Next Issue
Volume 15, July-2
Previous Issue
Volume 15, June-2
 
 

Buildings, Volume 15, Issue 13 (July-1 2025) – 238 articles

Cover Story (view full-size image): In this article, a methodology is presented for the digitization of health and safety plans and their visualization on-site using augmented reality and a seamless system for indoor–outdoor localization. Safety requirements for equipment are modeled as customized property within BIM models. Then, the interoperable-format IFC is used to upload the model in a BIM platform. On-site outdoor localization is ensured by a GPS-RTK system, while for indoor spaces, an artificial intelligence algorithm that recognizes features is used. In this research, an application that supports a seamless outdoor–indoor transition is proposed, with the display of inspection information through augmented reality and a blockchain notarization of images taken on-site and aligned with BIM models. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
17 pages, 2290 KiB  
Article
Mechanical Response Analysis of High-Pile Wharf on Deep Soft Soil Foundation Under Complex Multi-Factor Interactions
by Kezheng Yang, Chenyue Cao, Rui Bai and Huihuan Ma
Buildings 2025, 15(13), 2379; https://doi.org/10.3390/buildings15132379 - 7 Jul 2025
Viewed by 217
Abstract
High-pile wharves are commonly used on deep soft soil foundations and are prone to the influence of complex environmental factors during long-term service. However, there is limited research on the spatiotemporal coupling effects of complex environmental factors within the integrated analysis system of [...] Read more.
High-pile wharves are commonly used on deep soft soil foundations and are prone to the influence of complex environmental factors during long-term service. However, there is limited research on the spatiotemporal coupling effects of complex environmental factors within the integrated analysis system of high-pile wharves. Therefore, this study, based on the engineering background of a bulk high-pile wharf in Zhanjiang, combined the finite element method with static and dynamic structural analysis to establish an integrated simulation model of the wharf structure and foundation. The structural response modes of the wharf under the coupling effects of multiple factors, such as soft soil softening, wave loading, and surface load distribution, were analyzed. The results show that, considering the softening characteristics of the soft soil, the safety factor of the structure decreased by up to 18.95%. Under wave loading, the maximum displacement and maximum bending moment of the wharf structure occurred in the region affected by the wave load. Under local surface loading, the structural deformation of the wharf was more pronounced than under global surface loading. In coupled conditions, surface loading had the most significant effect on deformation and internal forces, while wave loading and the soft foundation model mainly affected the maximum displacement, with little impact on the maximum bending moment. This study provides valuable insights for the optimization of service performance and safe operation and maintenance of high-pile wharves. Full article
(This article belongs to the Special Issue Non-linear Behavior and Design of Steel Structures)
Show Figures

Figure 1

16 pages, 2761 KiB  
Article
Evaluating the Stacked Economic Value of Load Shifting and Microgrid Control
by Arnel Garcesa, Nathan G. Johnson and James Nelson
Buildings 2025, 15(13), 2378; https://doi.org/10.3390/buildings15132378 - 7 Jul 2025
Viewed by 291
Abstract
Microgrids and load shifting can improve resilience and lower costs for electricity customers. The costs to deploy each have decreased and helped accelerate their deployment in the U.S. and globally. However, previous research has focused minimally on the combined benefit or “stacked economic [...] Read more.
Microgrids and load shifting can improve resilience and lower costs for electricity customers. The costs to deploy each have decreased and helped accelerate their deployment in the U.S. and globally. However, previous research has focused minimally on the combined benefit or “stacked economic value” that these assets could provide jointly. This article evaluates the financial value when those assets are combined and optimized jointly. The methods are demonstrated for a U.S. government facility with an existing microgrid and building automation system, with optimizations that vary the percentage load shifted and the duration of time the load can be shifted. The economic benefits of load shifting are greater when combined with a microgrid and coordinated dispatch of loads and microgrid assets. The methods and case study results illustrate “stacked economic value” showing energy charge reductions are 56–252% greater and demand charge reductions are 96–226% greater when load shifting is combined with a microgrid as compared to load shifting without a microgrid. Increasing the amount and duration of load shifting improves the stacked economic value as more loads are scheduled coincident with on-site generation to offset or completely avoid utility purchases during peak pricing periods, an underlying behavior that enables stacked economic value and increased financial savings. The percentage reduction in demand charges is greater than energy charges—a generalizable finding—but the relative impact on utility expenditures is dependent on the utility tariff structure and composition of demand charges and energy charges in the utility bill. In this case study, demand charge reductions were four times greater than energy charge reductions, but the financial savings of demand charges are less due to their smaller proportion of utility charges. This suggests that the stacked economic value of microgrids and load control may be even more significant in locations with electricity tariffs that more heavily weight billing towards demand charges than energy charges. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

25 pages, 5207 KiB  
Article
The Subjective and Objective Evaluation of the Efficacy of Public Spaces in University Complexes: A Case Study of the Center for Balance Architecture at Zhejiang University
by Linfeng Yao, Danshen Dong, Yuxi He and Jing Wang
Buildings 2025, 15(13), 2377; https://doi.org/10.3390/buildings15132377 - 7 Jul 2025
Viewed by 298
Abstract
This study aims to address the understudied evaluation of public space performance in renovated multi-functional university buildings, with a special focus on university complexes based on integrated industry–research–education models. While existing literature emphasizes outdoor campus environments, few studies have systematically assessed the internal [...] Read more.
This study aims to address the understudied evaluation of public space performance in renovated multi-functional university buildings, with a special focus on university complexes based on integrated industry–research–education models. While existing literature emphasizes outdoor campus environments, few studies have systematically assessed the internal public spaces that support interdisciplinary collaboration. Using the Center for Balanced Architecture at Zhejiang University as a case study, we employed a mixed-methods approach that combined Depthmap software for spatial integration and visual integration analyses with user satisfaction surveys. Our results reveal significant post-renovation improvements in spatial accessibility, particularly in terms of First Floor Plan connectivity. However, they also uncover persistent issues: despite high objective integration scores, user satisfaction with wayfinding systems remains low, pointing to a cognitive efficiency gap. Furthermore, disparities in satisfaction with acoustics, privacy, and social spaces across different user groups highlight the importance of balancing openness with individual needs. These findings provide empirical evidence to help optimize future renovation designs and enhance spatial experience and performance. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 3005 KiB  
Review
Non-Ferrous Metal Smelting Slags for Thermal Energy Storage: A Mini Review
by Meichao Yin, Yaxuan Xiong, Aitonglu Zhang, Xiang Li, Yuting Wu, Cancan Zhang, Yanqi Zhao and Yulong Ding
Buildings 2025, 15(13), 2376; https://doi.org/10.3390/buildings15132376 - 7 Jul 2025
Viewed by 362
Abstract
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. [...] Read more.
The metallurgical industry is integral to industrial development. As technology advances and industrial demand grows, the annual output of metallurgical waste slag continues to rise. Combined with the substantial historical stockpile, this has made the utilization of metallurgical slag a new research focus. This study comprehensively sums up the composition and fundamental characteristics of metallurgical waste slag. It delves into the application potential of non-ferrous metal smelting waste slag, such as copper slag, nickel slag, and lead slag, in both sensible and latent heat storage. In sensible heat storage, copper slag, with its low cost and high thermal stability, is suitable as a storage material. After appropriate treatment, it can be combined with other materials to produce composite phase change energy storage materials, thus expanding its role into latent heat storage. Nickel slag, currently mainly used in infrastructure materials, still needs in-depth research to confirm its suitability for sensible heat storage. Nevertheless, in latent heat storage, it has been utilized in making the support framework of composite phase change materials. While there are no current examples of lead slag being used in sensible heat storage, the low leaching concentration of lead and zinc in lead slag concrete under alkaline conditions offers new utilization ideas. Given the strong nucleation effect of iron and impurities in lead slag, it is expected to be used in the skeleton preparation of composite phase change materials. Besides the aforementioned waste slags, other industrial waste slags also show potential as sensible heat storage materials. This paper aims to evaluate the feasibility of non-ferrous metal waste slag as energy storage materials. It analyses the pros and cons of their practical applications, elaborates on relevant research progress, technical hurdles, and future directions, all with the goal of enhancing their effective use in heat storage. Full article
(This article belongs to the Special Issue Advanced Energy Storage Technologies for Low-Carbon Buildings)
Show Figures

