Optimization of Anti-Scour Device Combined with Perforated Baffle and Ring-Wing Plate Based on a Multi-Factor Orthogonal Experiment
Abstract
:1. Introduction
2. Numerical Model
2.1. Governing Equations and Turbulence Model
2.1.1. Governing Equations
2.1.2. Turbulence Model
2.1.3. Sediment Transport Model
2.2. Computational Domain and Mesh
2.3. Boundary Conditions and Method
3. Test Design Using Orthogonal Method
3.1. Definition of Variables
3.2. Test Plan
4. Results and Discussion
4.1. Model Verification
4.1.1. Flow Field Verification
4.1.2. Validation of Scour Pit Model
4.2. Analysis of Orthogonal Experimental Results
4.2.1. Range Analysis for Factors
4.2.2. Influence of Factors on Maximum Scour Depth
4.2.3. Effect of the Optimal Combined Device on Flow Field
5. Conclusions
6. Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Myrhaug, D.; Rue, H. Scour around group of slender vertical piles in random waves. Appl. Ocean Res. 2005, 27, 56–63. [Google Scholar] [CrossRef]
- Yuksel, Y.; Tan, R.I.; Celikoglu, Y. Propeller jet flow scour around a pile structure. Appl. Ocean Res. 2018, 79, 160–172. [Google Scholar] [CrossRef]
- Matos, J.C.; Nicoletti, V.; Kralovanec, J.; Sousa, H.S.; Gara, F.; Moravcik, M.; Morais, M.J. Comparison of Condition Rating Systems for Bridges in Three European Countries. Appl. Sci. 2023, 13, 12343. [Google Scholar] [CrossRef]
- Brighenti, F.; Caspani, V.F.; Costa, G.; Giordano, P.F.; Limongelli, M.P.; Zonta, D. Bridge management systems: A review on current practice in a digitizing world. Eng. Struct. 2024, 321, 118971. [Google Scholar] [CrossRef]
- Ayoubloo, M.; Etemad-Shahidi, A.; Mahjoobi, J. Evaluation of regular wave scour around a circular pile using data mining approaches. Appl. Ocean Res. 2010, 32, 34–39. [Google Scholar] [CrossRef]
- Pang, A.L.J.; Skote, M.; Lim, S.Y.; Gullman-Strand, J.; Morgan, N. A numerical approach for determining equilibrium scour depth around a mono-pile due to steady currents. Appl. Ocean Res. 2016, 57, 114–124. [Google Scholar] [CrossRef]
- Zhan, J.; Wang, Y.; Zhang, F.; An, Y.; Liu, K. Scour depth evaluation of highway bridge piers using vibration measurements and finite element model updating. Eng. Struct. 2022, 253, 113815. [Google Scholar] [CrossRef]
- Xiang, Q.; Wei, K.; Li, Y.; Zhang, M.; Qin, S. Experimental and Numerical Investigation of Local Scour for Suspended Square Caisson under Steady Flow. KSCE J. Civ. Eng. 2020, 24, 2682–2693. [Google Scholar] [CrossRef]
- Xiang, Q.; Wei, K.; Qiu, F.; Yao, C.; Li, Y. Experimental Study of Local Scour around Caissons under Unidirectional and Tidal Currents. Water 2020, 12, 640. [Google Scholar] [CrossRef]
- Tafarojnoruz, A.; Gaudio, R.; Dey, S. Flow-altering countermeasures against scour at bridge piers: A review. J. Hydraul. Res. 2010, 48, 441–452. [Google Scholar] [CrossRef]
- Valela, C.; Whittaker, C.N.; Rennie, C.D.; Nistor, I.; Melville, B.W. Novel Riprap Structure for Improved Bridge Pier Scour Protection. J. Hydraul. Eng. 2022, 148. [Google Scholar] [CrossRef]
- Ranjbar-Zahedani, M.; Keshavarzi, A.; Khabbaz, H.; Ball, J.E. Optimizing flow diversion structure as an effective pier-scour countermeasure. J. Hydraul. Res. 2021, 59, 963–976. [Google Scholar] [CrossRef]
- Fayun, L.; Chen, W. Review on Countermeasures to Bridge Piers from Local Scour. Struct. Eng. 2014, 5, 130–138. [Google Scholar]
- Fouli, H.; Elsebaie, I.H. Reducing local scour at bridge piers using an upstream subsidiary triangular pillar. Arab. J. Geosci. 2016, 9, 598. [Google Scholar] [CrossRef]
- Wang, S.; Garbatov, Y.; Chen, B.; Soares, C.G. Dynamic structural response of perforated plates subjected to water impact load. Eng. Struct. 2016, 125, 179–190. [Google Scholar] [CrossRef]
- Su, T.C.; Chen, B.; Zhang, H.; Hu, T.; Yang, Z.Y. On reducing scouring by controlling junction flow. In Proceedings of the Twenty-third International Offshore and Polar Engineering Conference, Anchorage, Alaska, 30 June–5 July 2013. [Google Scholar]
- Zarrati, A.R.; Gholami, H.; Mashahir, M.B. Application of collar to control scouring around rectangular bridge piers. J. Hydraul. Res. 2004, 42, 97–103. [Google Scholar] [CrossRef]
- Ghorbani, B.; Kells, J.A. Effect of submerged vanes on the scour occurring at a cylindrical pier. J. Hydraul. Res. 2008, 46, 610–619. [Google Scholar] [CrossRef]
- Cheng, L.Y.; Mou, X.Y.; Wen, H.; Hao, L.Z. Experimental Research on Protection of Ring-Wing Pier Against Local Scour. Adv. Sci. Technol. Water Resour. 2012, 3. Available online: https://api.semanticscholar.org/CorpusID:112450695 (accessed on 1 November 2024).
