Addition of Biochar to Green Roof Substrate to Enhance Plant Performance: A Long-Term Field Study
Abstract
:1. Introduction
2. Method and Materials
2.1. Green Roof Design
2.2. Biochar, Substrate, and Vegetation Preparation
2.3. Data Collection and Measurements
3. Results
3.1. Plant Height
3.2. Dry Weight and Plant Coverage Area
3.3. Substrate Temperature
4. Discussion
4.1. Impacts of Biochar on Green Roof Plant Performance
4.2. Influential Factors: Substrate Temperature and Nutrient Availability
4.3. Biochar Benefits to Plant Performance in the Context of Buildings
5. Conclusions
- (a)
- In this study, the addition of biochar resulted in the improvement of plant performance in all biochar-amended GRs.
- (b)
- The test bed modified by 15% v/v medium biochar particles had the best plant performance in terms of plant height, plant dry weight, and plant coverage area.
- (c)
- A 15% v/v amendment is recommended as the optimal biochar amendment rate for plant growth. The mixing method of biochar amendment tended to have better effects on plant growth as compared to the top-dressed and bottom-applied methods. The use of intermediate biochar particles is suggested for optimal plant performance.
- (d)
- Plant performance is strongly linked to substrate temperature, moisture content, and nutrient availability. The observed data indicated reduced substrate temperature, likely due to the higher moisture content in biochar-amended substrates. Besides, data on runoff quantity and quality from the same test beds within the observation period of plant growth (from a previous study) demonstrated higher nutrient availability due to the addition of biochar.
- (e)
- In accordance with previous studies, the effects of biochar on plant performance varied among plant species and GR substrates. Therefore, future local studies with long-term observations are necessary to identify optimal GR systems tailored to specific climate conditions.
- (f)
- In addition to improving plant performance, biochar amendment also offers solutions to improve building energy savings, reduce structural loading, and shorten the payback period. However, due to inadequate evaluation of these benefits, further studies are recommended.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nguyen, C.N.; Muttil, N.; Tariq, M.A.U.R.; Ng, A.W.M. Quantifying the Benefits and Ecosystem Services Provided by Green Roofs: A Review. Water 2022, 14, 68. [Google Scholar] [CrossRef]
- Dauda, I.; Alibaba, H.Z. Green roof benefits, opportunities and challenges. Int. J. Civ. Struct. Eng. Res. 2020, 7, 106–112. [Google Scholar]
- Liu, H.; Kong, F.; Yin, H.; Middel, A.; Zheng, X.; Huang, J.; Xu, H.; Wang, D.; Wen, Z. Impacts of green roofs on water, temperature, and air quality: A bibliometric review. Build. Environ. 2021, 196, 107794. [Google Scholar] [CrossRef]
- Qiu, D.; Peng, H.; Li, T.; Qi, Y. Application of stabilized sludge to extensive green roofs in Shanghai: Feasibility and nitrogen leaching control. Sci. Total Environ. 2020, 732, 138898. [Google Scholar] [CrossRef] [PubMed]
- Shafique, M.; Kim, R.; Rafiq, M. Green roof benefits, opportunities and challenges—A review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Vijayaraghavan, K. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renew. Sustain. Energy Rev. 2016, 57, 740–752. [Google Scholar] [CrossRef]
- Bevilacqua, P. The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results. Renew. Sustain. Energy Rev. 2021, 151, 111523. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Garner, B.; Griffith, R.; Liebman, M. Green roof as an effective tool for sustainable urban development: An Australian perspective in relation to stormwater and building energy management. J. Clean. Prod. 2022, 362, 132561. [Google Scholar] [CrossRef]