Figure 1

25 pages, 4965 KiB  
Article
Towards Selecting an Optimal Bonding Test Method for Rebar–Concrete: Comparison Between Pull-Out Test and Full-Beam Test
by Sisi Chao, Chenghua Li, Jiahong Dong and Ziliang Lu
Buildings 2025, 15(13), 2375; https://doi.org/10.3390/buildings15132375 - 7 Jul 2025
Viewed by 328
Abstract
There are many methods for evaluating the bond behavior between rebar and concrete. For certain experimental purposes, selecting the ideal method for testing the rebar–concrete bonding properties is often a controversial problem. The most representative single-end pull-out test method and the full-beam test [...] Read more.
There are many methods for evaluating the bond behavior between rebar and concrete. For certain experimental purposes, selecting the ideal method for testing the rebar–concrete bonding properties is often a controversial problem. The most representative single-end pull-out test method and the full-beam test method were applied in this work to conduct bonding tests between rebar and concrete. Considering the influence of the concrete strength, bonding length, stirrup, and rebar slotting, these two testing strategies are compared and analyzed in terms of the specimen failure mode, bonding strength, bond–slip curve, and rebar stress distribution. Suggestions are offered regarding the selection of an appropriate method for evaluating the bond behavior between rebar and concrete based on an comparative analysis of the two tested approaches. The results presented herein provide a basis for the preparation of relevant test method standards. Full article
Show Figures

Figure 1

30 pages, 2830 KiB  
Systematic Review
The Role of AI in On-Site Construction Robotics: A State-of-the-Art Review Using the Sense–Think–Act Framework
by Zhihao Ren and Jung In Kim
Buildings 2025, 15(13), 2374; https://doi.org/10.3390/buildings15132374 - 7 Jul 2025
Viewed by 642
Abstract
The construction sector is confronted with significant challenges, such as reduced productivity, high injury rates, and labor deficits, driving research into autonomous robotics as a viable solution. This study delivers a comprehensive review of recent advancements in AI-driven autonomous construction robotics, organized within [...] Read more.
The construction sector is confronted with significant challenges, such as reduced productivity, high injury rates, and labor deficits, driving research into autonomous robotics as a viable solution. This study delivers a comprehensive review of recent advancements in AI-driven autonomous construction robotics, organized within the sense–think–act (STA) framework. A rigorous bibliometric analysis of 319 selected publications from 2015 to 2024 highlights key research trends and notable contributors. A systematic content analysis elaborates on advancements in each STA component, including technologies for perception and environmental understanding, decision-making algorithms for reasoning and planning, and varied actuation methods addressing scale and collaborative robotics. The study also explores challenges such as environmental unpredictability, specialized task demands, and structural safety concerns. Finally, it underscores future research priorities, focusing on balanced robotic system design, dataset standardization, domain-specific knowledge incorporation, and enhanced robustness to support the broader implementation of autonomous construction robotics. Full article
(This article belongs to the Special Issue Automation and Robotics in Building Design and Construction)
Show Figures

Figure 1

24 pages, 9084 KiB  
Article
Early-Strength Controllable Geopolymeric CLSM Derived by Shield Tunneling Muck: Performance Optimization and Hydration Mechanism of GGBFS–CS Systems
by Jiguo Liu, Jun Zhang, Xiaohui Sun, Shutong Dong and Silin Wu
Buildings 2025, 15(13), 2373; https://doi.org/10.3390/buildings15132373 - 6 Jul 2025
Viewed by 311
Abstract
The large-scale reuse of shield tunneling muck remains a major challenge in urban construction. This study proposes a geopolymeric-controlled low-strength material (GC-CLSM) utilizing shield tunneling muck as the primary raw material and a novel alkali-activated binder composed of ground granulated blast-furnace slag (GGBFS) [...] Read more.
The large-scale reuse of shield tunneling muck remains a major challenge in urban construction. This study proposes a geopolymeric-controlled low-strength material (GC-CLSM) utilizing shield tunneling muck as the primary raw material and a novel alkali-activated binder composed of ground granulated blast-furnace slag (GGBFS) and carbide slag (CS). Emphasis is placed on early-age strength development and its underlying mechanisms, which were often overlooked in previous CLSM studies. Among the tested mixtures, a GGBFS:CS ratio of 80:20 yielded the best balance between early and long-term strength. Its 1-day UCS reached 1.18–1.75 MPa, representing a 6.3–23.6-fold increase over the low-CS reference (90:10), which achieved only 0.05–0.31 MPa. However, excessive CS content (e.g., 60:40) led to a significant reduction in the 28-day strength—up to nearly 50% compared with the 90:10 mix—due to impaired microstructural densification. Microstructural analyses (pore-solution pH, SEM, EDS, XRD, FTIR, LF-NMR) confirmed that higher CS levels enhanced early C–A–S–H gel formation by increasing OH and Ca2+ availability while compromising long-term structure. Additionally, the GC-CLSM system reduced carbon emissions by 68.6–70.3% per ton of treated shield tunneling muck compared with conventional cement-based CLSM. Overall, this study offers a sustainable and performance-driven approach for the valorization of shield tunneling muck, enabling the development of early-strength controllable, low-carbon CLSM for infrastructure applications. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

15 pages, 4634 KiB  
Article
Two-Dimensional Geometry Representation Learning-Based Construction Workers Activities Detection with Flexible IMU Solution
by Hainan Chen, Guiwen Liu and Jianjun Li
Buildings 2025, 15(13), 2372; https://doi.org/10.3390/buildings15132372 - 6 Jul 2025
Viewed by 245
Abstract
Recognizing construction workers’ activities is essential for effective construction management. The complexity of construction sites and the varied, dynamic nature of workers’ actions make automatic monitoring of their behaviors challenging. This study introduces a flexible IMU solution to detect construction worker activities, aiming [...] Read more.
Recognizing construction workers’ activities is essential for effective construction management. The complexity of construction sites and the varied, dynamic nature of workers’ actions make automatic monitoring of their behaviors challenging. This study introduces a flexible IMU solution to detect construction worker activities, aiming to bypass the need for IMU devices to be rigidly attached to workers. The approach employs a 2D geometric representation algorithm that extracts features at the application level, independent of the IMU axes. Evaluations using the VTT-ConIoT public dataset for construction worker activities demonstrated that the proposed method performed effectively without fixed IMU attachments, enhancing practicality in real-world contexts. Full article
Show Figures

