Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region
Abstract
1. Introduction
2. Experimental Program
2.1. Specimen Design
2.2. Materials
2.3. Specimen Fabrication
2.4. Layout of Measuring Point and Loading Scheme
3. Results and Discussion
3.1. Failure Mode and Mechanism
Specimen | Put (kN) | ωut (mm) | μ (mm) | Failure Characteristics |
---|---|---|---|---|
L-1 | 487 | 36.84 | 2.30 | Two main cracks on the UHPC layer, and yielding deformation at the lower flange of the I-section steel beam |
L-2 | 516 | 35.54 | 1.24 |
3.2. Load–Deflection Response
3.3. Strain Characteristic Analysis
3.3.1. Load–Strain Response
3.3.2. Strain Distribution Along the Height of the Mid-Span Section
3.4. Load–Interface Slip Response
3.5. Crack Propagation Characteristics
4. Flexural Calculation of Steel–GFRP Strips–UHPC Composite Beam
4.1. Load Corresponding to 0.05 mm Crack Width
4.2. Calculation of Ultimate Bearing Capacity
4.3. Validation
5. Conclusions
- (1)
- The composite beams presented two obvious main cracks on the upper surface of the UHPC layer, and there was obvious buckling deformation at the lower flange of the I-steel beam.
- (2)
- Increasing the reinforcement ratio appropriately could improve the cracking load, ultimate bearing capacity and interface slip value corresponding to the ultimate load. Moreover, it could effectively inhibit the development of cracks and reduce the strain of the reinforcement bars, crack width and average crack spacing.
- (3)
- When the maximum crack width was less than 0.2 mm, the maximum crack width of the specimens changed linearly with the increase in load. However, it increased rapidly once the reinforcement bar yielded.
- (4)
- Considering UHPC’s tensile contribution, the theoretical calculation method for the cracking load and flexural ultimate bearing capacity for the steel–GFRP strips–UHPC composite beam was established, and the theoretical calculation results show a correlation with the relevant test results, indicating that they can predict the flexural capacity of the composite beams.
- (5)
- Due to the limited number of test specimens, more flexural test data are needed to verify the applicability of the proposed calculation method of the cracking load and flexural ultimate bearing capacity for the steel–GFRP strips–UHPC composite beam. Therefore, further experimental studies, such as the depth–thickness ratio of the composite beam and the UHPC layer, and finite element analysis of the flexural performance of this composite beam should be carried out in the future.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zou, X.X.; Lin, H.W.; Feng, P.; Bao, Y.; Wang, J.Q. A Review on FRP-Concrete Hybrd Sections for Bridge Applications. Compos. Struct. 2020, 262, 113336. [Google Scholar] [CrossRef]
- Zeng, D.; Cao, L.; Liu, Y.; Li, Z.C.; Li, H.P. Flexural Response of GFRP–UHPC Composite Slabs under a Hogging Moment. J. Bridge Eng. 2023, 28, 04023082. [Google Scholar] [CrossRef]
- Huang, H.; Wang, W.W.; Dai, J.G. Experimental Study on Two-Span Continuous GFRP-Concrete Composite Slabs. J. Southeast Univ. (Nat. Sci. Ed.) 2015, 45, 139–144. [Google Scholar] [CrossRef]