- Yao, L.; Chini, A.; Zeng, R. Integrating cost-benefits analysis and life cycle assessment of green roofs: A case study in Florida. Hum. Ecol. Risk Assess. Int. J. 2020, 26, 443–458. [Google Scholar] [CrossRef]
- Zhang, G.; He, B.-J. Towards green roof implementation: Drivers, motivations, barriers and recommendations. Urban For. Urban Green. 2021, 58, 126992. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Tariq, M.A.U.R.; Browne, D.; Muttil, N. Performance Evaluation of Large-Scale Green Roofs Based on Qualitative and Quantitative Runoff Modeling Using MUSICX. Water 2023, 15, 549. [Google Scholar] [CrossRef]
- Barnhart, B.; Pettus, P.; Halama, J.; McKane, R.; Mayer, P.; Djang, K.; Brookes, A.; Moskal, L.M. Modeling the hydrologic effects of watershed-scale green roof implementation in the Pacific Northwest, United States. J. Environ. Manag. 2021, 277, 111418. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Sun, L.; Niu, J.; Riley, W.J. Modeling green roof potential to mitigate urban flooding in a Chinese city. Water 2020, 12, 2082. [Google Scholar] [CrossRef]
- Talebi, A.; Bagg, S.; Sleep, B.E.; O’Carroll, D.M. Water retention performance of green roof technology: A comparison of canadian climates. Ecol. Eng. 2019, 126, 1–15. [Google Scholar] [CrossRef]
- Jahanfar, A.; Drake, J.; Gharabaghi, B.; Sleep, B. An experimental and modeling study of evapotranspiration from integrated green roof photovoltaic systems. Ecol. Eng. 2020, 152, 105767. [Google Scholar] [CrossRef]
- Arenandan, V.; Wong, J.K.; Ahmed, A.N.; Chow, M.F. Efficiency enhancement in energy production of photovoltaic modules through green roof installation under tropical climates. Ain Shams Eng. J. 2022, 13, 101741. [Google Scholar] [CrossRef]
- Zheng, Y.; Weng, Q. Modeling the effect of green roof systems and photovoltaic panels for building energy savings to mitigate climate change. Remote Sens. 2020, 12, 2402. [Google Scholar] [CrossRef]
- Yeom, D.; La Roche, P. Investigation on the cooling performance of a green roof with a radiant cooling system. Energy Build. 2017, 149, 26–37. [Google Scholar] [CrossRef]
- La Roche, P.; Yeom, D.J.; Ponce, A. Passive cooling with a hybrid green roof for extreme climates. Energy Build. 2020, 224, 110243. [Google Scholar] [CrossRef]
- Nealy, S., Jr. A Climate Responsive Radiant Green Roof System for Indoor Cooling Purposes; California State Polytechnic University: Pomona, CA, USA, 2019. [Google Scholar]
- Feitosa, R.C.; Wilkinson, S.J. Small-scale experiments of seasonal heat stress attenuation through a combination of green roof and green walls. J. Clean. Prod. 2020, 250, 119443. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Wilkinson, S.J. Attenuating heat stress through green roof and green wall retrofit. Build. Environ. 2018, 140, 11–22. [Google Scholar] [CrossRef]
- Shafique, M.; Lee, D.; Kim, R. A field study to evaluate runoff quantity from blue roof and green blue roof in an urban area. Int. J. Control Autom. 2016, 9, 59–68. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R. Application of green blue roof to mitigate heat island phenomena and resilient to climate change in urban areas: A case study from Seoul, Korea. J. Water Land Dev. 2017, 33, 165–170. [Google Scholar] [CrossRef]
- Busker, T.; de Moel, H.; Haer, T.; Schmeits, M.; van den Hurk, B.; Myers, K.; Cirkel, D.G.; Aerts, J. Blue-green roofs with forecast-based operation to reduce the impact of weather extremes. J. Environ. Manag. 2022, 301, 113750. [Google Scholar] [CrossRef]
- Carpenter, C.M.; Todorov, D.; Driscoll, C.T.; Montesdeoca, M. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations. Environ. Pollut. 2016, 218, 664–672. [Google Scholar] [CrossRef]