Figure 1

22 pages, 1425 KiB  
Article
Study on Multi-Objective Optimization of Construction of Yellow River Grand Bridge
by Jing Hu, Jinke Ji, Mengyuan Wang and Qingfu Li
Buildings 2025, 15(13), 2371; https://doi.org/10.3390/buildings15132371 - 6 Jul 2025
Viewed by 251
Abstract
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable [...] Read more.
As an important transportation hub connecting the two sides of the Yellow River, the Yellow River Grand Bridge is of great significance for strengthening regional exchanges and promoting the high-quality development of the Yellow River Basin. However, due to the complex terrain, changeable climate, high sediment concentration, long construction duration, complicated process, strong dynamic, and many factors affecting construction. It often brings many problems, including low quality, waste of resources, and environmental pollution, which makes it difficult to achieve the balance of multiple objectives at the same time. Therefore, it is very important to carry out multi-objective optimization research on the construction of the Yellow River Grand Bridge. This paper takes the Yellow River Grand Bridge on a highway as the research object and combines the concept of “green construction” and the national policy of “carbon neutrality and carbon peaking” to construct six major construction projects, including construction time, cost, quality, environment, resources, and carbon emission. Then, according to the multi-attribute utility theory, the objectives of different attributes are normalized, and the multi-objective equilibrium optimization model of construction time-cost-quality-environment-resource-carbon emission of the Yellow River Grand Bridge is obtained; finally, in order to avoid the shortcomings of a single algorithm, the particle swarm optimization algorithm and the simulated annealing algorithm are combined to obtain the simulated annealing particle swarm optimization (SA-PSO) algorithm. The multi-objective equilibrium optimization model of the construction of the Yellow River Grand Bridge is solved. The optimization result is 108 days earlier than the construction period specified in the contract, which is 9.612 million yuan less than the maximum cost, 6.3% higher than the minimum quality level, 11.1% lower than the maximum environmental pollution level, 4.8% higher than the minimum resource-saving level, and 3.36 million tons lower than the maximum carbon emission level. It fully illustrates the effectiveness of the SA-PSO algorithm for solving multi-objective problems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

11 pages, 2925 KiB  
Article
Micro-Mechanism of Strength for Cement-Treated Soil Based on the SEM Experiment: Qualitative and Quantitative Analysis
by Liyang Xu, Riqing Xu, Qingfeng Lin, Guohui Feng, Chang Yuan and Zhi Ding
Buildings 2025, 15(13), 2370; https://doi.org/10.3390/buildings15132370 - 6 Jul 2025
Viewed by 228
Abstract
The strength of cement-treated soil (CTS) is influenced by a range of complex factors. Investigating the microstructure of cement-treated soil provides a fundamental understanding of its strength evolution. This study explores the micro-mechanism of strength in cement-treated soil through qualitative and quantitative analyses. [...] Read more.
The strength of cement-treated soil (CTS) is influenced by a range of complex factors. Investigating the microstructure of cement-treated soil provides a fundamental understanding of its strength evolution. This study explores the micro-mechanism of strength in cement-treated soil through qualitative and quantitative analyses. Unconfined compressive strength (UCS) tests were conducted on two types of cement-treated soils with different curing ages. Microstructural images were obtained via Scanning Electron Microscopy (SEM), from which micro-parameters—including image porosity (ns), mean shape factor (F), particle grading entropy (Ge), and directional probability entropy (Hm)—were obtained. Finally, the Grey Relation Analysis (GRA) method was employed to evaluate the relative importance of these micro-parameters in influencing strength. And the micro-mechanism of strength was discussed. Results show that these variations of cement-treated soil strength are primarily governed by porosity, particle shape, size, and arrangement. GRA results indicate that particle grading entropy (Ge) has the greatest impact on CTS strength, followed by image porosity (ns). In contrast, mean shape factor (F) and directional probability entropy (Hm) have relatively lower impacts. The order of influence is Ge>ns>F and Hm, suggesting that changing particle grading entropy (Ge) is recommended to achieve higher CTS strength more efficiently. Finally, a polynomial relation between Ge and strength is proposed and the sensitivity analysis indicates that the best value of Ge for Hangzhou CTS is 0.3125 and for Taizhou CTS is 0.5. The corresponding UCSs are 56.96 kPa and 425.8704 kPa, respectively. These findings contribute to optimizing the strength of cement-treated soils and provide insights into the micro-mechanisms underlying macro-scale material properties. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

26 pages, 2535 KiB  
Article
Uncertainty Analysis and Risk Assessment for Variable Settlement Properties of Building Foundation Soils
by Xudong Zhou and Tao Wang
Buildings 2025, 15(13), 2369; https://doi.org/10.3390/buildings15132369 - 6 Jul 2025
Viewed by 268
Abstract
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the [...] Read more.
Settlement analyses of foundation soils are very important for the investigation, design, and construction of buildings. However, due to complex natural sedimentary processes, soil-forming environments, and geological tectonic stress histories, settlement properties show obvious spatial variability and autocorrelation. Moreover, measurement data on the physical and mechanical parameters of building foundation soils are limited. This limits the accuracy of formation stability analyses and safety evaluations. In this study, a series of field tests of building foundation soils were carried out, and the statistical physical and mechanical properties of the clay strata were obtained. A random field method and copula functions of uncertain geotechnical properties with limited survey data are proposed. A dual-yield surface constitutive model of the soil properties and a stability analysis method for uncertain deformation were developed. The detailed analytical procedures for soil deformation and stratum settlement are presented. The reliability functions and failure probabilities of variable settlement processes are calculated and analyzed. The impact of the spatial variation and cross-correlation of geotechnical properties on the probabilistic stability of variable land subsidence is discussed. This work presents an innovative analysis approach for evaluating the variable settlement properties of building foundation soils. The results show that the four different mechanical parameters can be regressed to linear equations. The horizontal fluctuation scale is significantly larger than the vertical scale. Copula theory provides a powerful framework for modeling limited geotechnical parameters. The bootstrap approach avoids parametric assumptions, leveraging empirical data to enhance the reliability analysis of variable settlement. The variability parameter exerts a greater influence on land subsidence processes than the correlation structure. The failure probabilities of variable stratum settlement for different cross-correlations of building foundation soils are different. These results provide an important reference for the safety of building engineering. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 637 KiB  
Article
From Diversity to Engagement: The Mediating Role of Job Satisfaction in the Link Between Diversity Climate and Organizational Withdrawal
by Yuvaraj Dhanasekar and Kaliyaperumal Sugirthamani Anandh
Buildings 2025, 15(13), 2368; https://doi.org/10.3390/buildings15132368 (registering DOI) - 5 Jul 2025
Viewed by 407
Abstract
Marked by a highly diverse workforce, the Indian construction industry faces ongoing challenges in fostering employee engagement and minimizing organizational withdrawal. This study examines the role of diversity climate in influencing psychological and physical withdrawal behaviors among construction professionals, assessing job satisfaction as [...] Read more.
Marked by a highly diverse workforce, the Indian construction industry faces ongoing challenges in fostering employee engagement and minimizing organizational withdrawal. This study examines the role of diversity climate in influencing psychological and physical withdrawal behaviors among construction professionals, assessing job satisfaction as a mediating variable. Grounded in Social Exchange Theory, the research employed a quantitative survey approach, gathering responses from 318 professionals across the sector. Partial least squares structural equation modeling (PLS-SEM) was used to test the hypothesized relationships. Results indicate that reduced psychological (β = –0.462, f2 = 0.465, p < 0.01) and physical withdrawal (β = –0.311, f2 = 0.194, p < 0.05) are associated with more positive perceptions of the diversity climate. Furthermore, this relationship is partially mediated by job satisfaction, with diversity climate positively influencing job satisfaction (β = 0.618, p < 0.001), which in turn reduces withdrawal tendencies (indirect effect on psychological withdrawal β = −0.094, p < 0.01 and physical withdrawal β = −0.068, p < 0.01). These results show that encouraging a supportive diversity climate not only helps but is also absolutely necessary for enhancing job satisfaction, lowering withdrawal behavior, and retaining trained talent. The findings offer concrete evidence that construction firms and policymakers should prioritize inclusive human resource strategies that directly improve project outcomes, reduce attrition, and enhance workforce engagement in the Indian construction sector. Full article
(This article belongs to the Special Issue Advances in Safety and Health at Work in Building Construction)
Show Figures