- Ji, H.S.; Son, B.J.; Ma, Z.G. Evaluation of Composite Sandwich Bridge Decks with Hybrid FRP-Steel Core. J. Bridge Eng. 2009, 14, 36–44. [Google Scholar] [CrossRef]
- Robinson, M.J.; Kosmatka, J.B. Development of a Short-Span Fiber-Reinforced Composite Bridge for Emergency Response and Military Applications. J. Bridge Eng. 2008, 13, 388–397. [Google Scholar] [CrossRef]
- Liu, M.X.; Qian, J.R. Moment-Curvature Relationships of FRP-Concrete-Steel Double-Skin Tubular Members. J. Tsinghua Univ. (Sci. Technol.) 2007, 47, 2105–2110. [Google Scholar] [CrossRef]
- Wang, W.W.; Huang, H.; Zhao, F. Experimental Study on Bonding Behavior of GFRP Plate and Concrete Interface Based on Wet Bonding Technique. China Civ. Eng. J. 2015, 48, 52–60. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Harries, K.; Tian, J. Bonding Behavior of Wet-Bonded GFRP-Concrete Interface. J. Compos. Constr. 2015, 19, 1–14. [Google Scholar] [CrossRef]
- Bajaber, M.A.; Hakeem, I.Y. UHPC Evolution, Development, and Utilization in Construction: A review. J. Mater. Res. Technol. 2021, 10, 1058–1074. [Google Scholar] [CrossRef]
- Shi, C.J.; Wu, Z.M.; Xiao, J.F.; Wang, D.H.; Huang, Z.Y.; Fang, Z. A Review on Ultra High Performance Concrete: Part I. Raw Materials and Mixture Design. Constr. Build. Mater. 2015, 101, 741–751. [Google Scholar] [CrossRef]
- Shao, Y.; Billington, S. Impact of Cyclic Loading on Longitudinally-Reinforced UHPC Flexural Members with Different Fiber Volumes and Reinforcing Ratios. Eng. Struct. 2021, 214, 112454. [Google Scholar] [CrossRef]
- Xue, J.Q.; Briseghella, B.; Huang, F.Y.; Nuti, C.; Tabatabai, H.; Chen, B.C. Review of Ultrahigh Performance Concrete and Its Application in Bridge Engineering. Constr. Build. Mater. 2020, 260, 119844. [Google Scholar] [CrossRef]
- Al-Ramahee, M.; Chan, T.; Mackie, K.R.; Ghasemi, S.; Mirmiran, A. Lightweight UHPC-FRP Composite Deck System. J. Bridge Eng. 2017, 22, 04017022. [Google Scholar] [CrossRef]
- Zhang, P.; Hu, R.; Zou, X.; Liu, Y.; Li, Q.; Wu, G.; Sheikh, S. Experimental Study of a Novel Continuous FRP-UHPC Hybrid Beam. Compos. Struct. 2020, 261, 113329. [Google Scholar] [CrossRef]
- Kwahk, I.; Lee, J.; Kim, J.; Changbin, J. Evaluation of the Crack Width of the Ultra-High Performance Concrete (K-UHPC) Structures. J. Korean Soc. Saf. 2012, 27, 99–108. [Google Scholar] [CrossRef]
- Deng, Z.C.; Wang, Y.C.; Xiao, R.; Lan, M.Z.; Chen, X.W. Flexural Test and Theoretical Analysis of UHPC Beams with High Strength Rebars. J. Basic Sci. Eng. 2015, 23, 68–78. [Google Scholar] [CrossRef]
- Luo, J.; Shao, X.; Fan, W.; Cao, J.; Deng, S. Flexural Cracking Behavior and Crack Width Predictions of Composite (Steel+UHPC) Lightweight Deck System. Eng. Struct. 2019, 194, 120–137. [Google Scholar] [CrossRef]
- Feng, Z.; Li, C.X.; He, J.; Ke, R.; Lei, Z.J.; Vasdravellis, G. Static and Fatigue Test on Lightweight UHPC-OSD Composite Bridge Deck System Subjected to Hogging Moment. Eng. Struct. 2021, 241, 112459. [Google Scholar] [CrossRef]
- Tan, X.Y.; Fang, Z.; Wu, X.N.; Li, X.K.; Liao, Y.; Pei, S. Flexural Performance of a Prefabricated Steel–UHPC Composite Deck under Transverse Hogging Moment. Eng. Struct. 2024, 305, 117783. [Google Scholar] [CrossRef]