- Liu, Z.; Dugan, B.; Masiello, C.A.; Gonnermann, H.M. Biochar particle size, shape, and porosity act together to influence soil water properties. PLoS ONE 2017, 12, e0179079. [Google Scholar] [CrossRef]
- Trifunovic, B.; Gonzales, H.B.; Ravi, S.; Sharratt, B.S.; Mohanty, S.K. Dynamic effects of biochar concentration and particle size on hydraulic properties of sand. Land Degrad. Dev. 2018, 29, 884–893. [Google Scholar] [CrossRef]
- Cao, C.T.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef]
- Ayaz, M.; Feizienė, D.; Tilvikienė, V.; Akhtar, K.; Stulpinaitė, U.; Iqbal, R. Biochar role in the sustainability of agriculture and environment. Sustainability 2021, 13, 1330. [Google Scholar] [CrossRef]
- Li, D.; Zhao, R.; Peng, X.; Ma, Z.; Zhao, Y.; Gong, T.; Sun, M.; Jiao, Y.; Yang, T.; Xi, B. Biochar-related studies from 1999 to 2018: A bibliometrics-based review. Environ. Sci. Pollut. Res. 2020, 27, 2898–2908. [Google Scholar] [CrossRef]
- Wang, H.; Garg, A.; Zhang, X.; Xiao, Y.; Mei, G. Utilization of coconut shell residual in green roof: Hydraulic and thermal properties of expansive soil amended with biochar and fibre including theoretical model. Acta Geophys. 2020, 68, 1803–1819. [Google Scholar] [CrossRef]
- Kuppusamy, S.; Thavamani, P.; Megharaj, M.; Venkateswarlu, K.; Naidu, R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions. Environ. Int. 2016, 87, 1–12. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Hagner, M.; Lehvävirta, S.; Setälä, H. Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecol. Eng. 2016, 88, 1–9. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Mobilia, M.; Khamidullin, I.F.; Longobardi, A.; Elizaryev, A.N. How substrate and drainage layer materials affect the hydrological performance of Green Roofs: CHEMFLO-2000 numerical investigation. In Proceedings of the International Conference on Computational Science and Its Applications, Cagliari, Italy, 13–16 September 2021; pp. 254–263. [Google Scholar]
- Huang, S.; Garg, A.; Mei, G.; Huang, D.; Chandra, R.B.; Sadasiv, S.G. Experimental study on the hydrological performance of green roofs in the application of novel biochar. Hydrol. Process. 2020, 34, 4512–4525. [Google Scholar] [CrossRef]
- Farrell, C.; Cao, C.; Ang, X.; Rayner, J. Use of water-retention additives to improve performance of green roof substrates. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): V 1108, Brisbane, QLD, Australia, 8 February 2014; pp. 271–278. [Google Scholar]
- Kuoppamäki, K. Vegetated roofs for managing stormwater quantity in cold climate. Ecol. Eng. 2021, 171, 106388. [Google Scholar] [CrossRef]
- Goldschmidt, A.M. Biochar Amendment of Green Roof Substrate: Effect on Vegetation, Nutrient Retention, and Hydrologic Performance. Master’s Thesis, University of Cincinnati, Cincinnati, OH, USA, 2018. [Google Scholar]
- Valagussa, M.; Gatt, A.; Tosca, A.; Martinetti, L. Physical, chemical and hydraulic characterization of different green roof growing media. In Proceedings of the III International Symposium on Growing Media, Composting and Substrate Analysis 1305, Milan, Italy, 24–28 June 2019; pp. 391–398. [Google Scholar]
- Nguyen, C.N.; Chau, H.-W.; Muttil, N. A Field Study to Investigate the Hydrological Characteristics of Newly Established Biochar-Amended Green Roofs. Water 2024, 16, 482. [Google Scholar] [CrossRef]
- Kuoppamäki, K.; Lehvävirta, S. Mitigating nutrient leaching from green roofs with biochar. Landsc. Urban Plan. 2016, 152, 39–48. [Google Scholar] [CrossRef]
- Beck, D.A.; Johnson, G.R.; Spolek, G.A. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ. Pollut. 2011, 159, 2111–2118. [Google Scholar] [CrossRef]