Figure 1

20 pages, 3953 KiB  
Article
Real-Time Collision Warning System for Over-Height Ships at Bridges Based on Spatial Transformation
by Siyang Gu and Jian Zhang
Buildings 2025, 15(13), 2367; https://doi.org/10.3390/buildings15132367 - 5 Jul 2025
Viewed by 212
Abstract
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial [...] Read more.
Rapid identification of vessel height within the navigable space beneath bridges is crucial for ensuring bridge safety. To prevent bridge collisions caused by vessels exceeding their height limits, this article introduces a real-time warning framework for excessive vessel height based on video spatial transformation. The specific contributions include the following: (1) A spatial transformation-based method for locating vessel coordinates in the channel using buoys as control points, employing laser scanning to obtain their world coordinates from a broad channel range, and mapping the pixel coordinates of the buoys from side channel images to the world coordinates of the channel space, thus achieving pixel-level positioning of the vessel’s waterline intersection in the channel. (2) For video images, a key point recognition network for vessels based on attention mechanisms is developed to obtain pixel coordinates of the vessel’s waterline and top, and to capture the posture and position of multiple vessels in real time. (3) Analyzing the posture of vessels traveling in various directions within the channel, the method accounts for the pixel distance of spatial transformation control points and vessel height to determine vessel positioning coordinates, solve for the vessel’s height above water, and combine with real-time waterline height to enable over-height vessel collision warnings for downstream channel bridges. The method has been deployed in actual navigational scenarios beneath bridges, with the average error in vessel height estimation controlled within 10 cm and an error rate below 0.8%. The proposed approach enables real-time automatic estimation of vessel height in terms of computational speed, making it more suitable for practical engineering applications that demand both real-time performance and system stability. The system exhibits outstanding performance in terms of accuracy, stability, and engineering applicability, providing essential technical support for intelligent bridge safety management. Full article
Show Figures

Figure 1

24 pages, 5293 KiB  
Article
Stress-Deformation Mechanisms of Tunnel Support in Neogene Red-Bed Soft Rock: Insights from Wireless Remote Monitoring and Spatiotemporal Analysis
by Jin Wu, Zhize Han, Yunxing Wang, Feng Peng, Geng Cheng and Jiaxin Jia
Buildings 2025, 15(13), 2366; https://doi.org/10.3390/buildings15132366 - 5 Jul 2025
Viewed by 252
Abstract
Red-layer soft rock has characteristics such as softening when encountering water, loose structure, and significant rheological properties. In tunnel engineering, it is necessary to sort out and analyze the stress characteristics of its support structure. This paper focuses on the mechanical behavior and [...] Read more.
Red-layer soft rock has characteristics such as softening when encountering water, loose structure, and significant rheological properties. In tunnel engineering, it is necessary to sort out and analyze the stress characteristics of its support structure. This paper focuses on the mechanical behavior and support effect during the construction of Neogene red-layer soft rock tunnels. Through field monitoring, it explores the mechanical characteristics of Huizhou Tunnel under complex geological conditions in depth. This study adopted a remote wireless monitoring system to conduct real-time monitoring of key indicators including tunnel surrounding rock pressure, support structure stress, and deformation, obtaining a large amount of detailed data. An analysis revealed that the stress experienced by rock bolts is complex and varies widely, with stress values between 105 and 330.5 MPa. The peak axial force at a depth of 2.5 m reflects that the thickness of the loosened zone in the surrounding rock is approximately 2.5 m. The compressive stress in the steel arches of the primary support does not exceed 305.3 MPa. Shotcrete effectively controls the surrounding rock deformation, but the timing of support installation needs careful selection. The stress in the secondary lining is closely related to the primary support. The research findings provide an important theoretical basis and practical guidance for optimizing the support design of red-bed soft rock tunnels and enhancing construction safety and reliability. Full article
Show Figures

Figure 1

21 pages, 17359 KiB  
Article
Multi-Objective Optimization of Urban Residential Envelope Structures in Cold Regions of China Based on Performance and Economic Efficiency
by Kezheng Deng, Yanqiu Cui, Qingtan Deng, Ruixia Liu, Zhengshu Chen and Siyu Wang
Buildings 2025, 15(13), 2365; https://doi.org/10.3390/buildings15132365 - 5 Jul 2025
Viewed by 202
Abstract
China’s urban residential building stock is extensive and spans a wide range of construction periods. With the continuous enhancement of building energy efficiency standards, the chronological characteristics and variability of residential building envelopes are evident. Through field research and typological analysis of residential [...] Read more.
China’s urban residential building stock is extensive and spans a wide range of construction periods. With the continuous enhancement of building energy efficiency standards, the chronological characteristics and variability of residential building envelopes are evident. Through field research and typological analysis of residential buildings in Jinan, a cold region of China, three construction eras were classified: Period I (1980–1985), Period II (1986–1995), and Period III (1996–2005). Building performance and economic benefits across these periods are modeled using Rhino 7.3 and Grasshopper. The NSGA-II algorithm, as the core of Wallacei2.7, is employed for multi-objective optimization. Through K-means clustering, TOPSIS comprehensive ranking, and Pearson correlation analysis, the optimized processes and solutions are provided for urban residential renovation decisions in different periods and target preferences. The results show that the optimal comprehensive performance solutions for Period I, Period II, and Period III achieve energy savings of 40.92%, 29.62%, and 15.81%, respectively, and increase annual indoor comfort hours by 872.64 h/year, 633.57 h/year, and 564.11 h/year. For Period I and II residential buildings, the most effective energy efficiency retrofit measures include increasing exterior wall and roof insulation, replacing exterior window types, and reducing exterior window k-value. The overall trend in energy savings rates and economic benefits across the three periods shows a decline. For Period III residential buildings, systematic strategies, such as solar thermal collector systems and photovoltaic technology, are required to enhance energy efficiency. Full article
(This article belongs to the Topic Building Energy and Environment, 2nd Edition)
Show Figures