- Rahdar, H.; Ghalehnovi, M. Post-cracking Behavior of UHPC on the Concrete Members Reinforced by Steel Rebar. J. Comput. Concr. 2016, 18, 139–154. [Google Scholar] [CrossRef]
- Xu, H.B.; Deng, Z.C. Cracking Moment and Crack Width of Ultra-High Performance Concrete Beams. J. Harbin Inst. Technol. 2014, 46, 87–92. [Google Scholar]
- Jin, L.Z.; He, P.; Qi, K.N.; Sun, L.Y. Experimental Study of Diagonal Crack Width of High Strength Reinforced Reactive Powder Concrete Simply Supported Beam. Eng. J. Wuhan Univ. 2014, 47, 665–670. [Google Scholar]
- Choi, W.; Choi, Y.; Yoo, S. Flexural Design and Analysis of Composite Beams with Inverted-T Steel Girder with Ultra-High Performance Concrete Slab. Adv. Civ. Eng. 2018, 1356027. [Google Scholar] [CrossRef]
- Wang, K.; Zhao, C.; Wu, B.; Deng, K.; Cui, B. Fully-Scale Test and Analysis of Fully Dry Connected Prefabricated Steel-UHPC Composite Beam under Hogging Moments. Eng. Struct. 2019, 197, 109380. [Google Scholar] [CrossRef]
- Wang, Y.; Shao, X.D.; Shen, X.J.; Cao, J.H. Experiment on static and fatigue performances of steel strip-UHPC composite deck. China J. Highw. Transp. 2021, 34, 261–272. [Google Scholar] [CrossRef]
- Qiu, M.H.; Shao, X.D.; Hu, W.Y.; Zhao, X.D.; Wang, Z.K. Simplified calculation of reinforcement stress in reinforced UHPC bending members with rectangular sections. China J. Highw. Transp. 2021, 34, 106–117. [Google Scholar] [CrossRef]
- Çiftçioğlu, A.Ö.; Kazemi, F.; Shafighfard, T. Grey wolf optimizer integrated within boosting algorithm: Application in mechanical properties prediction of ultra high-performance concrete including carbon nanotubes. Appl. Mater. Today 2025, 42, 102601. [Google Scholar] [CrossRef]
- Kazemi, F.; Çiftçioğlu, A.Ö.; Shafighfard, T.; Asgarkhani, N.; Jankowski, R. RAGN-R: A multi-subject ensemble machine-learning method for estimating mechanical properties of advanced structural materials. Comput. Struct. 2025, 308, 107657. [Google Scholar] [CrossRef]
- Cao, L.; Zeng, D.; Liu, Y.; Li, Z.C.; Zuo, H. Deflection Calculation Method for UHPC Composite Beams Considering Interface Slip and Shear Deformation. Eng. Struct. 2023, 281, 11570. [Google Scholar] [CrossRef]
- Wu, C.H.; Wang, X.F.; Zhang, Z.Y.; Zou, Y.; Yang, J.; Jin, M.; Lun, X. Flexural behavior of embedded GFRP grid framework-UHPC composite plate without steel rebar. Case Stud. Constr. Mater. 2024, 20, e02900. [Google Scholar] [CrossRef]
- Denarie, E. Ultra-High Performance Fibre-Reinforced Concretes; Taylor and Francis: Abingdon-on-Thames, UK, 2016. [Google Scholar]
- Beng, S.H.; Park, S. Eurocode 4. CEN. Design of Composite Steel and Concrete Structures; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar] [CrossRef]
- CEB-FIP 2010; Fib Model Code for Concrete Structures (Final Complete Draft). Comité Euro-International du Béton: London, UK, 2020.
- NF P 18-710; National Addition to Eurocode 2—Design of Concrete Structures: Specific Rules for Ultra-High Performance Fibre-Reinforced Concrete (UHPFRC). JAFNOR-French Standard Institute: Paris, France, 2016.
