
3.3. BSVI Data Collection
3.4. Deep Learning-Based Semantic Segmentation and Visual Element Classification for Street View Images
3.5. Scoring Street Perception Using a Human–Machine Confrontational Scoring Framework
4. Results
4.1. Street Quality Analysis Based on BSVIs
4.2. Street Quality Analysis Based on Six Perceptions
4.3. Linear Regression Analysis of Visual Elements and Six Perceptions in Street View Images
4.4. Combination Analysis of Street Visual Elements and Six Perceptions
5. Discussion
5.1. The Influence of Visual Elements on the Perception of Street Quality
5.2. Implications for Urban Development Policy Practices in Underdeveloped Ethnic Areas
5.3. Scientific Contribution of Research Methods
5.4. Research Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
FCN |
ResNet |
SegNet |
AlphaGo |
Cityscapes Dataset |
Green View Index (GVI) |
MIT Place Pulse program |
Google Street View (GSV) |
Street View Imagery (SVI) |
Urban Renewal Projects (URPs) |
Baidu Street View images (BSVIs) |
DeeplabV3+ semantic segmentation |
Polarimetric Synthetic Aperture Radar (PolSAR) |
References
- Cao, S.; Lv, Y.; Zheng, H.; Wang, X. Challenges facing China’s unbalanced urbanization strategy. Land Use Policy 2014, 39, 412–415. [Google Scholar] [CrossRef]
- Drobnjaković, M.; Panić, M.; Đorđević, J. Traditional undeveloped municipalities in Serbia as a result of regional inequality. Eur. Plan. Stud. 2016, 24, 926–949. [Google Scholar] [CrossRef]
- Hutárová, D.; Kozelová, I.; Špulerová, J. Tourism development options in marginal and less-favored regions: A case study of Slovakia’s Gemer Region. Land 2021, 10, 229. [Google Scholar] [CrossRef]
- Fang, C. A theoretical analysis of the mechanism and evolutionary law of urban-rural integration development. Acta Geogr. Sin. 2022, 77, 759–776. [Google Scholar]
- Huang, Z.; Lu, L.; Su, Q.; Zhang, J.; Sun, J.; Wan, X.; Jin, C. Research and development of rural tourism under the background of new urbanization: Theoretical reflection and breakthrough of predicament. Geogr. Res. 2015, 34, 1409–1421. [Google Scholar]
- Pang, X.; Wang, R.; Wang, W. Research on coupling of tourism and urbanization in underdevelopment regions: A case study of Fusong county in Jilin Province. Geogr. Geo-Inf. Sci. 2014, 30, 130–134. [Google Scholar]
- Matlovičová, K.; Kolesárová, J.; Demková, M.; Kostilníková, K.; Mocák, P.; Pachura, P.; Payne, M. Stimulating poverty alleviation by developing tourism in marginalised Roma communities: A case study of the Central Spis Region (Slovakia). Land 2022, 11, 1689. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, Y.; Wu, B.; Luo, X. Quantitative evaluation of urban resilience in underdeveloped regions: A study of six cities in Sichuan & Tibet, China. Front. Environ. Sci. 2022, 11, 1266487. [Google Scholar]
- Zhang, P.; Zhang, L.; Han, D.; Wang, T.; Zhu, H.; Chen, Y. Coupled and Coordinated Development of the Tourism Industry and Urbanization in Marginal andunderdeveloped Regions—Taking the Mountainous Border Areas of Western Yunnan as a Case Study. Land 2023, 12, 640. [Google Scholar] [CrossRef]
- Yu, Y.; Zhou, R.; Qian, L.; Yang, X.; Dong, L.; Zhang, G. Supply-demand balance and spatial distribution optimization of primary care facilities in highland cities from a resilience perspective: A study of Lhasa, China. Front. Public Health 2023, 11, 1131895. [Google Scholar] [CrossRef]
- Abusaada, H.; Elshater, A. Effect of people on placemaking and affective atmospheres in city streets. Ain Shams Eng. J. 2021, 12, 3389–3403. [Google Scholar] [CrossRef]
- Tang, J.; Long, Y. Measuring visual quality of street space and its temporal variation: Methodology and its application in the Hutong area in Beijing. Landsc. Urban Plan. 2019, 191, 103436. [Google Scholar] [CrossRef]
- Mcginn, A.; Evenson, K.; Herring, A.; Huston, S.; Rodriguez, D. Exploring associations between physical activity and perceived and objective measures of the built environment. J. Urban Health 2007, 84, 162–184. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, C.; Li, W.; Ricard, R.; Meng, Q.; Zhang, W. Assessing street-level urban vegetation using Google Street View and a modified green view index. Urban For. Urban Green. 2015, 14, 675–685. [Google Scholar] [CrossRef]