Figure 1

23 pages, 2858 KiB  
Article
Predictive Models for Environmental Perception in Multi-Type Parks and Their Generalization Ability: Integrating Pre-Training and Reinforcement Learning
by Kangen Chen, Tao Xia, Zhoutong Cao, Yiwen Li, Xiuhong Lin and Rushan Bai
Buildings 2025, 15(13), 2364; https://doi.org/10.3390/buildings15132364 - 5 Jul 2025
Viewed by 307
Abstract
Evaluating the environmental perception of urban parks is highly significant for optimizing urban planning. To address the limitations of traditional evaluation methods, a multimodal deep learning framework that integrates pre-training and reinforcement learning strategies for the comprehensive assessment of various park types (seaside, [...] Read more.
Evaluating the environmental perception of urban parks is highly significant for optimizing urban planning. To address the limitations of traditional evaluation methods, a multimodal deep learning framework that integrates pre-training and reinforcement learning strategies for the comprehensive assessment of various park types (seaside, urban, mountain, and wetland) across three dimensions—accessibility, usability, and aesthetics—is proposed herein. By combining image data and user review texts, a unified architecture is constructed, including a text encoder, image visual encoder, and multimodal fusion module. During the pre-training phase, the model captured latent features in images and texts through a self-supervised learning strategy. In the subsequent training phase, a reinforcement learning strategy was introduced to optimize the sample selection and modal fusion paths to enhance the model’s generalization capability. To validate the cross-type prediction ability of the model, the experimental design uses data from three types of parks for training, with the remaining type as a test set. Results demonstrate that the proposed method outperforms LSTM and CNN architectures across accuracy, precision, recall, and F1 Score metrics. Compared with CNN, the proposed method improves accuracy by 5.1% and F1 Score by 6.6%. Further analysis shows that pre-training enhances the robust fusion of visual and textual features, while reinforcement learning optimizes the sample selection and feature fusion strategies during training. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

37 pages, 888 KiB  
Review
A Review of the Effects of Nanomaterials on the Properties of Concrete
by Qi Yang, Qiuwei Yang, Xi Peng, Kangshuo Xia and Bin Xu
Buildings 2025, 15(13), 2363; https://doi.org/10.3390/buildings15132363 - 5 Jul 2025
Viewed by 429
Abstract
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on [...] Read more.
With the continuous improvement in technology, the construction industry is constantly advancing. Traditional concrete can no longer meet modern market demands, making research on new types of concrete imperative. This study reviews the application of common nanomaterials in concrete and their impact on concrete performance. It provides a detailed explanation of the characteristics of three common nanomaterials: nano-silica, nano-calcium carbonate, and carbon nanotubes. This study analyzes how these materials improve the microstructure, accelerate hydration reactions, and enhance interfacial transition zones, thereby enhancing the mechanical properties, durability, and workability of concrete. For conventional engineering projects, nano-calcium carbonate is the preferred choice owing to its low cost and its capacity to improve workability and early-age strength. For high-strength and durable structures, nano-silica is selected due to its high specific surface area (ranging from 100 to 800 m2/g) and its superior compactness and impermeability. In the context of intelligent buildings, carbon nanotubes are the most suitable option because of their exceptional thermal conductivity and electrical conductivity (with axial thermal conductivity reaching 2000–6000 W/m*K and electrical conductivity ranging from 103 to 106 S/cm). However, it should be noted that carbon nanotubes are the most expensive among the three materials. Additionally, this study discusses the issues and challenges currently faced by the application of nanomaterials in concrete and looks ahead to future research directions, aiming to provide a reference for further research and engineering applications of nanomaterials in the field of concrete. Full article
(This article belongs to the Special Issue Application of Nanotechnology in Building Materials)
Show Figures

Figure 1

29 pages, 3253 KiB  
Article
Green Infrastructure: Opinion Mining and Construction Material Reuse Optimization Portal
by Arturas Kaklauskas, Elisabete Teixeira, Yiannis Xenidis, Anastasia Tzioutziou, Lorcan Connolly, Sarunas Skuodis, Kestutis Dauksys, Natalija Lepkova, Laura Tupenaite, Loreta Kaklauskiene, Simona Kildiene, Jurgita Zidoniene, Virginijus Milevicius and Saulius Naimavicius
Buildings 2025, 15(13), 2362; https://doi.org/10.3390/buildings15132362 - 5 Jul 2025
Viewed by 313
Abstract
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short [...] Read more.
More and more sustainability data are being generated from green buildings and from urban and civil infrastructures. For decades, various systems have been developed, and their data have been collected and stored. More detailed, real-time, and cost-effective data, however, are still in short supply. To address this gap, one of the main objectives of the present study is to propose the GREEN method for opinion analysis to support the development of green infrastructure. Google Search was used to gather substantial amounts of information reflecting the views of both ordinary individuals and professionals regarding the benefits, drawbacks, challenges, and limitations of green infrastructure. Previously, however, such data have not been employed to improve green infrastructure by means of opinion analytics. The GREEN method was developed for the analysis of green infrastructure (GI) and its context, enabling multiple-criteria, neural network, correlation, and regression analyses across micro-, meso-, and macro-environmental scales. A total of 788 global regression (R2 = 0.997) and neural network (R2 = 0.596) GREEN models were developed and tested. In addition, 34 regression models for 12 (R2 = 0.817) and 20 (R2 = 0.511) cities were created for the world and separate cities (Munich (R2 aver = 0.801) and London (R2 aver = 0.817)). The GREEN method is a new way to analyze stakeholder opinions on sustainable green infrastructure and its context. With the objective of making green infrastructure more efficient and reducing carbon emissions, the Construction Material Reuse Optimization (SOLUTION) Portal was created as part of this research. The portal generates multiple options and proposes optimal alternatives for reused construction products. The results show that the GREEN method and SOLUTION Portal are reliable tools for evidence-based and rational green infrastructure development. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