- Rafiee, A. Computer Modeling and Investigation on the Steel Corrosion in Cracked Ultra High Performance Concrete; Kassel University Press GmbH: Kassel, Germany, 2012. [Google Scholar]
- Yoo, S.W.; Choo, J.F. Evaluation of the Flexural Behavior of Composite Beam with Inverted-T Steel Girder and Steel Fiber Reinforced Ultra High Performance Concrete Slab. Eng. Struct. 2016, 118, 1–15. [Google Scholar] [CrossRef]
- Zhang, Y.; Cai, S.K.; Zhu, Y.P.; Fan, L.; Shao, X.D. Flexural Responses of Steel-UHPC Composite Beams under Hogging Moment. Eng. Struct. 2020, 206, 110134. [Google Scholar] [CrossRef]
Specimen | Interface Processing | Longitudinal Reinforcement Ratio | Steel Fiber Content of UHPC Layer | |
---|---|---|---|---|
UHPC and I-Steel Beam | GFRP and UHPC | |||
L-1 | Unbonded interface | Gravel and adhesive bond interface | 3.9% | 1.5% |
L-2 | Gravel and adhesive bond interface | 5.0% |
Ingredient | Amount (kg/m3) |
---|---|
Portland cement (52.5 R) | 773.2 |
Silica fume (2–280 mm) | 215.3 |
Quartz sand (450–900 μm) | 848.4 |
Fly ash | 78.2 |
Steel fibers (1.5% Vol.) | 118.5 |
Mineral powder (S95) | 78.2 |
Quartz powder (50.2 μm) | 77.3 |
Super plasticize (1.5% Vol) | 20.1 |
Water | 192 |
Material | Elasticity Modulus (GPa) | S | Compressive Strength (MPa) | S | Flexural Strength (MPa) | S | Tensile Strength (MPa) | S | Yield Strength (MPa) | |
---|---|---|---|---|---|---|---|---|---|---|
UHPC (steel fiber content 1.5%) | 44.1 | 3.4 | 123.4 | 12.3 | 29.8 | 4.8 | 8.2 | 5.3 | - | |
Q345C steel plate | 206.0 | - | - | - | - | - | - | - | 385.0 | |
HRB400 ribbed bar | 206.0 | 540.0 | 400.0 | |||||||
HRB400 plain bar | 206.0 | - | - | - | - | - | 540.0 | - | 400.0 | |
GFRP | Fiber direction | 32.6 | - | 270.0 | - | - | - | 415.0 | - | - |
Perpendicular fiber direction | 11.2 | - | 80.9 | - | - | - | 113.5 | - | - |
Specimen | Calculated Results ①/kN | Calculated Results ②/kN | Tested Results ③/kN | ①/③ | ②/③ | ||
---|---|---|---|---|---|---|---|
L-1 | Fcr | 163.82 | - | 180 | 0.910 | - | |
Fu | 473.82 | 434.70 | 487 | 0.973 | 0.893 | ||
L-2 | Fcr | 172.07 | - | 200.00 | 0.860 | - | |
Fu | 481.98 | 454.43 | 515.9 | 0.934 | 0.881 | ||
Reference [37] | SU-S | Fcr | 177.66 | - | 160.43 | 1.107 | - |
Fu | 499.39 | 466.72 | 578.89 | 0.863 | 0.806 | ||
SU-B | Fcr | 192.78 | - | 204.45 | 0.943 | - | |
Fu | 475.30 | 434.48 | 536.89 | 0.885 | 0.809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, L.; Zhang, D.; Zeng, D.; Zhang, J.; Zhang, Y.; Zhang, Z.; Zhan, R. Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region. Buildings 2025, 15, 2652. https://doi.org/10.3390/buildings15152652
Cao L, Zhang D, Zeng D, Zhang J, Zhang Y, Zhang Z, Zhan R. Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region. Buildings. 2025; 15(15):2652. https://doi.org/10.3390/buildings15152652
Chicago/Turabian StyleCao, Lei, Deng Zhang, Dan Zeng, Jin Zhang, Youjie Zhang, Zhe Zhang, and Rong Zhan. 2025. "Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region" Buildings 15, no. 15: 2652. https://doi.org/10.3390/buildings15152652
APA StyleCao, L., Zhang, D., Zeng, D., Zhang, J., Zhang, Y., Zhang, Z., & Zhan, R. (2025). Flexural Performance of Steel–GFRP Strips–UHPC Composite Beam in Negative Moment Region. Buildings, 15(15), 2652. https://doi.org/10.3390/buildings15152652