- Meng, R.; Zhang, Q.; Li, D.; Wang, H. Influence of Substrate Layer Thickness and Biochar on the Green Roof Capacity to Intercept Rainfall and Reduce Pollution in Runoff. Pol. J. Environ. Stud. 2021, 30, 4085–4103. [Google Scholar] [CrossRef]
- Qianqian, Z.; Liping, M.; Huiwei, W.; Long, W. Analysis of the effect of green roof substrate amended with biochar on water quality and quantity of rainfall runoff. Environ. Monit. Assess. 2019, 191, 304. [Google Scholar] [CrossRef]
- Xiong, W.; Li, J.; Wang, H.; Wu, Y.; Li, D.; Xue, J. Biochar Addition and the Runoff Quality of Newly Constructed Green Roofs: A Field Study. Sustainability 2023, 15, 4081. [Google Scholar] [CrossRef]
- Kamali, M.; Sweygers, N.; Al-Salem, S.; Appels, L.; Aminabhavi, T.M.; Dewil, R. Biochar for soil applications-sustainability aspects, challenges and future prospects. Chem. Eng. J. 2022, 428, 131189. [Google Scholar] [CrossRef]
- Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar]
- Lee, J.; Kwon, E.E. Biochar in Green Roofs: A Review. J. Build. Eng. 2024, 89, 109272. [Google Scholar] [CrossRef]
- Cheng, Y.; Vaccari, D.A.; Johannesson, B.G.; Fassman-Beck, E. Multiyear Study on Phosphorus Discharge from Extensive Sedum Green Roofs with Substrate Amendments. J. Sustain. Water Built Environ. 2022, 8, 04022014. [Google Scholar] [CrossRef]
- Liao, W.; Drake, J.; Thomas, S.C. Biochar granulation enhances plant performance on a green roof substrate. Sci. Total Environ. 2022, 813, 152638. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Du, X.; Lai, M.; Nazhafati, M.; Li, C.; Qi, W. Biochar improves sustainability of green roofs via regulate of soil microbial communities. Agriculture 2021, 11, 620. [Google Scholar] [CrossRef]
- Saade, J.; Cazares, S.P.; Liao, W.; Frizzi, G.; Sidhu, V.; Margolis, L.; Thomas, S.; Drake, J. Influence of Biochar Amendment on Runoff Retention and Vegetation Cover for Extensive Green Roofs. In Proceedings of the Canadian Society of Civil Engineering Annual Conference, Montreal, QC, Canada, 12–15 June 2022; pp. 1117–1132. [Google Scholar]
- Nguyen, C.N.; Chau, H.-W.; Muttil, N. A Field Study to Assess the Impacts of Biochar Amendment on Runoff Quality from Newly Established Green Roofs. Hydrology 2024, 11, 112. [Google Scholar] [CrossRef]
- Morgan, S.; Celik, S.; Retzlaff, W. Green roof storm-water runoff quantity and quality. J. Environ. Eng. 2013, 139, 471–478. [Google Scholar] [CrossRef]
- Korol, E.; Shushunova, N. Benefits of a modular green roof technology. Procedia Eng. 2016, 161, 1820–1826. [Google Scholar] [CrossRef]
- Korol, S.; Shushunova, N.; Shushunova, T. Innovation technologies in Green Roof systems. In Proceedings of the MATEC Web of Conferences, Bandung, Indonesia, 12 August 2018; p. 04009. [Google Scholar]
- Li, M.; Garg, A.; Huang, S.; Jiang, M.; Mei, G.; Liu, J.; Wang, H. Hydrological properties of biochar-amended expansive soil under dynamic water environment and biochar-amended soil’s application in green roofs. Acta Geophys. 2023, 72, 1055–1065. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, K.; Gan, L.; Liu, J.; Mei, G. Expansive soil-biochar-root-water-bacteria interaction: Investigation on crack development, water management and plant growth in green infrastructure. Int. J. Damage Mech. 2021, 30, 595–617. [Google Scholar] [CrossRef]
- Chen, H.; Ma, J.; Wei, J.; Gong, X.; Yu, X.; Guo, H.; Zhao, Y. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef]
- Olszewski, M.W.; Eisenman, S.W. Influence of biochar amendment on herb growth in a green roof substrate. Hortic. Environ. Biotechnol. 2017, 58, 406–413. [Google Scholar] [CrossRef]