22 pages, 3183 KiB  
Article
Surrogate Modeling for Building Design: Energy and Cost Prediction Compared to Simulation-Based Methods
by Navid Shirzadi, Dominic Lau and Meli Stylianou
Buildings 2025, 15(13), 2361; https://doi.org/10.3390/buildings15132361 - 5 Jul 2025
Viewed by 361
Abstract
Designing energy-efficient buildings is essential for reducing global energy consumption and carbon emissions. However, traditional physics-based simulation models require substantial computational resources, detailed input data, and domain expertise. To address these limitations, this study investigates the use of three machine learning-based surrogate models—Random [...] Read more.
Designing energy-efficient buildings is essential for reducing global energy consumption and carbon emissions. However, traditional physics-based simulation models require substantial computational resources, detailed input data, and domain expertise. To address these limitations, this study investigates the use of three machine learning-based surrogate models—Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Multilayer Perceptron (MLP)—trained on a synthetic dataset of 2000 EnergyPlus-simulated building design scenarios to predict both energy use intensity (EUI) and cost estimates for midrise apartment buildings in the Toronto area. All three models exhibit strong predictive performance, with R2 values exceeding 0.9 for both EUI and cost. XGBoost achieves the best performance in cost prediction on the testing dataset with a root mean squared error (RMSE) of 5.13 CAD/m2, while MLP outperforms others in EUI prediction with a testing RMSE of 0.002 GJ/m2. In terms of computational efficiency, the surrogate models significantly outperform a physics-based simulation model, with MLP running approximately 340 times faster and XGBoost and RF achieving over 200 times speedup. This study also examines the effect of training dataset size on model performance, identifying a point of diminishing returns where further increases in data size yield minimal accuracy gains but substantially higher training times. To enhance model interpretability, SHapley Additive exPlanations (SHAP) analysis is used to quantify feature importance, revealing how different model types prioritize design parameters. A parametric design configuration analysis further evaluates the models’ sensitivity to changes in building envelope features. Overall, the findings demonstrate that machine learning-based surrogate models can serve as fast, accurate, and interpretable alternatives to traditional simulation methods, supporting efficient decision-making during early-stage building design. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 2154 KiB  
Article
Soundscape Preferences and Cultural Ecosystem Services in the Grand Canal National Cultural Park: A Case Study of Tongzhou Forest Park
by Linqing Mao, Hongyu Hou, Ziting Xia and Xin Zhang
Buildings 2025, 15(13), 2360; https://doi.org/10.3390/buildings15132360 - 5 Jul 2025
Viewed by 276
Abstract
As research on national cultural parks advances, the significance of conducting multi-dimensional perception evaluations of their cultural ecosystem services (CESs) becomes increasingly apparent. This study examines the eight dimensions of CESs within the Grand Canal National Cultural Park from the perspective of soundscape [...] Read more.
As research on national cultural parks advances, the significance of conducting multi-dimensional perception evaluations of their cultural ecosystem services (CESs) becomes increasingly apparent. This study examines the eight dimensions of CESs within the Grand Canal National Cultural Park from the perspective of soundscape preference. Using Tongzhou Grand Canal Forest Park as a case study, five categories of soundscapes comprising 19 sound sources were identified through the analysis of online textual data. This study then collected public preferences and perceptions of these five soundscapes via on-site questionnaires and analyzed the data using SPSS26 for correlation and IPA analyses. The results indicate that the overall evaluation of the park’s CESs is positive. There is a significant mutual influence between soundscape preference and CES perception. Specifically, the preference for natural soundscape significantly impacts the evaluation of each CES dimension, while satisfaction with leisure and entertainment is positively correlated with preferences for all types of soundscapes. Additionally, there are notable differences in soundscape preference among different age groups. These findings not only enhance our understanding of soundscape planning in national cultural parks but also provide valuable guidance for their management and design. Full article
(This article belongs to the Special Issue Acoustics and Well-Being: Towards Healthy Environments)
Show Figures

Figure 1

18 pages, 4449 KiB  
Article
Analysis and Application of Critical Pressure Prediction Model for Surface Leakage of Underwater Shallow Buried Jacking-Pipe Grouting
by Ziguang Zhang, Yong He, Xiaopeng Li, Xiang Li, Lin Wei and Feifei Chen
Buildings 2025, 15(13), 2359; https://doi.org/10.3390/buildings15132359 - 5 Jul 2025
Viewed by 225
Abstract
Jacking-pipe construction has the advantages of high mechanization, low environmental impact and fast construction speed. It is widely used in the project of underground pipeline under river. However, jacking-pipe grouting under shallow burial conditions is prone to cause surface bubbling problems. Based on [...] Read more.
Jacking-pipe construction has the advantages of high mechanization, low environmental impact and fast construction speed. It is widely used in the project of underground pipeline under river. However, jacking-pipe grouting under shallow burial conditions is prone to cause surface bubbling problems. Based on the jacking-pipe project of Meichong Lake in Changfeng County, Hefei, this paper discussed the mechanism of grouting surface leakage, and defined the relationship between the critical pressure of jacking-pipe grouting and the ultimate pressure of shear damage of mud jacket. Mechanical model of surface leakage from shallow buried jacking-pipe grouting was established. A general mathematical expression for the grouting critical pressure was derived and a sensitivity analysis was performed. A numerical model was established based on the background engineering, and multiple sets of grouting pressure conditions for simulation and analysis were set up. The results showed that the cohesive force c, the angle of internal friction φ, and the overburden thickness hs were all approximately linearly and positively correlated with the critical pressure of grouting. When the grouting pressure was less than 197.54 kPa the surface settlement increased. When this value was exceeded the surface displacement changed from settlement to uplift and the risk of slurry bubbling increased significantly. The theoretical calculation matched the value of grouting critical pressure from numerical simulation. The actual grouting pressure in the project was lower than the theoretical grouting critical pressure value and no slurry bubbling occurred during construction, which had verified the reliability of the theoretical model. This study can provide theoretical basis and investigation ideas for the setting of reasonable grouting pressure in similar projects. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 8098 KiB  
Article
A Comparative Study on the Flexural Behavior of UHPC Beams Reinforced with NPR and Conventional Steel Rebars
by Jin-Ben Gu, Yu-Han Chen, Yi Tao, Jun-Yan Wang and Shao-Xiong Zhang
Buildings 2025, 15(13), 2358; https://doi.org/10.3390/buildings15132358 - 5 Jul 2025
Viewed by 238
Abstract
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior [...] Read more.
This study investigates how different longitudinal steel rebars influence the flexural performance and cracking mechanisms of reinforced ultra-high-performance concrete (UHPC) beams, combining axial tensile tests using acoustic emission monitoring with standard four-point bending tests. A series of experimental assessments on the flexural behavior of UHPC beams reinforced with various types of longitudinal reinforcement was conducted. The types of longitudinal reinforcement mainly encompassed HRB 400, HRB 600, and NPR steel rebars. The test results revealed that the UHPC beams reinforced with the three types of longitudinal steel rebar exhibited distinctly different failure modes. Compared to the single dominant crack failure typical of UHPC beams reinforced with HRB 400 steel rebars, the beams using HRB 600 rebars exhibited a tendency under balanced failure conditions to develop fewer main cracks (typically two or three). Conversely, the UHPC beams incorporating NPR steel rebars exhibited significantly more cracking within the pure bending zone, characterized by six to eight uniformly distributed main cracks. Meanwhile, the HRB 600 and NPR steel rebars effectively upgraded the flexural load-bearing capacity and deformation ability compared to the HRB 400 steel rebars. By integrating the findings from the direct tensile tests on reinforced UHPC, aided by acoustic emission source location, this research specifically highlights the damage mechanisms associated with each rebar type. Full article
(This article belongs to the Special Issue Key Technologies and Innovative Applications of 3D Concrete Printing)
Show Figures