- Zhou, H.; He, S.; Cai, Y.; Wang, M.; Su, S. Social inequalities in street visual walkability: Using street view imagery and deep learning technologies to facilitate healthy city planning. Sustain. Cities Soc. 2019, 50, 101605. [Google Scholar] [CrossRef]
- Wang, R.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Liu, Y. The relationship between visual enclosure for neighbourhood street walkability and elders’ mental health in China: Using street view images. J. Transp. Health 2019, 13, 90–102. [Google Scholar] [CrossRef]
- Ma, X.; Ma, C.; Wu, C.; Xi, Y.; Yang, R.; Peng, N.; Zhang, C.; Ren, F. Measuring human perceptions of street views to better inform urban renewal: A perspective of scene semantic parsing. Cities 2021, 110, 103086. [Google Scholar] [CrossRef]
- Gonzalez, D.; Rueda-Plata, D.; Acevedo, A.; Duque, J.; Ramos-Poll’an, R.; Betancourt, A.; García, S. Automatic detection of building typology using deep learning methods on street level images. Build. Environ. 2020, 177, 106805. [Google Scholar] [CrossRef]
- Nagata, S.; Nakaya, T.; Hanibuchi, T.; Amagasa, S.; Kikuchi, H.; Inoue, S. Objective scoring ofstreet view walkability related to leisure walking: Statistical modeling approach with semantic segmentation of Google Street View images. Health Place 2020, 66, 102428. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, F.; Gong, F.; Ratti, C.; Li, X. Classification and mapping of urban canyon geometry using Google Street View images and deep multitask learning. Build. Environ. 2020, 167, 106424. [Google Scholar] [CrossRef]
- Li, H.; Páez, A.; Liu, D. Built environment and violent crime: An environmental audit approach using Google Street View. Comput. Environ. Urban Syst. 2017, 66, 83–95. [Google Scholar]
- Zhang, F.; Zhou, B.L.; Liu, L.; Liu, Y.; Fung, H.; Lin, H.; Ratti, C. Measuring human perceptions of a large-scale urban region using machine learning. Landsc. Urban Plan. 2018, 180, 148–160. [Google Scholar] [CrossRef]
- Zhao, C.; Ogawa, Y.; Chen, S.L.; Oki, T.; Sekimoto, Y. Quantitative land price analysis via computer vision from street view images. Eng. Appl. Artif. Intell. 2023, 123, 106294. [Google Scholar] [CrossRef]
- Rui, J. Measuringstreet view perceptions from driveways and sidewalks to inform pedestrian-oriented street renewal in Dusseldorf. Cities 2023, 141, 104472. [Google Scholar] [CrossRef]
- Wang, L.; Han, X.; He, J.; Taeyeol, J. Measuring residents’ perceptions of city streets to inform better street planning through deep learning and space syntax. ISPRS J. Photogramm. Remote. Sens. 2022, 190, 215–230. [Google Scholar] [CrossRef]
- Liang, Y.; Zeng, J.; Li, S. Examining the Spatial Variations of Land Use Change and Its Impact Factors in a Coastal Area in Vietnam. Land 2022, 11, 1751. [Google Scholar] [CrossRef]
- Liang, Y.; Zeng, J.; Sun, W.; Zhou, K.; Zhou, Z. Expansion of construction land along the motorway in rapidly developing areas in Cambodia. Land Use Policy 2021, 109, 105691. [Google Scholar] [CrossRef]
- Hossam, H.; Johanna, L. The death and life of Malmi neighbourhood shopping street: Is ethnic retail a catalyst for public life recovery in Helsinki? Eur. Plan. Stud. 2021, 30, 336–358. [Google Scholar]
- Abozied, E.; Vialard, A. Reintegrating informal settlements into the Greater Cairo Region of Egypt through the regional highway network. Reg. Stud. Reg. Sci. 2020, 7, 333–345. [Google Scholar] [CrossRef]
- Zhou, B.; Liu, L.; Oliva, A.; Torralba, A.; Fleet, D.; Pajdla, T.; Schiele, B.; Tuytelaars, T. Recognizing city identity via attribute analysis of geo-tagged images. In Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 519–534. [Google Scholar]
- Xu, G.; Zhu, X.; Fu, D.J.; Dong, J.W.; Xiao, X.M. Automatic land cover classification of geo-tagged field photos by deep learning. Environ. Model. Softw. 2017, 91, 127–134. [Google Scholar] [CrossRef]
- Hu, Y.J.; Gao, S.; Janowicz, K.; Yu, B.L.; Li, W.W.; Prasad, S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst. 2015, 54, 240–254. [Google Scholar] [CrossRef]
