Data-Driven Insights into Concrete Flow and Strength: Advancing Smart Material Design Using Machine Learning Strategies
Abstract
1. Introduction
2. Research Framework
2.1. Data Curation and Preprocessing
2.2. Machine Learning Modeling
2.2.1. GEP Framework for Predictive Modeling
2.2.2. MEP Framework for Predictive Modeling
2.3. Model Accuracy Assessment Approach
3. Computational Outcomes and Interpretation
3.1. CS Models
3.1.1. GEP Simulation for CS
3.1.2. MEP Simulation for CS
3.2. Flow Models
3.2.1. GEP Simulation for Flow
3.2.2. MEP Simulation for Flow
3.3. Model Accuracy Assessment
3.4. SHAP Analysis
3.4.1. Features Influence on Compressive Strength
3.4.2. Features Influence on Workability (Flow)
4. Discussions
5. Conclusions
- With R2 values of 0.910 and 0.882, respectively, for CS and flow of concrete, the GEP model proved to be highly predictive. Nevertheless, the MEP method demonstrated more accuracy, with R2 values of 0.951 for CS and 0.923 for flow, showing improved accuracy and dependability in strength estimation.
- The comparative error analysis indicates that the MEP model demonstrates superior predictive accuracy over the GEP model, reducing the average error for CS from 1.725 MPa to 1.308 MPa and for flow from 52.183 mm to 030.503 mm. This significant reduction in error highlights the robustness and reliability of the MEP approach in estimating strength properties, making it a more precise choice for predictive modeling in concrete research.
- The statistical evaluation confirms that MEP outperforms GEP in predicting both CS and flow, exhibiting lower error values, higher correlation coefficients, and superior efficiency scores. With reduced MAE, RMSE, RSE, and RRMSE, along with improved NSE and R values, MEP demonstrates greater accuracy and reliability. Therefore, MEP is the preferred machine learning approach for precise strength prediction in material modeling applications.
- Results from SHAP reveal that the two models’ feature importance patterns are different. For CS, WBR and SI exhibit the strongest impact, indicating their dominant role in shaping model predictions. In contrast, Flow is predominantly influenced by Wa and SI, suggesting differing underlying dynamics between the systems. These insights underscore the need for model-specific feature prioritization in decision-making frameworks.
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ghosh, A.; Ransinchung, G.D. Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete. Constr. Build. Mater. 2022, 341, 127828. [Google Scholar] [CrossRef]
- Belaïd, F. How does concrete and cement industry transformation contribute to mitigating climate change challenges? Resour. Conserv. Recycl. Adv. 2022, 15, 200084. [Google Scholar] [CrossRef]
- Zeng, J.-J.; Zeng, W.-B.; Ye, Y.-Y.; Liao, J.; Zhuge, Y.; Fan, T.-H. Flexural behavior of FRP grid reinforced ultra-high-performance concrete composite plates with different types of fibers. Eng. Struct. 2022, 272, 115020. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production, 1928–2018. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef]
- Puertas, F.; Suárez-Navarro, J.A.; Alonso, M.M.; Gascó, C. NORM waste, cements, and concretes. A review. Mater. De Construcción 2021, 71, 344. [Google Scholar] [CrossRef]