Figure 1

31 pages, 56365 KiB  
Article
The Quiet Architecture of Informality: Negotiating Space Through Agency
by Rim Mrani, Jérôme Chenal, Hassan Radoine and Hassan Yakubu
Buildings 2025, 15(13), 2357; https://doi.org/10.3390/buildings15132357 - 4 Jul 2025
Viewed by 220
Abstract
Housing informality in Morocco has taken root within Rabat’s formal neighborhoods, quietly reshaping façades, extending plot lines, and redrawing the texture of entire blocks. This ongoing transformation runs up against the rigidity of official planning frameworks, producing tension between state enforcement and tacit [...] Read more.
Housing informality in Morocco has taken root within Rabat’s formal neighborhoods, quietly reshaping façades, extending plot lines, and redrawing the texture of entire blocks. This ongoing transformation runs up against the rigidity of official planning frameworks, producing tension between state enforcement and tacit tolerance, as residents navigate persistent legal and economic ambiguities. Prior Moroccan studies are neighborhood-specific or socio-economic; the field lacks a city-wide, multi-class analysis linking everyday tactics to long-term governance dilemmas and policy design. The paper, therefore, asks how and why residents and architects across affordable, middle-class, and affluent districts craft unapproved modifications, and what urban order emerges from their cumulative effects. A mixed qualitative design triangulates (i) five resident focus groups and two architect focus groups, (ii) 50 short, structured interviews, and (iii) 500 geo-referenced façade photographs and observational field notes, thematically coded and compared across housing types. In addition to deciphering informality methods and impacts, the results reveal that informal modifications are shaped by both reactive needs—such as accommodating family growth and enhancing security—and proactive drivers, including esthetic expression and real estate value. Despite their legal ambiguity, these modifications are socially normalized and often viewed by residents as value-adding improvements rather than infractions. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 8827 KiB  
Article
Three-Dimensional Refined Numerical Modeling of Artificial Ground Freezing in Metro Cross-Passage Construction: Thermo-Mechanical Coupling Analysis and Field Validation
by Qingzi Luo, Junsheng Li, Wei Huang, Wanying Wang and Bingxiang Yuan
Buildings 2025, 15(13), 2356; https://doi.org/10.3390/buildings15132356 - 4 Jul 2025
Viewed by 238
Abstract
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus [...] Read more.
The artificial ground freezing method (AGF) is widely used in underground construction to reinforce the ground and ensure construction safety. This study systematically evaluates the implementation of the artificial ground freezing method in the construction of a metro tunnel cross-passage, with a focus on analyzing the soil’s thermo-mechanical behavior and assessing safety performance throughout the construction process. A combined approach integrating field monitoring and refined three-dimensional numerical simulation using FLAC3D is adopted, considering critical factors, such as freezing pipe inclination, thermo-mechanical coupling, and ice–water phase transitions. Both field data and simulation results demonstrate that increasing the density of freezing pipes accelerates temperature reduction and intensifies frost heave-induced displacements near the pipes. After 45 days of active freezing, the freezing curtain reaches a thickness of 3.7 m with an average temperature below −10 °C. Extending the freezing duration beyond this period yields negligible improvement in curtain performance. Frost heave deformation develops rapidly during the initial phase and stabilizes after approximately 25 days, with maximum vertical displacements reaching 12 cm. Significant stress concentrations occur in the soil adjacent to the freezing pipes, with shield tunnel segments experiencing up to 5 MPa of stress. Thaw settlement is primarily concentrated in areas previously affected by frost heave, with a maximum settlement of 3 cm. Even after 45 days of natural thawing, a frozen curtain approximately 3.3 m thick remains intact, maintaining sufficient structural strength. The refined numerical model accurately captures the mechanical response of soil during the freezing and thawing processes under realistic engineering conditions, with field monitoring data validating its effectiveness. This research provides valuable guidance for managing construction risks and ensuring safety in similar cross-passage and cross-river tunnel projects, with broader implications for underground engineering requiring precise control of frost heave and thaw settlement. Full article
Show Figures

Figure 1

14 pages, 3895 KiB  
Article
An Experimental Study on the Interface Characteristics of Geogrid-Reinforced Construction and Demolition (C&D) Waste Recycled Aggregate Based on Pullout Tests
by Da Zhang, Haixiang Gao, Haifeng Wang and Guangqing Yang
Buildings 2025, 15(13), 2355; https://doi.org/10.3390/buildings15132355 - 4 Jul 2025
Viewed by 257
Abstract
China generates substantial construction and demolition (C&D) waste, owing to rapid urbanization. However, the resource utilization rate of C&D waste remains low. This work is devoted to promoting the application of C&D waste in reinforced soil structures. In this research, the physical and [...] Read more.
China generates substantial construction and demolition (C&D) waste, owing to rapid urbanization. However, the resource utilization rate of C&D waste remains low. This work is devoted to promoting the application of C&D waste in reinforced soil structures. In this research, the physical and mechanical properties of C&D waste recycled aggregate, biaxial geogrids and triaxial geogrids were first clarified. Then, a series of pullout tests were carried out based on the large-size pullout test setup. With the help of macroscopic indicators, including pullout resistance, horizontal displacement and interface friction coefficient, the effects of normal stress, pullout rate and reinforcement type on the characteristics of the reinforcement–C&D waste recycled aggregate interface were clarified. The test results show that normal stress has the greatest influence on pullout resistance. The pullout rate has the lowest effect on pullout resistance. In addition, the interface effect between the triaxial geogrid and the C&D waste recycled aggregate is more significant than that in biaxial geogrid–C&D waste recycled aggregate. The interface friction angle of triaxial geogrids is 18.1% higher than that of biaxial geogrids (11.6° vs. 9.82°), correlating with an enhanced particle interlocking mechanism. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 1178 KiB  
Article
Study of the Possibility of Transition to More Stringent Energy Efficiency Requirements for Translucent Structures in the Republic of Kazakhstan
by Serikbolat Yessengabulov, Meiram Kozhakhmet, Yerkebulan Zharkenov, Yeldos Abakanov, Gulzhamal Dastenova, Marzhan Nurbayeva, Aru Kozhakhmet, Meiir Zhankeldi and Assel Jexembayeva
Buildings 2025, 15(13), 2354; https://doi.org/10.3390/buildings15132354 - 4 Jul 2025
Viewed by 198
Abstract
The article discusses issues related to improving the energy efficiency of translucent structures (hereinafter referred to as windows) in the construction of buildings in the Republic of Kazakhstan. An analysis of the current regulatory requirements for the thermal insulation of windows and other [...] Read more.
The article discusses issues related to improving the energy efficiency of translucent structures (hereinafter referred to as windows) in the construction of buildings in the Republic of Kazakhstan. An analysis of the current regulatory requirements for the thermal insulation of windows and other translucent structures, depending on the climatic conditions of the construction region, was carried out. The authors propose a schematic map of the climatic regions of the Republic of Kazakhstan and stricter values for the thermal resistance of windows depending on the degree-days of the heating period, which will significantly reduce heat loss in buildings and cut heating costs. Calculations of potential energy savings and economic benefits from the introduction of energy-efficient windows are presented, and schemes for the certification and labeling of windows by energy efficiency class are proposed. The work is based on an analysis of national standards and international experience and is aimed at supporting sustainable construction and the implementation of Kazakhstan’s climate commitments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