- Gan, L.; Garg, A.; Huang, S.; Wang, J.; Mei, G.; Zhang, K. Experimental and numerical investigation on rainwater management of dual substrate layer green roofs using biochar-amended soil. Biomass Convers. Biorefinery 2022, 1–10. [Google Scholar] [CrossRef]
- Wang, H.; Garg, A.; Huang, S.; Mei, G. Mechanism of compacted biochar-amended expansive clay subjected to drying–wetting cycles: Simultaneous investigation of hydraulic and mechanical properties. Acta Geophys. 2020, 68, 737–749. [Google Scholar] [CrossRef]
- Cai, W.; Huang, H.; Chen, P.; Huang, X.; Gaurav, S.; Pan, Z.; Lin, P. Effects of biochar from invasive weed on soil erosion under varying compaction and slope conditions: Comprehensive study using flume experiments. Biomass Convers. Biorefinery 2024, 14, 5771–5790. [Google Scholar] [CrossRef]
- Zhu, Y. Can Hydrological Function and Vegetation Cover of Failed Green Roofs Be Restored with Wood-Waste-Derived Biochar? Master’s Thesis, University of Toronto, Toronto, ON, Canda, 2020. [Google Scholar]
- Liao, W.; Drake, J.; Thomas, S.C. Biochar granulation, particle size, and vegetation effects on leachate water quality from a green roof substrate. J. Environ. Manag. 2022, 318, 115506. [Google Scholar] [CrossRef] [PubMed]
- Kuoppamäki, K.; Setälä, H.; Hagner, M. Nutrient dynamics and development of soil fauna in vegetated roofs with the focus on biochar amendment. Nat. Based Solut. 2021, 1, 100001. [Google Scholar] [CrossRef]
- Werdin, J.; Conn, R.; Fletcher, T.D.; Rayner, J.P.; Williams, N.S.; Farrell, C. Biochar particle size and amendment rate are more important for water retention and weight of green roof substrates than differences in feedstock type. Ecol. Eng. 2021, 171, 106391. [Google Scholar] [CrossRef]
- Omondi, M.O.; Xia, X.; Nahayo, A.; Liu, X.; Korai, P.K.; Pan, G. Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma 2016, 274, 28–34. [Google Scholar] [CrossRef]
- Seitz, S.; Teuber, S.; Geißler, C.; Goebes, P.; Scholten, T. How Do Newly-Amended Biochar Particles Affect Erodibility and Soil Water Movement?—A Small-Scale Experimental Approach. Soil Syst. 2020, 4, 60. [Google Scholar] [CrossRef]
- Vavrincová, L.; Pipíška, M.; Urbanová, J.; Frišták, V.; Horník, M.; Machalová, L.; Soja, G. Sewage sludge biochar as a sustainable and water-safe substrate additive for extensive green roofs. Sustain. Chem. Pharm. 2024, 39, 101604. [Google Scholar] [CrossRef]
- Kader, S.A.; Spalevic, V.; Dudic, B. Feasibility study for estimating optimal substrate parameters for sustainable green roof in Sri Lanka. Environ. Dev. Sustain. 2022, 26, 2507–2533. [Google Scholar] [CrossRef]
- Tang, E.; Liao, W.; Thomas, S.C. Optimizing biochar particle size for plant growth and mitigation of soil salinization. Agronomy 2023, 13, 1394. [Google Scholar] [CrossRef]
- Thomas, S.C. Post-processing of biochars to enhance plant growth responses: A review and meta-analysis. Biochar 2021, 3, 437–455. [Google Scholar] [CrossRef] [PubMed]
- Edeh, I.G.; Mašek, O.; Buss, W. A meta-analysis on biochar’s effects on soil water properties—New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef]
- Albert, H.A.; Li, X.; Jeyakumar, P.; Wei, L.; Huang, L.; Huang, Q.; Kamran, M.; Shaheen, S.M.; Hou, D.; Rinklebe, J. Influence of biochar and soil properties on soil and plant tissue concentrations of Cd and Pb: A meta-analysis. Sci. Total Environ. 2021, 755, 142582. [Google Scholar] [CrossRef]
- Liu, J.; Garg, A.; Wang, H.; Huang, S.; Mei, G. Moisture management in biochar-amended green roofs planted with Ophiopogon japonicus under different irrigation schemes: An integrated experimental and modeling approach. Acta Geophys. 2022, 70, 373–384. [Google Scholar] [CrossRef]
- Liao, W.; Sidhu, V.; Sifton, M.A.; Margolis, L.; Drake, J.A.; Thomas, S.C. Biochar and vegetation effects on discharge water quality from organic-substrate green roofs. Sci. Total Environ. 2024, 922, 171302. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.-Y.; Li, T.; Qi, Y.; He, Y.-P.; Huang, C.-Y.; Zhang, Z.-R. Control measure effects on the effluent quality from extensive green roofs based on stabilized sludge recycling. Huan Jing Ke Xue Huanjing Kexue 2019, 40, 3612–3617. [Google Scholar] [PubMed]
- Huang, S.; Huang, D.; Garg, A.; Jiang, M.; Mei, G.; Pekkat, S. Stormwater management of biochar-amended green roofs: Peak flow and hydraulic parameters using combined experimental and numerical investigation. Biomass Convers. Biorefinery 2020, 14, 5835–5846. [Google Scholar] [CrossRef]
- Cascone, S. The energy-efficient design of sustainable green roofs in Mediterranean climate: An experimental study. Energy Build. 2022, 273, 112427. [Google Scholar] [CrossRef]
- Aboelata, A. Assessment of green roof benefits on buildings’ energy-saving by cooling outdoor spaces in different urban densities in arid cities. Energy 2021, 219, 119514. [Google Scholar] [CrossRef]
- Tan, K.; Wang, J. Substrate modified with biochar improves the hydrothermal properties of green roofs. Environ. Res. 2022, 216, 114405. [Google Scholar] [CrossRef]
- Lunt, P.H.; Fuller, K.; Fox, M.; Goodhew, S.; Murphy, T.R. Comparing the thermal conductivity of three artificial soils under differing moisture and density conditions for use in green infrastructure. Soil Use Manag. 2022, 39, 260–269. [Google Scholar] [CrossRef]
- Mahdiyar, A.; Mohandes, S.R.; Durdyev, S.; Tabatabaee, S.; Ismail, S. Barriers to green roof installation: An integrated fuzzy-based MCDM approach. J. Clean. Prod. 2020, 269, 122365. [Google Scholar] [CrossRef]
- Eksi, M.; Rowe, D.B.; Wichman, I.S.; Andresen, J.A. Effect of substrate depth, vegetation type, and season on green roof thermal properties. Energy Build. 2017, 145, 174–187. [Google Scholar] [CrossRef]
- Pianella, A.; Aye, L.; Chen, Z.; Williams, N. Effects of substrate depth and native plants on green roof thermal performance in South-East Australia. Proc. IOP Conf. Ser. Earth Environ. Sci. 2020, 1374, 022057. [Google Scholar] [CrossRef]
- Nektarios, P.A.; Kokkinou, I.; Ntoulas, N. The effects of substrate depth and irrigation regime, on seeded Sedum species grown on urban extensive green roof systems under semi-arid Μediterranean climatic conditions. J. Environ. Manag. 2021, 279, 111607. [Google Scholar] [CrossRef]
GR Test Bed | Biochar Amendment Rate (% v/v) | Biochar Application Method | Biochar Particle Size |
---|---|---|---|
GR-0 | 0 | NA | NA |
GR-7.5M-M | 7.5 | Mixing Method | Medium |
GR-7.5B-M | 7.5 | Bottom-applied Method | Medium |
GR-15M-M | 15 | Mixing Method | Medium |
GR-7.5M-F | 7.5 | Mixing Method | Fine |
GR-7.5T-F | 7.5 | Top-dressed Method | Fine |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, C.N.; Chau, H.-W.; Muttil, N. Addition of Biochar to Green Roof Substrate to Enhance Plant Performance: A Long-Term Field Study. Buildings 2024, 14, 2775. https://doi.org/10.3390/buildings14092775
Nguyen CN, Chau H-W, Muttil N. Addition of Biochar to Green Roof Substrate to Enhance Plant Performance: A Long-Term Field Study. Buildings. 2024; 14(9):2775. https://doi.org/10.3390/buildings14092775
Chicago/Turabian StyleNguyen, Cuong Ngoc, Hing-Wah Chau, and Nitin Muttil. 2024. "Addition of Biochar to Green Roof Substrate to Enhance Plant Performance: A Long-Term Field Study" Buildings 14, no. 9: 2775. https://doi.org/10.3390/buildings14092775
APA StyleNguyen, C. N., Chau, H.-W., & Muttil, N. (2024). Addition of Biochar to Green Roof Substrate to Enhance Plant Performance: A Long-Term Field Study. Buildings, 14(9), 2775. https://doi.org/10.3390/buildings14092775