- Ahmad, W.; McCormack, S.J.; Byrne, A. Biocomposites for sustainable construction: A review of material properties, applications, research gaps, and contribution to circular economy. J. Build. Eng. 2025, 105, 112525. [Google Scholar] [CrossRef]
- Elmagarhe, A.; Lu, Q.; Alharthai, M.; Alamri, M.; Elnihum, A. Performance of Porous Asphalt Mixtures Containing Recycled Concrete Aggregate and Fly Ash. Materials 2022, 15, 6363. [Google Scholar] [CrossRef]
- Schaubroeck, T.; Gibon, T.; Igos, E.; Benetto, E. Sustainability assessment of circular economy over time: Modelling of finite and variable loops & impact distribution among related products. Resour. Conserv. Recycl. 2021, 168, 105319. [Google Scholar]
- Shaaban, I.G.; Rizzuto, J.P.; El-Nemr, A.; Bohan, L.; Ahmed, H.; Tindyebwa, H. Mechanical properties and air permeability of concrete containing waste tires extracts. J. Mater. Civ. Eng. 2021, 33, 04020472. [Google Scholar] [CrossRef]
- Nurruddin, M.F.; Sani, H.; Mohammed, B.S.; Shaaban, I. Methods of curing geopolymer concrete: A review. Int. J. Adv. Appl. Sci. 2018, 5, 31–36. [Google Scholar] [CrossRef]
- Saif, M.S.; Shanour, A.S.; Abdelaziz, G.E.; Elsayad, H.I.; Shaaban, I.G.; Tayeh, B.A.; Hammad, M.S. Influence of blended powders on properties of ultra-high strength fibre reinforced self compacting concrete subjected to elevated temperatures. Case Stud. Constr. Mater. 2023, 18, e01793. [Google Scholar] [CrossRef]
- Vakharia, V.; Gujar, R. Prediction of compressive strength and portland cement composition using cross-validation and feature ranking techniques. Constr. Build. Mater. 2019, 225, 292–301. [Google Scholar] [CrossRef]
- Ahmad, W.; Veeraghantla, V.S.S.C.S.; Byrne, A. Advancing Sustainable Concrete Using Biochar: Experimental and Modelling Study for Mechanical Strength Evaluation. Sustainability 2025, 17, 2516. [Google Scholar] [CrossRef]
- Huang, H.; Li, M.; Yuan, Y.; Bai, H. Theoretical analysis on the lateral drift of precast concrete frame with replaceable artificial controllable plastic hinges. J. Build. Eng. 2022, 62, 105386. [Google Scholar] [CrossRef]
- Shafighfard, T.; Bagherzadeh, F.; Rizi, R.A.; Yoo, D.-Y. Data-driven compressive strength prediction of steel fiber reinforced concrete (SFRC) subjected to elevated temperatures using stacked machine learning algorithms. J. Mater. Res. Technol. 2022, 21, 3777–3794. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Pham Duy, H.; Pham Thanh, T.; Vu, H.H. Compressive Strength Evaluation of Fiber-Reinforced High-Strength Self-Compacting Concrete with Artificial Intelligence. Adv. Civ. Eng. 2020, 2020, 3012139. [Google Scholar] [CrossRef]
- Kulasooriya, W.; Ranasinghe, R.S.S.; Perera, U.S.; Thisovithan, P.; Ekanayake, I.U.; Meddage, D.P.P. Modeling strength characteristics of basalt fiber reinforced concrete using multiple explainable machine learning with a graphical user interface. Sci. Rep. 2023, 13, 13138. [Google Scholar] [CrossRef]
- Amin, M.N.; Iftikhar, B.; Khan, K.; Javed, M.F.; AbuArab, A.M.; Rehman, M.F. Prediction model for rice husk ash concrete using AI approach: Boosting and bagging algorithms. Structures 2023, 50, 745–757. [Google Scholar] [CrossRef]
- Zheng, D.; Wu, R.; Sufian, M.; Kahla, N.B.; Atig, M.; Deifalla, A.F.; Accouche, O.; Azab, M. Flexural Strength Prediction of Steel Fiber-Reinforced Concrete Using Artificial Intelligence. Materials 2022, 15, 5194. [Google Scholar] [CrossRef]
- Nafees, A.; Amin, M.N.; Khan, K.; Nazir, K.; Ali, M.; Javed, M.F.; Aslam, F.; Musarat, M.A.; Vatin, N.I. Modeling of Mechanical Properties of Silica Fume-Based Green Concrete Using Machine Learning Techniques. Polymers 2021, 14, 30. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Aydın, Y.; Bekdaş, G.; Geem, Z.W. Interpretable predictive modelling of basalt fiber reinforced concrete splitting tensile strength using ensemble machine learning methods and SHAP approach. Materials 2023, 16, 4578. [Google Scholar] [CrossRef] [PubMed]
- Cakiroglu, C.; Shahjalal, M.; Islam, K.; Mahmood, S.M.F.; Billah, A.H.M.M.; Nehdi, M.L. Explainable ensemble learning data-driven modeling of mechanical properties of fiber-reinforced rubberized recycled aggregate concrete. J. Build. Eng. 2023, 76, 107279. [Google Scholar] [CrossRef]
- Cakiroglu, C.; Islam, K.; Bekdaş, G.; Isikdag, U.; Mangalathu, S. Explainable machine learning models for predicting the axial compression capacity of concrete filled steel tubular columns. Constr. Build. Mater. 2022, 356, 129227. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Z.; Khan, A.A.; Khan, M.; Javed, M.F.; Alaskar, A.; Eldin, S.M. Development of predictive models for sustainable concrete via genetic programming-based algorithms. J. Mater. Res. Technol. 2023, 24, 6391–6410. [Google Scholar] [CrossRef]
- Shah, M.I.; Javed, M.F.; Aslam, F.; Alabduljabbar, H. Machine learning modeling integrating experimental analysis for predicting the properties of sugarcane bagasse ash concrete. Constr. Build. Mater. 2022, 314, 125634. [Google Scholar] [CrossRef]
- Yang, X.; Wu, T.; Amin, M.N.; AlAteah, A.H.; Qadir, M.T.; Khan, S.A.; Javed, M.F. Experimenting the compressive performance of low-carbon alkali-activated materials using advanced modeling techniques. Rev. Adv. Mater. Sci. 2024, 63, 20240068. [Google Scholar] [CrossRef]
- Khan, N.M.; Ma, L.; Inqiad, W.B.; Khan, M.S.; Iqbal, I.; Emad, M.Z.; Alarifi, S.S. Interpretable machine learning approaches to assess the compressive strength of metakaolin blended sustainable cement mortar. Sci. Rep. 2025, 15, 19414. [Google Scholar] [CrossRef]
- Tipu, R.K.; Suman; Batra, V. Enhancing prediction accuracy of workability and compressive strength of high-performance concrete through extended dataset and improved machine learning models. Asian J. Civ. Eng. 2024, 25, 197–218. [Google Scholar] [CrossRef]
- Yeh, I.C. Exploring concrete slump model using artificial neural networks. J. Comput. Civ. Eng. 2006, 20, 217–221. [Google Scholar] [CrossRef]
- Tian, Q.; Lu, Y.; Zhou, J.; Song, S.; Yang, L.; Cheng, T.; Huang, J. Compressive strength of waste-derived cementitious composites using machine learning. Rev. Adv. Mater. Sci. 2024, 63, 20240008. [Google Scholar] [CrossRef]
- Iftikhar, B.; Alih, S.C.; Vafaei, M.; Elkotb, M.A.; Shutaywi, M.; Javed, M.F.; Deebani, W.; Khan, M.I.; Aslam, F. Predictive modeling of compressive strength of sustainable rice husk ash concrete: Ensemble learner optimization and comparison. J. Clean. Prod. 2022, 348, 131285. [Google Scholar] [CrossRef]
- Sarveghadi, M.; Gandomi, A.H.; Bolandi, H.; Alavi, A.H. Development of prediction models for shear strength of SFRCB using a machine learning approach. Neural Comput. Appl. 2019, 31, 2085–2094. [Google Scholar] [CrossRef]
- Lee, B.C.; Brooks, D.M. Accurate and efficient regression modeling for microarchitectural performance and power prediction. ACM SIGOPS Oper. Syst. Rev. 2006, 40, 185–194. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence; MIT press: Cambridge, MA, USA, 1992. [Google Scholar]
- Koza, J. On the programming of computers by means of natural selection. In Genetic Programming; MIT Press: Cambridge, MA, USA, 1992. [Google Scholar]
- Gholampour, A.; Ozbakkaloglu, T.; Hassanli, R. Behavior of rubberized concrete under active confinement. Constr. Build. Mater. 2017, 138, 372–382. [Google Scholar] [CrossRef]
- Topcu, I.B.; Sarıdemir, M. Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic. Comput. Mater. Sci. 2008, 41, 305–311. [Google Scholar] [CrossRef]
- Ferreira, C. Gene expression programming: Mathematical modeling by an artificial intelligence; Springer: Berlin/Heidelberg, Germany, 2006; Volume 21. [Google Scholar]
- Gandomi, A.H.; Yun, G.J.; Alavi, A.H. An evolutionary approach for modeling of shear strength of RC deep beams. Mater. Struct. 2013, 46, 2109–2119. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Babanajad, S.K.; Alavi, A.H.; Farnam, Y. Novel approach to strength modeling of concrete under triaxial compression. J. Mater. Civ. Eng. 2012, 24, 1132–1143. [Google Scholar] [CrossRef]
- Amin, M.N.; Ahmad, W.; Khan, K.; Deifalla, A.F. Optimizing compressive strength prediction models for rice husk ash concrete with evolutionary machine intelligence techniques. Case Stud. Constr. Mater. 2023, 18, e02102. [Google Scholar] [CrossRef]
- Wang, H.-L.; Yin, Z.-Y. High performance prediction of soil compaction parameters using multi expression programming. Eng. Geol. 2020, 276, 105758. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Javed, M.F.; Rauf, M.; Azim, I.; Ashraf, M.; Yang, J.; Liu, Q.-f. Sustainable utilization of foundry waste: Forecasting mechanical properties of foundry sand based concrete using multi-expression programming. Sci. Total Environ. 2021, 780, 146524. [Google Scholar] [CrossRef]
- Oltean, M.; Grosan, C. A comparison of several linear genetic programming techniques. Complex Syst. 2003, 14, 285–314. [Google Scholar] [CrossRef]
- Fallahpour, A.; Olugu, E.U.; Musa, S.N. A hybrid model for supplier selection: Integration of AHP and multi expression programming (MEP). Neural Comput. Appl. 2017, 28, 499–504. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H.; Sahab, M.G.; Gandomi, M. Multi expression programming: A new approach to formulation of soil classification. Eng. Comput. 2010, 26, 111–118. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.D.; Kazemi, S.-F.; Mosavi, A.; Nasseralshariati, E.; Tah, J.H.M. Prediction of compression index of fine-grained soils using a gene expression programming model. Infrastructures 2019, 4, 26. [Google Scholar] [CrossRef]
- Grosan, C.; Abraham, A. Stock market modeling using genetic programming ensembles. In Genetic Systems Programming: Theory and Experiences; Springer: Berlin/Heidelberg, Germany, 2006; pp. 131–146. [Google Scholar]