19 pages, 5430 KiB  
Article
Porosity of Geopolymers Using Complementary Techniques of Image Analysis and Physical Adsorption of Gases
by Carlos A. Rosas-Casarez, Ramón Corral-Higuera, Susana P. Arredondo-Rea, José M. Gómez-Soberón, Manuel J. Chinchillas-Chinchillas, Margarita Rodríguez-Rodríguez, Manuel J. Pellegrini-Cervantes and Jesús M. Bernal-Camacho
Buildings 2025, 15(13), 2353; https://doi.org/10.3390/buildings15132353 - 4 Jul 2025
Viewed by 458
Abstract
Previous research on geopolymers has not fully established their porosity and its influence on the matrix structure, as well as its relevance to mechanical and durability properties, supporting the potential of this material as a sustainable alternative to traditional construction materials. In this [...] Read more.
Previous research on geopolymers has not fully established their porosity and its influence on the matrix structure, as well as its relevance to mechanical and durability properties, supporting the potential of this material as a sustainable alternative to traditional construction materials. In this study, three geopolymer mortar (GM) mixtures were prepared: the first was obtained with fly ash (FA) without mechanical grinding (GM_FA), the second with FA that required crushing and sieving through a #200 sieve (GM_FA_200), and the third was a GM with FA that required crushing and sieving through a #325 sieve (GM_FA_325). The main objective was to evaluate the porosity of the geopolymeric paste and the interfacial transition zone (ITZ) between the aggregate and the geopolymerization products. Due to the susceptibility of this area to develop higher porosity, which leads to reduced mechanical properties and durability, it has become a significant focus of investigation in materials such as concrete and mortar. These analyses were carried out using physical adsorption of gases (PAG), and a methodology for image analysis of GM microporosity was implemented using micrographs obtained from a scanning electron microscope (SEM) and processed with the NI Vision Assistant 8.6 software (VA). The results from both image analysis and physical adsorption demonstrated that the GM_FA_325 matrix exhibited 19% less porosity compared to the GM_FA matrix. The results confirmed that GMs are predominantly mesoporous. It was observed that GM_FA_325 has the lowest total porosity, resulting in a denser and more compact microstructure, which is a key factor in its mechanical performance and potential applications as an eco-friendly construction material for coatings and precast elements such as blocks, panels, and similar products. In addition, image analysis using VA is highlighted as an efficient, cost-effective, and complementary technique to PAG, enabling robust results and resource optimization. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Sustainable Construction)
Show Figures

Figure 1

24 pages, 4336 KiB  
Article
Mechanical Performance of Fiber-Reinforced Cement Mortars: A Comparative Study on the Effect of Synthetic and Natural Fibers
by A. Arvizu-Montes, Oswaldo Guerrero-Bustamante, Rodrigo Polo-Mendoza and M. J. Martinez-Echevarria
Buildings 2025, 15(13), 2352; https://doi.org/10.3390/buildings15132352 - 4 Jul 2025
Viewed by 241
Abstract
The incorporation of fibers in cement-based materials has gained attention in the construction sector in recent decades, aiming to improve the mechanical performance of composites. This present work evaluates the influence of synthetic and natural fibers as reinforcements in cement mortars, analyzing their [...] Read more.
The incorporation of fibers in cement-based materials has gained attention in the construction sector in recent decades, aiming to improve the mechanical performance of composites. This present work evaluates the influence of synthetic and natural fibers as reinforcements in cement mortars, analyzing their effects on both physical and mechanical properties through destructive and non-destructive testing. Polypropylene fibers (PPFs) were considered synthetic reinforcement, whereas alfa fibers (AFs) were selected as a sustainable alternative. Compressive strength, flexural strength and Ultrasonic Pulse Velocity (UPV) were conducted to assess mechanical behavior and material integrity as well as density, water absorption and voids content. Additionally, a statistical approach was performed to compare the properties of both types of fibers and determine their significance in improving mortar properties. The results indicate that both PPFs and AFs significantly improve the flexural strength and promote a ductile failure mode without compromising workability. Moreover, UPV measurements suggest that fiber incorporation does not adversely impair the internal homogeneity of the material. The results obtained confirm the effectiveness of fiber reinforcement, offering valuable insights regarding the potential of AF as a strong candidate for sustainable building purposes and practical applications. Full article
Show Figures

Figure 1

21 pages, 3907 KiB  
Article
ANN and RF Optimized by Hunter–Prey Algorithm for Predicting Post-Blast RC Column Morphology
by Kai Rong, Yongsheng Jia, Yingkang Yao, Jinshan Sun, Qi Yu, Hongliang Tang, Jun Yang and Xianqi Xie
Buildings 2025, 15(13), 2351; https://doi.org/10.3390/buildings15132351 - 4 Jul 2025
Viewed by 172
Abstract
The drilling and blasting method is commonly employed for the rapid demolition of outdated buildings by destroying key structural components and inducing progressive collapse. The residual bearing capacity of these components is governed by the deformation morphology of the longitudinal reinforcement, characterized by [...] Read more.
The drilling and blasting method is commonly employed for the rapid demolition of outdated buildings by destroying key structural components and inducing progressive collapse. The residual bearing capacity of these components is governed by the deformation morphology of the longitudinal reinforcement, characterized by bending deflection and exposed height. This study develops and validates a finite element (FE) model of a reinforced concrete (RC) column subjected to demolition blasting. By varying concrete compressive strength, the yield strength of longitudinal reinforcement, the longitudinal reinforcement ratio, and the shear reinforcement ratio, 45 FE models are established to simulate the post-blast morphology of longitudinal reinforcement. Two databases are created: one containing 45 original simulation cases, and an augmented version with 225 cases generated through data augmentation. To predict bending deflection and the exposed height of longitudinal reinforcement, artificial neural network (ANN) and random forest (RF) models are optimized using the hunter–prey optimization (HPO) algorithm. Results show that the HPO-optimized RF model trained on the augmented database achieves the best performance, with MSE, MAE, and R2 values of 0.004, 0.041, and 0.931 on the training set, and 0.007, 0.057, and 0.865 on the testing set, respectively. Sensitivity analysis reveals that the yield strength of longitudinal reinforcement has the most significant impact, while the shear reinforcement ratio has the least influence on both output variables. The partial dependence plot (PDP) analysis indicates that the ratio of shear reinforcement has the most significant impact on the deformation of longitudinal reinforcement. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4811 KiB  
Article
The Effect of Steel Fiber Content on the Workability and Mechanical Properties of Slag-Based/Fly Ash-Based UHPC
by Gaoyu Liao, Rui Wu, Mier He, Xiangchen Huang and Linmei Wu
Buildings 2025, 15(13), 2350; https://doi.org/10.3390/buildings15132350 - 4 Jul 2025
Viewed by 277
Abstract
This study investigates the influence of steel fiber content (0~3% by volume) on the workability and mechanical properties of ultra-high-performance concrete (UHPC) incorporating slag or fly ash. Although UHPC exhibits excellent strength and durability, its brittleness and high cost hinder broader applications. Steel [...] Read more.
This study investigates the influence of steel fiber content (0~3% by volume) on the workability and mechanical properties of ultra-high-performance concrete (UHPC) incorporating slag or fly ash. Although UHPC exhibits excellent strength and durability, its brittleness and high cost hinder broader applications. Steel fibers are known to improve mechanical performance and toughness, but their interaction with mineral admixtures remains underexplored. Flowability, compressive strength, flexural behavior, impact resistance, and microstructure were evaluated. Results show that increasing fiber content significantly reduces workability, with fly ash-based mixes showing better flowability than slag-based ones. Mechanical properties improved with higher fiber volume, and an optimal content of 2% achieved the best balance between workability and strength. Impact testing and stress–strain analysis revealed that steel fibers enhance energy absorption and toughness under dynamic loading. SEM observations at 3 days indicated initial bonding between the fibers and matrix, with minor microcracks, suggesting further strength development over time. This work offers a fresh understanding of the combined influence of steel fibers and mineral admixtures in UHPC and supports their effective application in durable and cost-efficient high-performance concrete design. Full article
(This article belongs to the Special Issue Sustainable and Low-Carbon Building Materials and Structures)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop