Study on Influence Mechanism of Tunnel Construction on Adjacent Pile Foundation and Resilience Assessment
Abstract
:1. Introduction
2. Basic Framework of Stratum Plastic Region Prediction and Resilience Assessment
2.1. Theoretical Simplification of Practical Engineering Problems
2.2. Stratum Stress and Displacement Caused by Tunnel Construction with Lining
2.3. Resilience Assessment Based on the Characteristics of Stratum Plastic Region
3. Parameter Sensitivity Analysis
3.1. Comparison and Verification with Numerical Simulation
3.2. The Effects of Soil Parameters
3.3. The Effects of Different Tunnel Outline Conditions
3.4. The Effects of the Pile Parameters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pinto, F.; Whittle, A.J. Ground Movements due to Shallow Tunnels in Soft Ground. I: Analytical Solutions. J. Geotech. Geoenviron. Eng. 2014, 140, 04013040. [Google Scholar] [CrossRef]
- Pinto, F.; Zymnis, D.M.; Whittle, A.J. Ground Movements due to Shallow Tunnels in Soft Ground. II: Analytical Interpretation and Prediction. J. Geotech. Geoenviron. Eng. 2014, 140, 04013041. [Google Scholar] [CrossRef]
- Jin, Z.; Zhang, C.; Li, W.; Tu, S.; Wang, L.; Wang, S. Stability analysis for excavation in frictional soils based on upper bound method. Comput. Geotech. 2024, 165, 105916. [Google Scholar] [CrossRef]
- Tu, S.; Li, W.; Zhang, C.; Wang, L.; Jin, Z.; Wang, S. Seepage effect on progressive failure of shield tunnel face in granular soils by coupled continuum-discrete method. Comput. Geotech. 2024, 166, 106009. [Google Scholar] [CrossRef]
- Tu, S.; Li, W.; Zhang, C.; Chen, W. Effect of inclined layered soils on face stability in shield tunneling based on limit analysis. Tunn. Undergr. Sp. Technol. 2023, 131, 104773. [Google Scholar] [CrossRef]
- Bobet, A. Analytical solutions for shallow tunnels in saturated ground. J. Eng. Mech. 2001, 127, 1258–1266. [Google Scholar] [CrossRef]
- Bobet, A. Effect of pore water pressure on tunnel support during static and seismic loading. Tunn. Undergr. Sp. Technol. 2003, 18, 377–393. [Google Scholar] [CrossRef]
- Huo, H.; Bobet, A.; Fernández, G.; Ramírez, J. Analytical solution for deep rectangular structures subjected to far-field shear stresses. Tunn. Undergr. Sp. Technol. 2006, 21, 613–625. [Google Scholar] [CrossRef]
- Park, K.H. Elastic Solution for Tunneling-Induced Ground Movements in Clays. Int. J. Geomech. 2004, 4, 310–318. [Google Scholar] [CrossRef]
- Park, K.H. Analytical solution for tunnelling-induced ground movement in clays. Tunn. Undergr. Sp. Technol. 2005, 20, 249–261. [Google Scholar] [CrossRef]
- Strack, O.E.; Verruijt, A. A complex variable solution for a deforming buoyant tunnel in a heavy elastic half-plane. Int. J. Numer. Anal. Methods Geomech. 2002, 26, 1235–1252. [Google Scholar] [CrossRef]
- Verruijt, A. A complex variable solution for a deforming circular tunnel in an elastic half-plane. Int. J. Numer. Anal. Methods Geomech. 1997, 21, 77–89. [Google Scholar] [CrossRef]
- Verruijt, A. Deformations of an elastic half plane with a circular cavity. Int. J. Solids Struct. 1998, 35, 2795–2804. [Google Scholar] [CrossRef]
- Savigamin, C.; Bobet, A. Seismic response of a deep circular tunnel subjected to axial shear and axial bending. Tunn. Undergr. Sp. Technol. 2021, 112, 103863. [Google Scholar] [CrossRef]
- Liu, W.; Liang, J.; Xu, T. Tunnelling-induced ground deformation subjected to the behavior of tail grouting materials. Tunn. Undergr. Sp. Technol. 2023, 140, 105253. [Google Scholar] [CrossRef]
- Tierney, K.; Bruneau, M. Conceptualized and measuring resilience: A key to disaster loss reduction. TR News 2007, 250, 14–17. [Google Scholar]
- Attoh-Okine, N.O.; Cooper, A.T.; Mensah, S.A. Formulation of resilience index of urban infrastructure using belief functions. IEEE Syst. J. 2009, 3, 147–153. [Google Scholar] [CrossRef]
- Cimellaro, G.P.; Reinhorn, A.M.; Bruneau, M. Framework for analytical quantification of disaster resilience. Eng. Struct. 2010, 32, 3639–3649. [Google Scholar] [CrossRef]
- Ouyang, M.; Dueñas-Osorio, L.; Min, X. A three-stage resilience analysis framework for urban infrastructure systems. Struct. Saf. 2012, 36–37, 23–31. [Google Scholar] [CrossRef]
- Francis, R.; Bekera, B. A metric and frameworks for resilience analysis of engineered and infrastructure systems. Reliab. Eng. Syst. Saf. 2014, 121, 90–103. [Google Scholar] [CrossRef]
- Ayyub, B.M. Systems resilience for multihazard environments: Definition, metrics, and valuation for decision making. Risk Anal. 2014, 34, 340–355. [Google Scholar] [CrossRef]
- Huang, H.W.; Zhang, D.M. Resilience analysis of shield tunnel lining under extreme surcharge: Characterization and field application. Tunn. Undergr. Sp. Technol. 2016, 51, 301–312. [Google Scholar] [CrossRef]
- Lin, X.T.; Chen, X.S.; Su, D.; Zhu, M.; Han, K.H.; Chen, R.P. Evaluation method for resilience of shield tunnel linings considering multiple disturbances and its application. Chin. J. Geotech. Eng. 2022, 44, 591–601. [Google Scholar] [CrossRef]
- Lin, X.T.; Chen, X.; Su, D.; Han, K.; Zhu, M. An analytical model to evaluate the resilience of shield tunnel linings considering multistage disturbances and recoveries. Tunn. Undergr. Sp. Technol. 2022, 127, 104581. [Google Scholar] [CrossRef]
- Chen, R.; Lang, Z.; Zhang, C.; Zhao, N.; Deng, P. A paradigm for seismic resilience assessment of subway system. Tunn. Undergr. Sp. Technol. 2023, 135, 105061. [Google Scholar] [CrossRef]
- Han, K.; Zhang, D.; Chen, X.; Su, D.; Ju, J.-W.W.; Lin, X.-T.; Cui, H. A resilience assessment framework for existing underground structures under adjacent construction disturbance. Tunn. Undergr. Sp. Technol. Inc. Trenchless Technol. Res. 2023, 141, 105339. [Google Scholar] [CrossRef]
- Fu, Y.; Han, K.; Su, D.; Pang, X.; Bao, X.; Hou, B.; Wu, H.; Wen, J. A Prediction Model for the Potential Plastic Zone Induced by Tunnel Excavation Adjacent to a Pile Foundation in a Gravity Field. Symmetry 2019, 11, 1306. [Google Scholar] [CrossRef]
- Tong, L.; Xie, K.H.; Cheng, Y.F.; Lu, M.M.; Wang, K. Elastic solution of sallow tunnels in clays considering oval deformation of ground. Rock Soil Mech. 2009, 30, 393–398. (In Chinese) [Google Scholar]
Grade | Description | Colour |
---|---|---|