- Karami, H.; Hosseinjanzadeh, H.; Hosseini, K.; Ardeshir, A. Scour and three-dimensional flow field measurement around short vertical-wall abutment protected by collar. KSCE J. Civ. Eng. 2018, 22, 141–152. [Google Scholar] [CrossRef]
- Park, J.H.; Sok, C.; Park, C.K.; Kim, Y.D. A study on the effects of debris accumulation at sacrificial piles on bridge pier scour:, I. Experimental results. KSCE J. Civ. Eng. 2016, 20, 1546–1551. [Google Scholar] [CrossRef]
- Park, J.H.; Sok, C.; Park, C.K.; Kim, Y.D. A study on the effects of debris accumulation at sacrificial piles on bridge pier scour:, I.I. Empirical formula. KSCE J. Civ. Eng. 2016, 20, 1552–1557. [Google Scholar] [CrossRef]
- Yagci, O.; Yildirim, I.; Celik, M.F.; Kitsikoudis, V.; Duran, Z.; Kirca, V.O. Clear water scour around a finite array of cylinders. Appl. Ocean Res. 2017, 68, 114–129. [Google Scholar] [CrossRef]
- Vittal, N.; Kothyari, U.C.; Haghighat, M. ClearWater Scour around Bridge Pier Group. J. Hydraul. Eng. 1994, 120, 1309–1318. [Google Scholar] [CrossRef]
- Mashahir, M.B.; Zarrati, A.R.; Mokallaf, E. Application of Riprap and Collar to Prevent Scouring around Rectangular Bridge Piers. J. Hydraul. Eng. 2010, 136, 183–187. [Google Scholar] [CrossRef]
- Moncada-M, A.T.; Aguirre-Pe, J.; Bolivar, J.C.; Flores, E.J. Scour protection of circular bridge piers with collars and slots. J. Hydraul. Res. 2009, 47, 119–126. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, X.; Chen, J.; Chen, Z.; Liu, J. Research on the Wing-Type Antiscour Device of Pier Based on Scour Test and Numerical Simulation. Adv. Civ. Eng. 2021, 2021, 2491707. [Google Scholar] [CrossRef]
- Melville, C.; Bruce, W.; Coleman, S.E. Bridge Scour; Water Resources Publication, LLC: Highlands Ranch, CO, USA, 2000; ISBN 9781887201186. [Google Scholar]
- Bruce, W.M. Pier and Abutment Scour: Integrated Approach. J. Hydraul. Eng. 1997, 123, 125–136. [Google Scholar]
- Melville, B.W.; Raudkivi, A.J. Flow characteristics in local scour at bridge piers. J. Hydraul. Res. 2010, 15, 373–380. [Google Scholar] [CrossRef]
- Huang, C.K.T.C. Use of surface guide panels as pier scour countermeasures. Int. J. Sediment Res. 2005, 2, 119–130. [Google Scholar]
- Lauchlan, C.S. Pier Scour Countermeasures; The University of Auckland: Auckland, New Zealand, 1999. [Google Scholar]
- Roulund, A.; Sumer, B.M.; Fredsøe, J.; Michelsen, J. Numerical and experimental investigation of flow and scour around a circular pile. J. Fluid Mech. 2005, 534, 351–401. [Google Scholar] [CrossRef]
- Grimaldi, C.; Gaudio, R.; Calomino, F.; Cardoso, A.H. Countermeasures against Local Scouring at Bridge Piers: Slot and Combined System of Slot and Bed Sill. J. Hydraul. Eng. 2009, 135, 425–431. [Google Scholar] [CrossRef]
- Odgaard, A.J.; Wang, Y. Scour prevention at bridge piers. In Hydraulic Engineering; ASCE: Reston, VA, USA, 1987; pp. 523–527. [Google Scholar]