- Oltean, M.; Dumitrescu, D. Multi expression programming. J. Genet. Program. Evolvable Mach. 2002. [Google Scholar]
- Iqbal, M.F.; Liu, Q.-f.; Azim, I.; Zhu, X.; Yang, J.; Javed, M.F.; Rauf, M. Prediction of mechanical properties of green concrete incorporating waste foundry sand based on gene expression programming. J. Hazard. Mater. 2020, 384, 121322. [Google Scholar] [CrossRef]
- Shahin, M.A. Genetic Programming for Modelling of Geotechnical Engineering Systems; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Çanakcı, H.; Baykasoğlu, A.; Güllü, H. Prediction of compressive and tensile strength of Gaziantep basalts via neural networks and gene expression programming. Neural Comput. Appl. 2009, 18, 1031–1041. [Google Scholar] [CrossRef]
- Alade, I.O.; Abd Rahman, M.A.; Saleh, T.A. Predicting the specific heat capacity of alumina/ethylene glycol nanofluids using support vector regression model optimized with Bayesian algorithm. Sol. Energy 2019, 183, 74–82. [Google Scholar] [CrossRef]
- Alade, I.O.; Bagudu, A.; Oyehan, T.A.; Abd Rahman, M.A.; Saleh, T.A.; Olatunji, S.O. Estimating the refractive index of oxygenated and deoxygenated hemoglobin using genetic algorithm–support vector regression model. Comput. Methods Programs Biomed. 2018, 163, 135–142. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, R.; Wu, C.; Goh, A.T.C.; Lacasse, S.; Liu, Z.; Liu, H. State-of-the-art review of soft computing applications in underground excavations. Geosci. Front. 2020, 11, 1095–1106. [Google Scholar] [CrossRef]
- Alavi, A.H.; Gandomi, A.H.; Nejad, H.C.; Mollahasani, A.; Rashed, A. Design equations for prediction of pressuremeter soil deformation moduli utilizing expression programming systems. Neural Comput. Appl. 2013, 23, 1771–1786. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Tombul, M. Modeling rainfall-runoff process using soft computing techniques. Comput. Geosci. 2013, 51, 108–117. [Google Scholar] [CrossRef]
- Alade, I.O.; Abd Rahman, M.A.; Saleh, T.A. Modeling and prediction of the specific heat capacity of Al2O3/water nanofluids using hybrid genetic algorithm/support vector regression model. Nano-Struct. Nano-Objects 2019, 17, 103–111. [Google Scholar] [CrossRef]
- Shahin, M.A. Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomech. Geoengin. 2015, 10, 109–125. [Google Scholar] [CrossRef]
- Band, S.S.; Heggy, E.; Bateni, S.M.; Karami, H.; Rabiee, M.; Samadianfard, S.; Chau, K.-W.; Mosavi, A. Groundwater level prediction in arid areas using wavelet analysis and Gaussian process regression. Eng. Appl. Comput. Fluid Mech. 2021, 15, 1147–1158. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
Statistical Metrics | CM (kg/m3) | Sl (kg/m3) | FA (kg/m3) | Wa (kg/m3) | W/C | W/B | SP (kg/m3) | SP/C | CA (kg/m3) | Sa (kg/m3) | CS (MPa) | Flow (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 223.1 | 82.0 | 150.5 | 196.3 | 1.0 | 0.4 | 8.6 | 0.0 | 885.6 | 739.4 | 35.7 | 488.7 |
Standard Error | 3.4 | 2.7 | 3.8 | 0.9 | 0.0 | 0.0 | 0.1 | 0.0 | 3.8 | 2.9 | 0.4 | 7.7 |
Median | 172.8 | 101.0 | 164.0 | 195.0 | 1.0 | 0.4 | 8.0 | 0.0 | 881.0 | 741.0 | 35.0 | 530.0 |
Mode | 159.0 | 0.0 | 0.0 | 183.0 | 1.2 | 0.6 | 6.0 | 0.1 | 884.0 | 757.0 | 33.8 | 200.0 |
Standard Deviation | 77.2 | 61.9 | 86.5 | 19.9 | 0.3 | 0.1 | 2.8 | 0.0 | 87.1 | 65.3 | 8.1 | 175.5 |
Sample Variance | 5963.4 | 3832.3 | 7480.4 | 394.7 | 0.1 | 0.0 | 8.1 | 0.0 | 7583.7 | 4263.9 | 65.4 | 30,790.4 |
Kurtosis | −1.6 | −1.3 | −0.8 | −0.7 | −1.3 | −0.5 | 1.7 | 1.0 | −0.8 | −0.7 | 0.1 | −1.0 |
Skewness | 0.3 | −0.2 | −0.7 | 0.3 | 0.2 | 0.3 | 1.1 | 1.2 | 0.0 | 0.3 | 0.1 | −0.5 |
Range | 237.0 | 193.0 | 260.0 | 80.0 | 1.2 | 0.4 | 14.6 | 0.1 | 341.9 | 261.4 | 41.3 | 580.0 |
Minimum | 137.0 | 0.0 | 0.0 | 160.0 | 0.5 | 0.3 | 4.4 | 0.0 | 708.0 | 640.6 | 17.2 | 200.0 |
Maximum | 374.0 | 193.0 | 260.0 | 240.0 | 1.7 | 0.7 | 19.0 | 0.1 | 1049.9 | 902.0 | 58.5 | 780.0 |
Sum | 114,880.1 | 42,216.2 | 77,493.5 | 101,096.3 | 507.1 | 228.0 | 4419.0 | 22.6 | 456,066.1 | 380,805.6 | 18,393.6 | 251,681.0 |
Count | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 | 515.0 |
MEP | GEP | ||
---|---|---|---|
Hyper-Parameters | Settings | Hyper-Parameters | Settings |
Data type | Real numbers | Stumbling mutation | 0.00141 |
Problem type | Symbolic regression | Lower bound | −10 |
Cross over type | Uniform | Inversion rate | 0.00546 |
Replication number | 15 | Chromosomes | 150 |
Mutation probability | 0.01 | Data type | Floating number |
Number of treads | 2 | IS transposition rate | 0.00546 |
Number of generations | 250 | Head size | 8 |
Operators/variables | 0.5 | Linking function | Addition |
Error | MAE | Constant per gene | 10 |
Function set | Addition, Subtraction, Multiplication, Division, power, and square root | Upper bound | 10 |
Number of sub-populations | 50 | Mutation rate | 0.00138 |
Sub-population size | 200 | Genes | 8 |
Number of runs | 10 | Leaf mutation | 0.00546 |
Cross over probability | 0.9 | General | CS and Flow |
Code length | 50 | Two-point recombination rate | 0.00277 |
RIS transposition rate | 0.00546 | ||
One-point recombination rate | 0.00277 | ||
Function set | Addition, Subtraction, Multiplication, Division, power, and square root | ||
Gene recombination rate | 0.00277 | ||
Gene transposition rate | 0.00277 | ||
Random chromosomes | 0.0026 |
Property | CS (MPa) | Flow (mm) | ||
---|---|---|---|---|
GEP | MEP | GEP | MEP | |
MAE | 1.725 | 1.308 | 52.183 | 30.503 |
MAPE | 5.000 | 3.700 | 13.000 | 6.400 |
RMSE | 2.405 | 1.656 | 63.746 | 41.518 |
R | 0.954 | 0.975 | 0.939 | 0.961 |
RSE | 0.342 | 0.262 | 0.286 | 0.242 |
NSE | 0.910 | 0.947 | 0.875 | 0.909 |
RRMSE | 0.792 | 0.712 | 0.632 | 0.512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alqurashi, M. Data-Driven Insights into Concrete Flow and Strength: Advancing Smart Material Design Using Machine Learning Strategies. Buildings 2025, 15, 2244. https://doi.org/10.3390/buildings15132244
Alqurashi M. Data-Driven Insights into Concrete Flow and Strength: Advancing Smart Material Design Using Machine Learning Strategies. Buildings. 2025; 15(13):2244. https://doi.org/10.3390/buildings15132244
Chicago/Turabian StyleAlqurashi, Muwaffaq. 2025. "Data-Driven Insights into Concrete Flow and Strength: Advancing Smart Material Design Using Machine Learning Strategies" Buildings 15, no. 13: 2244. https://doi.org/10.3390/buildings15132244
APA StyleAlqurashi, M. (2025). Data-Driven Insights into Concrete Flow and Strength: Advancing Smart Material Design Using Machine Learning Strategies. Buildings, 15(13), 2244. https://doi.org/10.3390/buildings15132244