High resilience | Two independent domains | |
Moderate resilience | Multiply connected region | |
Low resilience | Simply connected region |
Parameters | Symbol | Value |
---|---|---|
Tunnel radius | R [m] | 3 |
Depth of the tunnel | h [m] | 10 |
Elasticity modulus of stratum | Eg [MPa] | 50 |
Poisson’s ratio of stratum | νg | 0.2 |
Elasticity modulus of liner | El [MPa] | 25,000 |
Poisson’s ratio of liner | νl | 0.2 |
Unit weight of stratum | γ [kN/m3] | 16, 20, 24 |
Angle of internal friction of stratum | φ [°] | 20, 25, 30 |
Cohesion of stratum | c [kPa] | 20, 30, 40 |
Uniform radial contraction | u0 [cm] | 6, 18, 24 |
Elliptic deformation | ud [cm] | 1.5, 6, 12 |
Vertical displacement | −Δuy [cm] | 0, 3, 6 |
Pile offset | dp [m] | 6, 7, 8 |
Pile length | h0 [m] | 7, 10, 13 |
Pile load | s, P [kN/m, kN] | 75, 155; 150, 235; 225, 315 |
Unit Weight γ /kN/m3 | Angle of Internal Friction φ /° | Cohesion c /kPa | Grade | Colour |
---|---|---|---|---|
16 | 25 | 30 | High resilience | |
20 | 25 | 30 | High resilience | |
24 | 25 | 30 | Moderate resilience | |
20 | 20 | 30 | Moderate resilience | |
20 | 25 | 30 | Moderate resilience | |
20 | 30 | 30 | High resilience | |
20 | 25 | 20 | Moderate resilience | |
20 | 25 | 30 | Moderate resilience | |
20 | 25 | 40 | High resilience |
Uniform Radial Contraction u0 /cm | Elliptic Deformation ud /cm | Vertical Displacement −Δuy /cm | Grade | Colour |
---|---|---|---|---|
6 | 6 | 3 | Moderate resilience | |
18 | 6 | 3 | Moderate resilience | |
24 | 6 | 3 | Moderate resilience | |
18 | 1.5 | 3 | High resilience | |
18 | 6 | 3 | High resilience | |
18 | 12 | 3 | Moderate resilience | |
18 | 6 | 0 | High resilience | |
18 | 6 | 3 | High resilience | |
18 | 6 | 6 | Moderate resilience |
Pile Offset dp /m | Pile Length h0 /m | Pile Load s, P /kN/m, kN | Grade | Colour |
---|---|---|---|---|
6 | 10 | 150, 235 | Moderate resilience | |
7 | 10 | 150, 235 | High resilience | |
8 | 10 | 150, 235 | High resilience | |
7 | 7 | 150, 235 | High resilience | |
7 | 10 | 150, 235 | High resilience | |
7 | 13 | 150, 235 | Moderate resilience | |
7 | 10 | 75, 155 | Moderate resilience | |
7 | 10 | 150, 235 | Moderate resilience | |
7 | 10 | 225, 315 | Low resilience |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Han, K.; Chen, W. Study on Influence Mechanism of Tunnel Construction on Adjacent Pile Foundation and Resilience Assessment. Buildings 2024, 14, 2818. https://doi.org/10.3390/buildings14092818
Zhou J, Han K, Chen W. Study on Influence Mechanism of Tunnel Construction on Adjacent Pile Foundation and Resilience Assessment. Buildings. 2024; 14(9):2818. https://doi.org/10.3390/buildings14092818
Chicago/Turabian StyleZhou, Jun, Kaihang Han, and Weitao Chen. 2024. "Study on Influence Mechanism of Tunnel Construction on Adjacent Pile Foundation and Resilience Assessment" Buildings 14, no. 9: 2818. https://doi.org/10.3390/buildings14092818
APA StyleZhou, J., Han, K., & Chen, W. (2024). Study on Influence Mechanism of Tunnel Construction on Adjacent Pile Foundation and Resilience Assessment. Buildings, 14(9), 2818. https://doi.org/10.3390/buildings14092818