- Zarrati, A.R.; Nazariha, M.; Mashahir, M.B. Reduction of Local Scour in the Vicinity of Bridge Pier Groups Using Collars and Riprap. J. Hydraul. Eng. 2006, 132, 154–162. [Google Scholar] [CrossRef]
- Garg, V.; Setia, B.; Verma, D.V.S. Combination of scour protection devices around oblong bridge pier. ISH J. Hydraul. Eng. 2008, 14, 56–68. [Google Scholar] [CrossRef]
- Guoren, D. Incipient Motion of Coarse and Fine Sediment. J. Sediment Res. 1999, 6, 1–9. [Google Scholar]
- Ataie-Ashtiani, B.; Beheshti, A.A. Experimental Investigation of Clear-Water Local Scour at Pile Groups. J. Hydraul. Eng. 2006, 132, 1100–1104. [Google Scholar] [CrossRef]
- Alireza, K. Experimental study of flow structure around two in-line bridge piers. Proc. Inst. Civ. Eng.-Water Manag. 2017, 171, 311–327. [Google Scholar]
Gu | σk | σε | Gε1 | Gε2 |
---|---|---|---|---|
0.09 | 1.0 | 1.3 | 1.44 | 1.92 |
Levels | Variables | ||
---|---|---|---|
S | L | H | |
1 | 10% | 2 d | 1/2 h |
2 | 20% | 3 d | 1/3 h |
3 | 30% | 4 d | 1/6 h |
Test Number | Factors | Scour Depth | ||||
---|---|---|---|---|---|---|
S | L | H | Empty Column | Front End of Pier (cm) | Side End of Pier (cm) | |
1 | - | - | - | - | 3.16 | 1.9 |
2 | - | - | 1/3 h | - | 1.2 | 0.8 |
3 | 10% | 2d | 1/2 h | 1 | 0.8 | 0.9 |
4 | 10% | 3d | 1/3 h | 2 | 0.9 | 0.7 |
5 | 10% | 4d | 1/6 h | 3 | 1.1 | 0.8 |
6 | 20% | 2d | 1/6 h | 3 | 0.8 | 0.8 |
7 | 20% | 3d | 1/2 h | 1 | 0.6 | 0.7 |
8 | 20% | 4d | 1/3 h | 2 | 0.6 | 0.8 |
9 | 30% | 2d | 1/3 h | 2 | 0.7 | 0.6 |
10 | 30% | 3d | 1/6 h | 3 | 0.9 | 0.9 |
11 | 30% | 4d | 1/2 h | 1 | 0.9 | 0.6 |
Analysis Results | Maximum Scour Depth at Front End of Pier | Maximum Scour Depth at Side End of Pier | ||||
---|---|---|---|---|---|---|
S | L | H | S | L | H | |
K1 | 0.933 | 0.767 | 0.767 | 0.833 | 0.767 | 0.733 |
K2 | 0.667 | 0.800 | 0.733 | 0.767 | 0.767 | 0.700 |
K3 | 0.833 | 0.867 | 0.933 | 0.700 | 0.733 | 0.867 |
R | 0.266 | 0.100 | 0.200 | 0.133 | 0.034 | 0.167 |
Rank | 1 | 3 | 2 | 2 | 3 | 1 |
Optimal level | S2 | L1 | H2 | S3 | L3 | H2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liao, R.; Yuan, P.; Chen, J. Optimization of Anti-Scour Device Combined with Perforated Baffle and Ring-Wing Plate Based on a Multi-Factor Orthogonal Experiment. Buildings 2025, 15, 148. https://doi.org/10.3390/buildings15010148
Wang Y, Liao R, Yuan P, Chen J. Optimization of Anti-Scour Device Combined with Perforated Baffle and Ring-Wing Plate Based on a Multi-Factor Orthogonal Experiment. Buildings. 2025; 15(1):148. https://doi.org/10.3390/buildings15010148
Chicago/Turabian StyleWang, Yan, Rongjun Liao, Pei Yuan, and Jinchao Chen. 2025. "Optimization of Anti-Scour Device Combined with Perforated Baffle and Ring-Wing Plate Based on a Multi-Factor Orthogonal Experiment" Buildings 15, no. 1: 148. https://doi.org/10.3390/buildings15010148
APA StyleWang, Y., Liao, R., Yuan, P., & Chen, J. (2025). Optimization of Anti-Scour Device Combined with Perforated Baffle and Ring-Wing Plate Based on a Multi-Factor Orthogonal Experiment. Buildings, 15(1), 148. https://doi.org/10.3390/buildings15010148