- Ulrich, R.S. Visual landscapes and psychological well-being. Landsc. Res. 1979, 4, 17–23. [Google Scholar] [CrossRef]
- Anguelov, D.; Dulong, C.; Filip, D.; Frueh, C.; Lafon, S.; Lyon, R.; Ogale, A.; Vincent, L.; Weaver, J. Google street view: Capturing the world at street level. Computer 2010, 43, 32–38. [Google Scholar] [CrossRef]
- Cheng, L.; Chu, S.S.; Zong, W.W.; Li, S.Y.; Li, M.C. Use of tencent street view imagery for visual perception of streets. ISPRS Int. J. Geo-Inf. 2017, 6, 265. [Google Scholar] [CrossRef]
- Gebru, T.; Krause, J.; Wang, Y.L.; Chen, D.Y.; Deng, J.; Aiden, E.L.; Li, F.F. Using deep learning and Google Street View to estimate the demographic makeup of neighborhoods across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 13108–13113. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, M.Y.; Lin, H.; Fang, C.Y. Framework for virtual cognitive experiment in virtual geographic environments. SPRS Int. J. Geo-Inf. 2018, 7, 36. [Google Scholar] [CrossRef]
- Salesses, P.; Schechtner, K.; Hidalgo, C.A. The collaborative image of the city: Mapping the inequality of urban perception. PLoS ONE 2013, 8, e68400. [Google Scholar] [CrossRef]
- Dubey, A.; Naik, N.; Parikh, D.; Raskar, R.; Hidalgo, C.A. Deep learning the city: Quantifying urban perception at a global scale. In Proceedings of the 14th European Conference on Computer Vision (ECCV), Amsterdam, The Netherlands, 11–14 October 2016; pp. 196–212. [Google Scholar]
- Ordonez, V.; Berg, T.L. Learning high-level judgments of urban perception. In Proceedings of the 13th European Conference on Computer Vision (ECCV), Zurich, Switzerland, 6–12 September 2014; pp. 494–510. [Google Scholar]
- Porzi, L.; Bulò, S.R.; Lepri, B.; Ricci, E. Predicting and understanding urban perception with convolutional neural networks. In Proceedings of the ACM International Conference on Multimedia (ACM Multimedia), Brisbane, Australia, 26–30 October 2015; pp. 139–148. [Google Scholar]
- Naik, N.; Kominers, S.D.; Raskar, R.; Glaeser, E.L.; Hidalgo, C.A. Computer vision uncovers predictors of physical urban change. Proc. Natl. Acad. Sci. USA 2017, 114, 7571–7576. [Google Scholar] [CrossRef]
- Yin, L. Street level urban design qualities for walkability: Combining 2D and 3D GIS measures. Comput. Environ. Urban Syst. 2017, 64, 288–296. [Google Scholar] [CrossRef]
- Low, S.; Altman, I. (Eds.) Place attachment: A conceptual inquiry. In Human Behavior & Environment: Advances in Theory & Research; Plenum Press: New York, NY, USA, 1992; Volume 12, pp. 1–12. [Google Scholar]
- Hidalgo, M.; Hernandez, B. Place attachment: Conceptual and empirical questions. J. Environ. Psychol. 2001, 21, 273–281. [Google Scholar] [CrossRef]
- Andrew, L.; Gu, X.; Chen, L.; Perry, H. Predicting perceptions of the built environment using GIS, satellite and street view image approaches. Landsc. Urban Plan. 2021, 216, 104257. [Google Scholar]
- Liu, J.; Li, T.; Xie, P.; Du, S.; Teng, F.; Yang, X. Urban big data fusion based on deep learning: An overview. Inf. Fusion 2020, 53, 123–133. [Google Scholar] [CrossRef]
- He, T.; Li, X. Image quality recognition technology based on deep learning. J. Vis. Commun. Image Represent. 2019, 65, 102654. [Google Scholar] [CrossRef]
- He, N.; Li, G. Urban neighbourhood environment assessment based on street view image processing: A review of research trends. Environ. Chall. 2021, 4, 50090. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Y.; Lu, Y.; Zhang, J.; Liu, P.; Yao, Y.; Grekousis, G. Perceptions of built environment and health outcomes for older Chinese in Beijing: A big data approach with street view images and deep learning technique. Comput. Environ. Urban Syst. 2019, 78, 101386. [Google Scholar] [CrossRef]
- Wu, J.; Feng, Z.; Peng, Y.; Liu, Q.; He, Q. Neglected green street landscapes: A re-evaluation method of green justice. Urban For. Urban Green. 2019, 41, 344–353. [Google Scholar] [CrossRef]
- Donghwan, K.; Sugie, L. Analyzing the effects of Green View Index of street streets on walking time using Google Street View and deep learning. Landsc. Urban Plan. 2021, 205, 103920. [Google Scholar]
- Wang, M.; He, Y.; Meng, H.; Zhang, Y.; Zhu, B.; Joseph, M.; Li, X. Assessing Street Space Quality Using Street View Imagery and Function-Driven Method: The Case of Xiamen, China. ISPRS Int. J. Geo-Inf. 2022, 11, 282. [Google Scholar] [CrossRef]
- William, T.; Matthew, N.; Chyi-Lin, L.; Christopher, P. Implementing a deep-learning model using Google street view to combine social and physical indicators of gentrification. Comput. Environ. Urban Syst. 2023, 102, 101970. [Google Scholar]
- Yu, L.; Zeng, Z.; Liu, A.; Xie, X.; Wang, H.; Xu, F.; Hong, W. A Lightweight Complex-Valued DeepLabv3+ for Semantic Segmentation of PolSAR Image. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 930–943. [Google Scholar] [CrossRef]
- Kim, J.; Lee, S.; Hipp, J.; Ki, D. Decoding urban landscapes: Google street view and measurement sensitivity. Comput. Environ. Urban Syst. 2021, 88, 101626. [Google Scholar] [CrossRef]
- Rzotkiewicz, A.; Pearson, A.L.; Dougherty, B.V.; Shortridge, A.; Wilson, N. Systematic review of the use of Google Street View in health research: Major themes, strengths, weaknesses and possibilities for future research. Health Place 2018, 52, 240–246. [Google Scholar] [CrossRef]
- Yao, Y.; Liang, Z.; Yuan, Z.; Liu, P.; Bie, Y.; Zhang, J.; Wang, R.; Wang, J.; Guan, Q. A human-machine confrontational scoring framework for urban perception assessment using street-view images. Int. J. Geogr. Inf. Sci. 2019, 33, 2363–2384. [Google Scholar] [CrossRef]
- Li, Y.; Miller, H.J.; Root, E.D.; Hyder, A.; Liu, D.S. Understanding the Role of Urban Social and Physical Environment inOpioid Overdose Events Using Found Geospatial Data. Health Place 2022, 75, 102792. [Google Scholar] [CrossRef]
- Zhang, G.; Zu, J.; Hu, M.; Zhu, D.; Kang, Y.; Gao, S.; Zhang, Y.; Huang, Z. Uncovering Inconspicuous Places Using Social Media Check-Ins and Street View Images. Comput. Environ. Urban Syst. 2020, 81, 101478. [Google Scholar] [CrossRef]
- Fernández-Delgado, M.; Cernadas, E.; Barro, S.; Amorim, D. Do we need hundreds of classifiers to solve real world classification problems. J. Mach. Learn. Res. 2014, 15, 3133–3181. [Google Scholar]
Group | Classes |
---|---|
Flat | Road (0), sidewalk (1) |
Buildings | Building (2), wall (3), fence (4) |
Object | Pole (5), pole group, traffic light (6), traffic sign (7) |
Trees | Vegetation (8), terrain (9) |
Sky | Sky (10) |
Human | Person (11), rider (12) |
Vehicle | Car (13), trunk (14), bus (15), train (16), motorcycle (17), bicycle (18) |
Variables | Proportion/Mean (SD) |
---|---|
Gender (%) | |
Male | 56.67 |
Female | 43.33 |
Age | 34.60 (32.11) |
Education (%) | |
Primary school or below | 26.67 |
College and above | 46.66 |
High school | 26.67 |
Nation (%) | |
Tibetan | 76.44 |
Chinese Han | 23.56 |
Residents (%) | |
Local resident | 86.67 |
Non-local resident | 13.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Yu, Y.; Yang, X. Perceptual Evaluation of Street Quality in Underdeveloped Ethnic Areas: A Random Forest Method Combined with Human–Machine Confrontation Framework Provides Insights for Improved Urban Planning—A Case Study of Lhasa City. Buildings 2024, 14, 1698. https://doi.org/10.3390/buildings14061698
Liu C, Yu Y, Yang X. Perceptual Evaluation of Street Quality in Underdeveloped Ethnic Areas: A Random Forest Method Combined with Human–Machine Confrontation Framework Provides Insights for Improved Urban Planning—A Case Study of Lhasa City. Buildings. 2024; 14(6):1698. https://doi.org/10.3390/buildings14061698
Chicago/Turabian StyleLiu, Chong, Yang Yu, and Xian Yang. 2024. "Perceptual Evaluation of Street Quality in Underdeveloped Ethnic Areas: A Random Forest Method Combined with Human–Machine Confrontation Framework Provides Insights for Improved Urban Planning—A Case Study of Lhasa City" Buildings 14, no. 6: 1698. https://doi.org/10.3390/buildings14061698
APA StyleLiu, C., Yu, Y., & Yang, X. (2024). Perceptual Evaluation of Street Quality in Underdeveloped Ethnic Areas: A Random Forest Method Combined with Human–Machine Confrontation Framework Provides Insights for Improved Urban Planning—A Case Study of Lhasa City. Buildings, 14(6), 1698. https://doi.org/10.3390/buildings14061698