Human and Multi-Robot Collaboration in Indoor Environments: A Review of Methods and Application Potential for Indoor Construction Sites
Abstract
1. Introduction
- Summarize current methods of human–robot interaction, teleoperation, and accident prevention and identify their potential for application in dynamic indoor construction environments.
- Identify key techniques for multi-robot task allocation, path planning, localization, and navigation in cluttered and complex indoor environments.
- Evaluate the limitations of current HRC and MRC methods and identify directions for future research to improve practical deployment in complex indoor construction sites.
2. Research Methodology
Article Search and Inclusion Criteria
3. Quantitative Results
4. Qualitative Discussions
4.1. Human–Robot Collaboration (HRC) for Indoor Environments
4.1.1. Human–Robot Interaction, Communication, and Teleoperation Methods in Indoor and Complex Environments
Interaction Type | Reference | Industry | Methods/Algorithms | Key Hardware | Findings and Accuracy | Enhancements |
---|---|---|---|---|---|---|
Vision-based control | Bamani et al. [33] | General | URGR framework, HQ-Net, Graph ViT | Depth and infrared camera embedded on Unitree GO1 robot by Hangzhou Yushu China | 98.1% (HQ-Net + GViT) | Add gesture recognition |
Vanamala et al. [42] | General | Convex hull, CNN, | Webcam, microphone, Arduino UNO Italy | Effective basic command recognition | Add depth sensors to improve noise filtering | |
Sahoo et al. [34] | General | Dense CNN, Channel attention module | Kinect V2 depth camera by Microsoft | 93.4% mean accuracy | Improve occlusion robustness | |
Xie et al. [43] | General | MediaPipe 3D keypoint, GRU pose model | Intel RealSense D435i USA, Unitree Go1 robot from Hangzhou Yushu China. | 100% classification | Expand gestures, integrate multi-view | |
Budzan et al. [44] | General | CNN ResNet50, MobileNetV2 | 2D camera by Basler Germany, Camboar PicoToF camera by PMD Germany. | RGB: 89.79%, Grayscale: 78.95% | Expand the gesture dictionary | |
Wang & Zhu [35] | Construction | YOLOv3, Deep SORT, ResNet10 | Zed 2 Stereo camera by Stereo labs USA. | 91.1% accuracy, 0.14 s response time | Add dynamic gestures | |
Gesture-based control | Wang et al. [45] | General | Bit-posture mapping | 6-DOF haptic controller | Positional tracking < 0.015 m | Adaptive filtering |
Aggravi et al. [36] | General | Decentralized connectivity, multi-robot exploration | Vibrotactile armbands, audio headphones | 100% haptic recognition, 86% audio feedback accuracy | Integrate gesture-based directional inputs | |
Stancic et al. [38] | General | K-means for online motion classification | Arduino Mega 2560 by Arduino SRL Italy, Custom inertial sensors | F1-scores of 97.3% for RF, 95.1% for ANN | Integrate auto-calibration | |
Wang et al. [13] | Construction | Fully connected networks | Tap strap 2 IMU wearable sensor by Tap USA | 85.7% precision and 93.8% recall | Integrate sensor fusion | |
Wang et al. [46] | Construction | Two-stream network (I3D + ResNet) | Tap Strap 2 IMU by Tap USA, Tobii Pro Glasses | 98.8% validation, 92.6% test accuracy | Reduce latency via edge inference | |
Yang et al. [47] | General | Fuzzy logic control, human intent estimation | Dual 7-DOF manipulator arms, Maxon DC motors | High trajectory tracking, Low RMSE | Add vision tracking and conduct an onsite test | |
BCI/EEG-based control | Ghinoui et al. [39] | General | ASTGCN, EEGNetv4, CNN-LSTM | Open BCI EEG cap with (19 electrodes from US), Raspberry Pi | CNN-LSTM: 88.5%, EEGNetv4: 83.9% | Optimize using a few EEG electrodes |
Liu et al. [11] | Construction | EEG classification with MLP, adaptive filtering | 32-channel Emotiv flex EEG headset USA, ROS middleware | 81.91% accuracy, 3 s latency | Reduce latency with edge computing. | |
Liu et al. [12] | Construction | EEG motor imagery, SVM | Emotiv flex EEG headset USA, online signal filtering | 90% accuracy in real-time MI control | Add gesture/voice fallback | |
Yuan et al. [48] | General | SVM, deep residual net | NuAmps EEG headset by Compu medics neuroscan USA, Kinect sensor by Microsoft | 67.2–89.3% EEG accuracy | Add automated data filtering |
4.1.2. Human–Robot Collision and Accident Prevention Methods in Indoor and Complex Environments
Safety Method | Ref | Application | Robot Type | Environment | Key Sensor(s) | Key Algorithm(s)/Framework | Main Performance |
---|---|---|---|---|---|---|---|
Worker intention and trajectory estimation | Cai et al. [57] | Construction | - | Simulated | - | LSTM, DQN | 100% success; 23% fewer collisions |
Liu & Jebelli [50] | Construction | - | Simulated | RGB camera | 3D MotNet, Intention Net | Reduced collision probability to <5% | |
Cai et al. [52] | Construction | Mobile robot | Simulated | - | Uncertainty-aware LSTM | Average error of 9.30; final error of 11.21 pixels | |
Collision avoidance | Pramanik et al. [55] | Construction | TurtleBot3 Waffle | Simulated | RGB-D camera, LiDAR | Kalman filter, STL, probabilistic reachability | RMSE of 0.2–0.24 m |
Teodorescu et al. [56] | Hazardous environments | Mobile robot | Simulated and indoor | 3D LiDAR, depth camera | GPR, Bayesian optimization | 99.7% collision avoidance confidence | |
Dang et al. [53] | Indoor service | Differential drive robot | Indoor | UWB sensor | 1.15 m average distance from the worker | ||
Ghandour et al. [54] | Indoor service | H20 mobile robot | Indoor | RGB, infrared depth sensor | Gesture recognition, CCAI | 100% effective collision avoidance performance | |
Mulas-Tejeda et al. [58] | Industrial settings | TurtleBot3 Waffle Pi | Indoor | 2D LiDAR, Opti Track Mocap | LSTM-based velocity prediction | 98.02% validation accuracy | |
Li et al. [59] | Construction | Custom quadruped robot | Indoor and outdoor | 3D LiDAR, UWB, IMU | Incremental A* path planning algorithm, UWB localization | Achieved obstacle avoidance with 0.1 m error | |
Yu et al. [51] | Smart factories and logistics | Omnidirectional mobile robot | Simulated and indoor | 2D LiDAR, potentiometer. | MLPRA obstacle avoidance | 100% simulation success Effective in a real environment | |
Kim et al. [10] | Indoor logistics | 4WIS mobile robot | Indoor and outdoor | 3D LiDAR, camera, IMU, CAN bus | Kalman filter + Pillar Feature Net | 83% reduction in obstacle detection time | |
Che et al. [60] | Indoor service | Turtle bots | Indoor | RGB-D, ArUco | EKF, social force model | 91% accuracy in human priority and 83% in robot |
4.2. Multi-Robot Collaboration Methods for Indoor Environments
4.2.1. Multi-Robot Task Allocation and Path Planning Methods for Indoor Environments
Focus | Reference | Domain | Key Algorithm | Test Environment | Performance |
---|---|---|---|---|---|
Task allocation | Shida et al. [65] | Material transport | MADDPG | Simulated | 100% task allocation success |
Dai et al. [14] | Industrial | DQN | Simulated | Up to 50% reduction in task allocation time | |
Chakraa et al. [67] | Inspection | HFBS, GA | Simulated | Allocation time of 0.527 s for 100 tasks | |
Miele et al. [68] | Agriculture | Auction-based | Simulated | High accuracy | |
Thangavelu & Napp [74] | Construction | MARS | Simulated | Reduction in task allocation time and effective allocation for 9 robots | |
Zhang et al. [66] | - | DACL | Simulated | 40% increase in convergence | |
Aryan et al. [75] | - | CBS | Simulated | Effective task planning | |
Wang et al [76] | General | K-means clustering, pairwise optimization | Simulated and Indoor | 26.9% improvement in task allocation speed | |
Li et al. [77] | Indoor industrial | DQN, MPC, GCN | Simulated | Up to 96.82% task allocation accuracy | |
Path Planning | Teng et al. [70] | General | GBNN, DWA | Simulated | Up to 19.74% path reduction |
Kuman & Sikander [69] | General | Artificial bee colony, PRM | Simulated | Higher path optimization, with 81% success rate | |
Fareh et al. [71] | General | Neural field encoding, PSA | Simulated | Up to 34% reduction in path length, <5 s execution time | |
De Castro et al. [78] | Construction | DQN, EKF | Simulated | 96–98% path planning accuracy | |
Jathunga & Rajapaksha [79] | General | PRM, GA | Simulated | Reduction in path length, and planning time of 16–71 s for 2–8 robots | |
Li et al. [73] | Logistics | A*, Monte Carlo | Simulated | Reduce robot congestion by 25% leading to optimized paths | |
Luo et al. [80] | Smart factory | F-DQN | Simulated | 86% reduction in convergence time | |
Matos et al. [81] | Logistics | Time-enhanced A* | Simulated | 100% path planning success rate, 48% reduction in computation |
4.2.2. Multi-Robot Navigation and Simultaneous Localization Methods for Indoor Environments
Task | Reference | Method | Algorithm | Sensors | Test Environment | Performance |
---|---|---|---|---|---|---|
Collaborative navigation | Ravankar et al. [86] | Leader–follower navigation | A*, EKF | Camera, depth sensor, IMU | Indoor | Effective navigation with high-accuracy map sharing |
Divya Vani et al. [83] | Leader–follower navigation | Dijkstra algorithm | Odometer, compass, infrared | Simulated | 28% overall device utilization for navigation | |
Shankar & Shivakumar [82] | Leader–follower navigation | EKF, A* | Lidar, IMU | Indoor | Robust navigation with 2.03 s navigation planning time | |
Chen et al. [99] | Decentralized simultaneous navigation | Variational Bayesian inference | - | Simulated | 93–100% navigation success | |
Cid et al. [85] | Leader–follower navigation | Dijkstra algorithm | Lidar, IMU, depth camera | Simulated and indoor | Extended navigation range (135–270 m) | |
M et al. [100] | Decentralized simultaneous navigation | A*, D*, DWA | Lidar, IMU | Simulated and indoor | High navigation and planning performance | |
Basha et al. [101] | Decentralized simultaneous navigation | Bug2, finite state machine | - | Indoor | Up to 98.2% improved navigation performance | |
Collaborative localization | Cai et al. [87] | Master–slave localization | DKF, EKF, Yolo | IMU, laser finder | Indoor | 11.3 mm 3D localization RMSE |
Zhou et al. [89] | Master–slave localization | EKF | IMU, camera, odometer, ArUco vision system | Indoor | Mean localization error of 0.0028 and 0.0066 m for x & y | |
Tian et al. [90] | - | EKF | Odometry, camera | Simulated | High F1-score | |
Zhu et al. [91] | - | MCL, MLE | Lidar, infrared | Simulated and Indoor | Over 80% improvement in localization recovery | |
Luo et al. [88] | - | Particle filter | UWB | Simulated | 28.7% reduced localization error | |
Zahroof et al. [102] | Decentralized multi-robot localization | Greedy algorithm, EKF | GPS | Simulated | 1–1.5 m localization and tracking error per robot | |
Lajoie & Beltrame [96] | - | Graduated non-convexity (GNC) | Lidar, RGB-D cameras, IMU | Indoor | High localization accuracy | |
Matsuda et al. [103] | Leader–follower localization | Particle filter, relative depth pose estimation | 2D Lidar, depth camera | Indoor | 4–5x improvement compared to other algorithms | |
Chen et al. [104] | Decentralized multi-robot localization | SWOA | - | Indoor | 80% localization accuracy |
Reference | Method | Algorithm/Framework | Robot | Sensors | Test Environment | Performance |
---|---|---|---|---|---|---|
Liu et al. [94] | Centralized LiDAR SLAM with loop closure | Hector SLAM, GTSAM | Custom mobile robots | 2D LiDAR, IMU | Indoor | Real-time odometry, accurate global map |
Lajoie & Beltrame [96] | Decentralized spectral loop closure (Swarm-SLAM) | GNC-based pose graph SLAM | Boston Spot, Agilex mobile robot | LiDAR, IMU, RGB-D, Stereo | Indoor | High accuracy with low bandwidth (95 MB) |
Choi et al. [98] | Omnidirectional vision-based SLAM | OVSLAM + optical flow | Custom robot | Camera (fisheye) | Indoor | 3–6 cm error, real-time obstacle avoidance |
Jalil et al. [95] | Centralized LiDAR SLAM with map fusion | F-LOAM | Jackal UGV, Sparkal | 2D LiDAR | Indoor | RMSE <1 m, fast map merging |
Shi et al. [105] | Collaborative SLAM via 5G Edge (MEC) | Gmapping + AKAZE merge | Festo Robotino | LiDAR, IMU | Simulated and indoor | 10 ms latency, improved map accuracy |
Chang et al. [106] | Robust centralized SLAM for underground | Pose graph SLAM + GNC | Boston Spot, Husky UGV | LiDAR, IMU, beacons | Tunnels | Less than 2 m error |
Liu et al. [107] | PF-SLAM with ORB-based fusion | Particle Filter SLAM | Quanser QBot2 | RGB-D, gyroscope | Indoor | 0.002% map fusion error, fast pose estimation |
Xia et al. [97] | Visual SLAM with point-line fusion | ORB + LSD + BA | Autolabor Pro1, QCar | RGB-D, IMU | Indoor | 50% faster map generation, RSME of 0.035 m |
4.3. Reinforcement Learning-Based Methods for HRC and MRC
Application | Reference | Method/Framework | Reinforcement Learning Algorithm | Validation Environment | Key Required Sensors | Results |
---|---|---|---|---|---|---|
Path planning | Bai et al. [114] | MDP + improved DQN | DQN | Simulated | 12% path reduction | |
Bingol et al. [117] | DRL + fuzzy logic | PPO | Simulated | Lidar | 91% in complex layouts | |
Tang et al. [121] | Causal deconfounding (CD-DRL-MP) + causal modeling | DQN | Simulated | - | 89.2 to 95.3% planning rate | |
Takzare et al. [115] | DQN + 4-part reward function | DQN | Simulated | Lidar | 50% improvement | |
Jing & Weiya [116] | DRL + QPSO | Custom DRL with QPSO | Simulated | - | 98.2% accuracy | |
Obstacle avoidance | Zhao et al. [122] | Hierarchical planning + adaptive control | DDPG | Simulated | - | 4.01% deviation |
Lu et al. [118] | D3QN + ConvLSTM | D3QN | Simulated and indoor | RGB-D, Lidar | High obstacle avoidance | |
Yu et al. [119] | DDPG with zone-aware safety strategy | DDPG | Simulated | - | High reward scores | |
Song et al. [120] | Multimodal DRL + bilinear fusion | DQN | Simulated and indoor | Kinect, lidar | 94.4% simulation success | |
Chen et al. [123] | Egocentric local grid maps | Dueling DQN | Simulated | 2D laser scanner | Outperforms standard DQN |
5. Challenges of Current HRC and MRC Methods and Direction for Future Research
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
HRC | Human–Robot Collaboration |
MRC | Multi-Robot Collaboration |
URGR | Ultra-Range Gesture Recognition (URGR) |
HQ-Net | High Quality Network |
ViT | Vision Transformer |
CNN | Convolutional Neural Network |
ASRGCN | Attention-Based Spatial-Temporal Relational Graph Convolutional Network |
EEG | Electroencephalograph |
MLP | Multi-Layer Perceptron |
SVM | Support Vector Machines |
LSTM | Long Short-Term Memory |
DQN | Deep Q-Networks |
CCAI | Cooperative Collision Avoidance-Based Interaction |
MLPRA | Multiscale Local Perception Region Approach |
MADDPG | Multi-Agent Deep Deterministic Policy Gradient |
HFBS | Hybrid Filtered Beam Search |
GA | Genetic Algorithm |
MARS | Minimal Additive Ramp Structure |
DACL | Distributed Actor Critic Learning |
GBNN | Glasius Bio-Inspired Neural Network |
DWA | Dynamic Window Approach |
ACO | Ant Colony Optimization |
PSO | Particle Swarm Optimization |
EKF | Extended Kalman Filter |
PRM | Probabilistic Roadmap |
DKF | Discrete Kalman Filter |
MCL | Monte Carlo Localization |
MLE | Maximum Likelihood Estimation |
SWOA | Standard Whale Optimization Algorithm |
MDP | Markov Decision Process |
PPO | Proximal Policy Optimization |
QPSO | Quantum-Behaved Particle Swarm Optimization |
DDPG | Deep Deterministic Policy Gradient |
D3QN | Dual Double Deep Q-Network |
GNC | Graduated Non-Convexity |
F-LOAM | Fast LiDAR Odometry and Mapping |
PF-SLAM | Particle Filter-based SLAM (PF-SLAM) |
GTSAM | Georgia Tech Smoothing and Mapping Library |
BA | Bundle Adjustment |
LSD | Line Segment Detector |
OVSLAM | Omnidirectional Visual SLAM |
AKASE | Accelerated-KASE Feature Descriptor |
References
- Aghimien, D.O.; Aigbavboa, C.O.; Oke, A.E.; Thwala, W.D. Mapping out Research Focus for Robotics and Automation Research in Construction-Related Studies. J. Eng. Des. Technol. 2019, 18, 1063–1079. [Google Scholar] [CrossRef]
- Wei, H.-H.; Zhang, Y.; Sun, X.; Chen, J.; Li, S. Intelligent Robots and Human-Robot Collaboration in the Construction Industry: A Review. J. Intell. Constr. 2023, 1, 1–12. [Google Scholar] [CrossRef]
- Chen, X.; Huang, H.; Liu, Y.; Li, J.; Liu, M. Robot for Automatic Waste Sorting on Construction Sites. Autom. Constr. 2022, 141, 104387. [Google Scholar] [CrossRef]
- Halder, S.; Afsari, K. Robots in Inspection and Monitoring of Buildings and Infrastructure: A Systematic Review. Appl. Sci. 2023, 13, 2304. [Google Scholar] [CrossRef]
- Parascho, S. Construction Robotics: From Automation to Collaboration. Annu. Rev. Control Robot. Auton. Syst. 2023, 6, 183–204. [Google Scholar] [CrossRef]
- Follini, C.; Magnago, V.; Freitag, K.; Terzer, M.; Marcher, C.; Riedl, M.; Giusti, A.; Matt, D.T. BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance. Robotics 2020, 10, 2. [Google Scholar] [CrossRef]
- Braga, R.G.; Tahir, M.O.; Iordanova, I.; St-Onge, D. Robotic Deployment on Construction Sites: Considerations for Safety and Productivity Impact. arXiv 2024. [Google Scholar] [CrossRef]
- Sheng, W.; Thobbi, A.; Gu, Y. An Integrated Framework for Human–Robot Collaborative Manipulation. IEEE Trans. Cybern. 2015, 45, 2030–2041. [Google Scholar] [CrossRef]
- Bao, C.; Hu, Y.; Yu, Z. Current Study on Multi-Robot Collaborative Vision SLAM. Appl. Comput. Eng. 2024, 35, 80–88. [Google Scholar] [CrossRef]
- Kim, S.; Jang, H.; Ha, J.; Lee, D.; Ha, Y.; Song, Y. Time-Interval-Based Collision Detection for 4WIS Mobile Robots in Human-Shared Indoor Environments. Sensors 2025, 25, 890. [Google Scholar] [CrossRef]
- Liu, Y.; Habibnezhad, M.; Jebelli, H. Brain-Computer Interface for Hands-Free Teleoperation of Construction Robots. Autom. Constr. 2021, 123, 103523. [Google Scholar] [CrossRef]
- Liu, Y.; Habibnezhad, M.; Jebelli, H. Brainwave-Driven Human-Robot Collaboration in Construction. Autom. Constr. 2021, 124, 103556. [Google Scholar] [CrossRef]
- Wang, X.; Veeramani, D.; Zhu, Z. Wearable Sensors-Based Hand Gesture Recognition for Human–Robot Collaboration in Construction. IEEE Sens. J. 2023, 23, 495–505. [Google Scholar] [CrossRef]
- Dai, Y.; Kim, D.; Lee, K. Development of a Fleet Management System for Multiple Robots’ Task Allocation Using Deep Reinforcement Learning. Processes 2024, 12, 2921. [Google Scholar] [CrossRef]
- Sandanika, W.A.H.; Wishvajith, S.H.; Randika, S.; Thennakoon, D.A.; Rajapaksha, S.K.; Jayasinghearachchi, V. ROS-Based Multi-Robot System for Efficient Indoor Exploration Using a Combined Path Planning Technique. J. Robot. Control 2024, 5, 1241–1260. [Google Scholar]
- Zeng, L.; Guo, S.; Zhu, M.; Duan, H.; Bai, J. An Improved Trilateral Localization Technique Fusing Extended Kalman Filter for Mobile Construction Robot. Buildings 2024, 14, 1026. [Google Scholar] [CrossRef]
- Mo, C.; Cao, J.; Zhang, F.; Ji, X. An Autonomous Spraying Method for Indoor Spraying Robots Based on Visual Assistance. In Proceedings of the International Conference on Pattern Recognition and Image Analysis (PRIA 2024), Nanjing, China, 18–20 October 2024; Shan, M., Lei, T., Eds.; SPIE: Bellingham, WA, USA, 2025; p. 45. [Google Scholar] [CrossRef]
- Chen, J.; Kim, P.; Cho, Y.K.; Ueda, J. Object-Sensitive Potential Fields for Mobile Robot Navigation and Mapping in Indoor Environments. In Proceedings of the 2018 15th International Conference on Ubiquitous Robots (UR), Honolulu, HI, USA, 26–30 June 2018; pp. 328–333. [Google Scholar] [CrossRef]
- Chea, C.P.; Bai, Y.; Pan, X.; Arashpour, M.; Xie, Y. An Integrated Review of Automation and Robotic Technologies for Structural Prefabrication and Construction. Transp. Saf. Environ. 2020, 2, 81–96. [Google Scholar] [CrossRef]
- Samsami, R. A Systematic Review of Automated Construction Inspection and Progress Monitoring (ACIPM): Applications, Challenges, and Future Directions. CivilEng 2024, 5, 265–287. [Google Scholar] [CrossRef]
- Xu, Z.; Song, T.; Guo, S.; Peng, J.; Zeng, L.; Zhu, M. Robotics Technologies Aided for 3D Printing in Construction: A Review. Int. J. Adv. Manuf. Technol. 2022, 118, 3559–3574. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, R.; Wu, H.; Pan, J.; Luo, X. Human–Robot Collaboration for on-Site Construction. Autom. Constr. 2023, 150, 104812. [Google Scholar] [CrossRef]
- Linnenluecke, M.K.; Marrone, M.; Singh, A.K. Conducting Systematic Literature Reviews and Bibliometric Analyses. Aust. J. Manag. 2020, 45, 175–194. [Google Scholar] [CrossRef]
- Hallinger, P.; Kovačević, J. A Bibliometric Review of Research on Educational Administration: Science Mapping the Literature, 1960 to 2018. Rev. Educ. Res. 2019, 89, 335–369. [Google Scholar] [CrossRef]
- Shaban, I.A.; Eltoukhy, A.E.E.; Zayed, T. Systematic and Scientometric Analyses of Predictors for Modelling Water Pipes Deterioration. Autom. Constr. 2023, 149, 104710. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Lu, W. Human-Robot Collaboration for Modular Construction Manufacturing: Review of Academic Research. Autom. Constr. 2024, 158, 105196. [Google Scholar] [CrossRef]
- Liang, C.-J.; Wang, X.; Kamat, V.R.; Menassa, C.C. Human–Robot Collaboration in Construction: Classification and Research Trends. J. Constr. Eng. Manag. 2021, 147, 03121006. [Google Scholar] [CrossRef]
- Oyediran, H.; Shiraz, A.; Peavy, M.; Merino, L.; Kim, K. Human-Aware Safe Robot Control and Monitoring System for Operations in Congested Indoor Construction Environment. In Proceedings of the Construction Research Congress 2024, Des Moines, IA, USA, 20–23 March 2024; pp. 806–815. [Google Scholar] [CrossRef]
- Gautam, S.; Shah, S.; Kurumbanshi, S. Revolutionizing Robotics: A Scalable and Versatile Mobile Robotic Arm for Modrn Applications. In Proceedings of the 2023 IEEE Pune Section International Conference (PuneCon), Pune, India, 14 December 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Tang, Q.; Niu, Y. Research on Autonomous Obstacle Avoidance for Indoor UAVs Based on Vision and Laser. In Proceedings of the 2024 International Conference on Interactive Intelligent Systems and Techniques (IIST), Bhubaneswar, India, 4 March 2024; pp. 73–80. [Google Scholar] [CrossRef]
- Stedman, H.; Kocer, B.B.; van Zalk, N.; Kovac, M.; Pawar, V.M. Evaluating Immersive Teleoperation Interfaces: Coordinating Robot Radiation Monitoring Tasks in Nuclear Facilities. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May 2023; pp. 11972–11978. [Google Scholar] [CrossRef]
- Lee, D.; Han, K. Vision-Based Construction Robot for Real-Time Automated Welding with Human-Robot Interaction. Autom. Constr. 2024, 168, 105782. [Google Scholar] [CrossRef]
- Bamani, E.; Nissinman, E.; Meir, I.; Koenigsberg, L.; Sintov, A. Ultra-Range Gesture Recognition Using a Web-Camera in Human–Robot Interaction. Eng. Appl. Artif. Intell. 2024, 132, 108443. [Google Scholar] [CrossRef]
- Sahoo, J.P.; Sahoo, S.P.; Ari, S.; Patra, S.K. Hand Gesture Recognition Using Densely Connected Deep Residual Network and Channel Attention Module for Mobile Robot Control. IEEE Trans. Instrum. Meas. 2023, 72, 5008011. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Z. Vision–Based Framework for Automatic Interpretation of Construction Workers’ Hand Gestures. Autom. Constr. 2021, 130, 103872. [Google Scholar] [CrossRef]
- Aggravi, M.; Sirignano, G.; Giordano, P.R.; Pacchierotti, C. Decentralized Control of a Heterogeneous Human–Robot Team for Exploration and Patrolling. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3109–3125. [Google Scholar] [CrossRef]
- Stancin, I.; Cifrek, M.; Jovic, A. A Review of EEG Signal Features and Their Application in Driver Drowsiness Detection Systems. Sensors 2021, 21, 3786. [Google Scholar] [CrossRef]
- Stančić, I.; Musić, J.; Grujić, T. Gesture Recognition System for Real-Time Mobile Robot Control Based on Inertial Sensors and Motion Strings. Eng. Appl. Artif. Intell. 2017, 66, 33–48. [Google Scholar] [CrossRef]
- Ghinoiu, B.; Vlădăreanu, V.; Travediu, A.-M.; Vlădăreanu, L.; Pop, A.; Feng, Y.; Zamfirescu, A. EEG-Based Mobile Robot Control Using Deep Learning and ROS Integration. Technologies 2024, 12, 261. [Google Scholar] [CrossRef]
- Liu, Y.; Habibnezhad, M.; Jebelli, H.; Monga, V. Worker-in-the-Loop Cyber-Physical System for Safe Human-Robot Collaboration in Construction. In Proceedings of the Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021; American Society of Civil Engineers: Reston, VA, USA, 2022; pp. 1075–1083. [Google Scholar] [CrossRef]
- Keller, M.; Taube, W.; Lauber, B. Task-Dependent Activation of Distinct Fast and Slow(Er) Motor Pathways during Motor Imagery. Brain Stimul. 2018, 11, 782–788. [Google Scholar] [CrossRef]
- Vanamala, H.R.; Akash, S.M.; Vinay, A.; Kumar, S.; Rathod, M. Gesture and Voice Controlled Robot for Industrial Applications. In Proceedings of the 2022 International Conference for Advancement in Technology (ICONAT), Goa, India, 21 January 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Xie, J.; Xu, Z.; Zeng, J.; Gao, Y.; Hashimoto, K. Human–Robot Interaction Using Dynamic Hand Gesture for Teleoperation of Quadruped Robots with a Robotic Arm. Electronics 2025, 14, 860. [Google Scholar] [CrossRef]
- Budzan, S.; Wyżgolik, R.; Kciuk, M.; Kulik, K.; Masłowski, R.; Ptasiński, W.; Szkurłat, O.; Szwedka, M.; Woźniak, Ł. Using Gesture Recognition for AGV Control: Preliminary Research. Sensors 2023, 23, 3109. [Google Scholar] [CrossRef]
- Wang, Z.; Hai, M.; Liu, X.; Pei, Z.; Qian, S.; Wang, D. A Human–Robot Interaction Control Strategy for Teleoperation Robot System under Multi-Scenario Applications. Int. J. Intell. Robot. Appl. 2025, 9, 125–145. [Google Scholar] [CrossRef]
- Wang, X.; Veeramani, D.; Dai, F.; Zhu, Z. Context-aware Hand Gesture Interaction for Human–Robot Collaboration in Construction. Comput. Civ. Infrastruct. Eng. 2024, 39, 3489–3504. [Google Scholar] [CrossRef]
- Yang, Y.; Li, Z.; Shi, P.; Li, G. Fuzzy-Based Control for Multiple Tasks With Human–Robot Interaction. IEEE Trans. Fuzzy Syst. 2024, 32, 5802–5814. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Z.; Liu, Y. Brain Teleoperation of a Mobile Robot Using Deep Learning Technique. In Proceedings of the 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM), Singapore, 18–20 July 2018; pp. 54–59. [Google Scholar] [CrossRef]
- Liu, Y.; Jebelli, H. Intention Estimation in Physical Human-Robot Interaction in Construction: Empowering Robots to Gauge Workers’ Posture. In Proceedings of the Construction Research Congress 2022, Arlington, VA, USA, 9–12 March 2022; American Society of Civil Engineers: Reston, VA, USA, 2022; pp. 621–630. [Google Scholar] [CrossRef]
- Liu, Y.; Jebelli, H. Intention-aware Robot Motion Planning for Safe Worker–Robot Collaboration. Comput. Civ. Infrastruct. Eng. 2024, 39, 2242–2269. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; He, W.; Arif Mughal, M.; Zhang, D. Real-Time Trajectory Planning and Obstacle Avoidance for Human–Robot Co-Transporting. IEEE Trans. Autom. Sci. Eng. 2025, 22, 2969–2985. [Google Scholar] [CrossRef]
- Cai, J.; Du, A.; Li, S. Prediction-Enabled Collision Risk Estimation for Safe Human-Robot Collaboration on Unstructured and Dynamic Construction Sites. In Proceedings of the Computing in Civil Engineering 2021, Orlando, FL, USA, 12–14 September 2021; American Society of Civil Engineers: Reston, VA, USA, 2022; pp. 34–41. [Google Scholar]
- Van Dang, C.; Ahn, H.; Kim, J.-W.; Lee, S.C. Collision-Free Navigation in Human-Following Task Using a Cognitive Robotic System on Differential Drive Vehicles. IEEE Trans. Cogn. Dev. Syst. 2023, 15, 78–87. [Google Scholar] [CrossRef]
- Ghandour, M.; Liu, H.; Stoll, N.; Thurow, K. Human Robot Interaction for Hybrid Collision Avoidance System for Indoor Mobile Robots. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 650–657. [Google Scholar] [CrossRef]
- Pramanik, A.; Choi, S.W.; Li, Y.; Nguyen, L.V.; Kim, K.; Tran, H.-D. Perception-Based Runtime Monitoring and Verification for Human-Robot Construction Systems. In Proceedings of the 2024 22nd ACM-IEEE International Symposium on Formal Methods and Models for System Design (MEMOCODE), Raleigh, NC, USA, 3 October 2024; pp. 124–134. [Google Scholar] [CrossRef]
- Teodorescu, C.S.; West, A.; Lennox, B. Bayesian Optimization with Embedded Stochastic Functionality for Enhanced Robotic Obstacle Avoidance. Control Eng. Pract. 2025, 154, 106141. [Google Scholar] [CrossRef]
- Cai, J.; Du, A.; Liang, X.; Li, S. Prediction-Based Path Planning for Safe and Efficient Human–Robot Collaboration in Construction via Deep Reinforcement Learning. J. Comput. Civ. Eng. 2023, 37, 04022046. [Google Scholar] [CrossRef]
- Mulás-Tejeda, E.; Gómez-Espinosa, A.; Escobedo Cabello, J.A.; Cantoral-Ceballos, J.A.; Molina-Leal, A. Implementation of a Long Short-Term Memory Neural Network-Based Algorithm for Dynamic Obstacle Avoidance. Sensors 2024, 24, 3004. [Google Scholar] [CrossRef]
- Li, Z.; Li, B.; Liang, Q.; Liu, W.; Hou, L.; Rong, X. A Quadruped Robot Obstacle Avoidance and Personnel Following Strategy Based on Ultra-Wideband and Three-Dimensional Laser Radar. Int. J. Adv. Robot. Syst. 2022, 19, 17298806221114705. [Google Scholar] [CrossRef]
- Che, Y.; Sun, C.T.; Okamura, A.M. Avoiding Human-Robot Collisions Using Haptic Communication. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 5828–5834. [Google Scholar] [CrossRef]
- Zhou, C.; Li, J.; Shi, M.; Wu, T. Multi-Robot Path Planning Algorithm for Collaborative Mapping under Communication Constraints. Drones 2024, 8, 493. [Google Scholar] [CrossRef]
- Liang, Y.; Zhao, H. An Improved Algorithm of Multi-Robot Task Assignment and Path Planning. In Intelligent Robotics; Springer: Berlin/Heidelberg, Germany, 2023; pp. 71–82. [Google Scholar]
- Gopee, M.A.; Prieto, S.A.; García de Soto, B. Improving Autonomous Robotic Navigation Using IFC Files. Constr. Robot. 2023, 7, 235–251. [Google Scholar] [CrossRef]
- Lv, Y.; Lei, J.; Yi, P. A Local Information Aggregation-Based Multiagent Reinforcement Learning for Robot Swarm Dynamic Task Allocation. IEEE Trans. Neural Netw. Learn. Syst. 2025, 36, 10437–10449. [Google Scholar] [CrossRef]
- Shida, Y.; Jimbo, T.; Odashima, T.; Matsubara, T. Reinforcement Learning of Multi-Robot Task Allocation for Multi-Object Transportation with Infeasible Tasks. In Proceedings of the 2025 IEEE/SICE International Symposium on System Integration (SII), Munich, Germany, 21–24 January 2025. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, Q.; Zhang, X.; Xu, X.; Liu, D. A Distributed Actor-Critic Learning Approach for Affine Formation Control of Multi-Robots With Unknown Dynamics. Int. J. Adapt. Control Signal Process 2025, 39, 803–817. [Google Scholar] [CrossRef]
- Chakraa, H.; Leclercq, E.; Guérin, F.; Lefebvre, D. Integrating Collision Avoidance Strategies into Multi-Robot Task Allocation for Inspection. Trans. Inst. Meas. Control 2025, 47, 1466–1477. [Google Scholar] [CrossRef]
- Miele, A.; Lippi, M.; Gasparri, A. A Distributed Framework for Integrated Task Allocation and Safe Coordination in Networked Multi-Robot Systems. IEEE Trans. Autom. Sci. Eng. 2025, 22, 11219–11238. [Google Scholar] [CrossRef]
- Kumar, S.; Sikander, A. A Novel Hybrid Framework for Single and Multi-Robot Path Planning in a Complex Industrial Environment. J. Intell. Manuf. 2024, 35, 587–612. [Google Scholar] [CrossRef]
- Teng, Y.; Feng, T.; Li, J.; Chen, S.; Tang, X. A Dual-Layer Symmetric Multi-Robot Path Planning System Based on an Improved Neural Network-DWA Algorithm. Symmetry 2025, 17, 85. [Google Scholar] [CrossRef]
- Fareh, R.; Baziyad, M.; Rabie, T.F.; Khadraoui, S.; Rahman, M.H. Efficient Path Planning and Formation Control in Multi-Robot Systems: A Neural Fields and Auto-Switching Mechanism Approach. IEEE Access 2025, 13, 8270–8285. [Google Scholar] [CrossRef]
- Qiu, H.; Yu, W.; Zhang, G.; Xia, X.; Yao, K. Multi-Robot Collaborative 3D Path Planning Based On Game Theory and Particle Swarm Optimization Hybrid Method. J. Supercomput. 2025, 81, 487. [Google Scholar] [CrossRef]
- Li, W.; Ma, Z.; Yu, Y. Proactive Multi-Robot Path Planning via Monte Carlo Congestion Prediction in Intralogistics. IEEE Robot. Autom. Lett. 2025, 10, 4588–4595. [Google Scholar] [CrossRef]
- Thangavelu, V.; Napp, N. Design and Simulation of a Multi-Robot Architecture for Large-Scale Construction Projects. In Proceedings of the 2021 International Symposium on Multi-Robot and Multi-Agent Systems (MRS), Cambridge, UK, 4 November 2021; pp. 181–189. [Google Scholar]
- Aryan, A.; Modi, M.; Saha, I.; Majumdar, R.; Mohalik, S. Integrated Task and Path Planning for Collaborative Multi-Robot Systems. In Proceedings of the ACM/IEEE 16th International Conference on Cyber-Physical Systems (with CPS-IoT Week 2025), Irvine, CA, USA, 6 May 2025; ACM: New York, NY, USA; pp. 1–12. [Google Scholar] [CrossRef]
- Wang, Z.; Lyu, X.; Zhang, J.; Wang, P.; Zhong, Y.; Shi, L. MAC-Planner: A Novel Task Allocation and Path Planning Framework for Multi-Robot Online Coverage Processes. IEEE Robot. Autom. Lett. 2025, 10, 4404–4411. [Google Scholar] [CrossRef]
- Li, Z.; Shi, N.; Zhao, L.; Zhang, M. Deep Reinforcement Learning Path Planning and Task Allocation for Multi-Robot Collaboration. Alex. Eng. J. 2024, 109, 408–423. [Google Scholar] [CrossRef]
- de Castro, G.G.R.; Santos, T.M.B.; Andrade, F.A.A.; Lima, J.; Haddad, D.B.; de Honório, L.M.; Pinto, M.F. Heterogeneous Multi-Robot Collaboration for Coverage Path Planning in Partially Known Dynamic Environments. Machines 2024, 12, 200. [Google Scholar] [CrossRef]
- Jathunga, T.; Rajapaksha, S. Improved Path Planning for Multi-Robot Systems Using a Hybrid Probabilistic Roadmap and Genetic Algorithm Approach. J. Robot. Control 2025, 6, 715–733. [Google Scholar] [CrossRef]
- Luo, R.; Ni, W.; Tian, H.; Cheng, J. Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication Systems. IEEE Trans. Veh. Technol. 2022, 71, 12321–12326. [Google Scholar] [CrossRef]
- Matos, D.M.; Costa, P.; Sobreira, H.; Valente, A.; Lima, J. Efficient Multi-Robot Path Planning in Real Environments: A Centralized Coordination System. Int. J. Intell. Robot. Appl. 2025, 9, 217–244. [Google Scholar] [CrossRef]
- Arpitha Shankar, S.I.; Shivakumar, M. Sensor Fusion Based Multiple Robot Navigation in an Indoor Environment. Int. J. Interact. Des. Manuf. 2024, 18, 4841–4852. [Google Scholar] [CrossRef]
- Divya Vani, G.; Karumuri, S.R.; Chinnaiah, M.C. Hardware Schemes for Autonomous Navigation of Cooperative-Type Multi-Robot in Indoor Environment. J. Inst. Eng. Ser. B 2022, 103, 449–460. [Google Scholar] [CrossRef]
- Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Symbiotic Navigation in Multi-Robot Systems with Remote Obstacle Knowledge Sharing. Sensors 2017, 17, 1581. [Google Scholar] [CrossRef]
- Cid, A.; Vangasse, A.; Campos, S.; Delunardo, M.; Cruz Júnior, G.; Neto, N.; Pimenta, L.; Domingues, J.; Barros, L.; Azpúrua, H.; et al. Wireless Communication-Aware Path Planning and Multiple Robot Navigation Strategies for Assisted Inspections. J. Intell. Robot. Syst. 2024, 110, 88. [Google Scholar] [CrossRef]
- Ravankar, A.; Ravankar, A.; Kobayashi, Y.; Emaru, T. Hitchhiking Robots: A Collaborative Approach for Efficient Multi-Robot Navigation in Indoor Environments. Sensors 2017, 17, 1878. [Google Scholar] [CrossRef]
- Cai, Z.; Liu, J.; Chi, W.; Zhang, B. A Low-Cost and Robust Multi-Sensor Data Fusion Scheme for Heterogeneous Multi-Robot Cooperative Positioning in Indoor Environments. Remote Sens. 2023, 15, 5584. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, K.; Yan, X.; Liu, C. A Multi-Robot Cooperative Localization Method Based On Optimal Weighted Particle Filtering. In Proceedings of the 2022 Global Reliability and Prognostics and Health Management (PHM-Yantai), Yantai, China, 13 October 2022; pp. 1–5. [Google Scholar] [CrossRef]
- Zhou, Z.; Tang, W.; Wang, Z.; Wang, L.; Zhang, R. Multi-Robot Real-Time Cooperative Localization Based on High-Speed Feature Detection and Two-Stage Filtering. In Proceedings of the 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), Xining, China, 15 July 2021; pp. 690–696. [Google Scholar] [CrossRef]
- Tian, C.; Hao, N.; He, F. Multi-Robot Cooperative Localization Using Anonymous Relative-Bearing Measurements. In Proceedings of the 2022 41st Chinese Control Conference (CCC), Hefei, China, 25 July 2022; pp. 3162–3167. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhu, K.; Zheng, Z.; Chen, S.; Zheng, N. Multi-L: A Novel Multi-Robot Cooperative Localization Method in Indoor Environment. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8 October 2022; pp. 2436–2443. [Google Scholar] [CrossRef]
- Khnissi, K.; Jabeur, C.B.; Seddik, H. Implementation of a New-Optimized ROS-Based SLAM for Mobile Robot. In Proceedings of the 2022 IEEE Information Technologies & Smart Industrial Systems (ITSIS), Paris, France, 15 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Li, X.; Wang, Z.; Tan, Y.; Zhang, X. A Centralized Cooperative SLAM System for Improving Positioning and Perception Accuracy in GPS-Denied Environments. In Proceedings of the 2023 IEEE International Conference on Unmanned Systems (ICUS), Hefei, China, 13 October 2023; pp. 812–817. [Google Scholar] [CrossRef]
- Liu, E.; Li, H.; Li, S.; Cheng, X. Centralized Multi-Robot Collaborative LiDAR SLAM Utilizing Loop Closure Selection. In Proceedings of the 2023 China Automation Congress (CAC), Chongqing, China, 17 November 2023; pp. 463–468. [Google Scholar] [CrossRef]
- Ahmed Jalil, B.; Kasim Ibraheem, I. Multi-Robot SLAM Using Fast LiDAR Odometry and Mapping. Designs 2023, 7, 110. [Google Scholar] [CrossRef]
- Lajoie, P.-Y.; Beltrame, G. Swarm-SLAM: Sparse Decentralized Collaborative Simultaneous Localization and Mapping Framework for Multi-Robot Systems. IEEE Robot. Autom. Lett. 2024, 9, 475–482. [Google Scholar] [CrossRef]
- Xia, Y.; Wu, X.; Ma, T.; Zhu, L.; Cheng, J.; Zhu, J. Multi-Robot Collaborative Mapping with Integrated Point-Line Features for Visual SLAM. Sensors 2024, 24, 5743. [Google Scholar] [CrossRef]
- Choi, Y.-W.; Choi, J.-W.; Im, S.-G.; Qian, D.; Lee, S.-G. Multi-Robot Avoidance Control Based on Omni-Directional Visual SLAM with a Fisheye Lens Camera. Int. J. Precis. Eng. Manuf. 2018, 19, 1467–1476. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Miao, Z.; Feng, M.; Zhou, Z.; Wang, H.; Wang, D. Toward Safe Distributed Multi-Robot Navigation Coupled With Variational Bayesian Model. IEEE Trans. Autom. Sci. Eng. 2024, 21, 7583–7598. [Google Scholar] [CrossRef]
- Mohammed, S.S.M.; Wahab, N.A.; Mahmud, M.S.A.; Alqaraghuli, H.; Samsuria, E.; Romdlony, M.Z. Efficient Autonomous Navigation in Dynamic Environments: Algorithm Evaluation and Multi-Robot Coordination. In Proceedings of the 2024 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 29 June 2024; pp. 433–438. [Google Scholar] [CrossRef]
- Basha, M.; Siva Kumar, M.; Chinnaiah, M.C.; Lam, S.-K.; Srikanthan, T.; Janardhan, N.; Hari Krishna, D.; Dubey, S. A Versatile Approach to Polygonal Object Avoidance in Indoor Environments with Hardware Schemes Using an FPGA-Based Multi-Robot. Sensors 2023, 23, 9480. [Google Scholar] [CrossRef]
- Zahroof, R.; Liu, J.; Zhou, L.; Kumar, V. Multi-Robot Localization and Target Tracking with Connectivity Maintenance and Collision Avoidance. In Proceedings of the 2023 American Control Conference (ACC), San Diego, CA, USA, 31 May 2023; pp. 1331–1338. [Google Scholar]
- Matsuda, T.; Kuroda, Y.; Fukatsu, R.; Karasawa, T.; Takasago, M.; Morishita, K. A Mutual Positioning Relay Method of Multiple Robots for Monitoring Indoor Environments. Int. J. Adv. Robot. Syst. 2022, 19, 172988062211298. [Google Scholar] [CrossRef]
- Chen, A.; Zhang, B.; Cai, H.; Wei, L.; Liao, Y.; Zhou, B. Experimental Study on Multi-Robot 3D Source Localization in Indoor Environments with Weak Airflow. E3S Web Conf. 2022, 356, 04008. [Google Scholar] [CrossRef]
- Shi, Y.; Hao, C.; Wang, Y.; Liu, D.; Guo, J. Multi-Robot Real-Time Collaborative SLAM System Based on 5G MEC Framework. In Proceedings of the 2024 36th Chinese Control and Decision Conference (CCDC), Xi’an, China, 25 May 2024; pp. 5590–5595. [Google Scholar] [CrossRef]
- Chang, Y.; Ebadi, K.; Denniston, C.E.; Ginting, M.F.; Rosinol, A.; Reinke, A.; Palieri, M.; Shi, J.; Chatterjee, A.; Morrell, B.; et al. LAMP 2.0: A Robust Multi-Robot SLAM System for Operation in Challenging Large-Scale Underground Environments. IEEE Robot. Autom. Lett. 2022, 7, 9175–9182. [Google Scholar] [CrossRef]
- Liu, W. Slam Algorithm for Multi-Robot Communication in Unknown Environment Based on Particle Filter. J. Ambient Intell. Humaniz. Comput. 2021, 1–9. [Google Scholar] [CrossRef]
- Song, X.; Chen, K.; Bi, Z.; Niu, Q.; Liu, J.; Peng, B.; Zhang, S.; Liu, M.; Li, M.; Pan, X. Mastering Reinforcement Learning: Foundations, Algorithms, and Real-World Applications. SSRN 2024. [Google Scholar] [CrossRef]
- Ogunsina, M.; Efunniyi, C.P.; Osundare, O.S.; Folorunsho, S.O.; Akwawa, L.A. Reinforcement Learning in Autonomous Navigation: Overcoming Challenges in Dynamic and Unstructured Environments. Eng. Sci. Technol. J. 2024, 5, 2724–2736. [Google Scholar] [CrossRef]
- Xi, Y. Research on Autonomous Mobile Robot Navigation Technology Based on Deep Reinforcement Learning. Highlights Sci. Eng. Technol. 2024, 114, 108–113. [Google Scholar] [CrossRef]
- Cai, W.; Huang, L.; Zou, Z. An Integrated Approach Combining Virtual Environments and Reinforcement Learning to Train Construction Robots for Conducting Tasks Under Uncertainties. In Proceedings of the Canadian Society of Civil Engineering Annual Conference 2022, Whistler, BC, Canada, 25–28 May 2022; pp. 259–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Zeng, J.; Sun, H.; Sun, H.; Hashimoto, K. Dual-Layer Reinforcement Learning for Quadruped Robot Locomotion and Speed Control in Complex Environments. Appl. Sci. 2024, 14, 8697. [Google Scholar] [CrossRef]
- Chen, S.-C.; Pamungkas, R.S.; Schmidt, D. The Role of Machine Learning in Improving Robotic Perception and Decision Making. Int. Trans. Artif. Intell. 2024, 3, 32–43. [Google Scholar] [CrossRef]
- Bai, Z.; Pang, H.; He, Z.; Zhao, B.; Wang, T. Path Planning of Autonomous Mobile Robot in Comprehensive Unknown Environment Using Deep Reinforcement Learning. IEEE Internet Things J. 2024, 11, 22153–22166. [Google Scholar] [CrossRef]
- Takzare, N.; Lademakhi, N.Y.; Korayem, M.H. Path Planning of Mobile Robot Based on Reinforcement Learning to Reach Faster Training. In Proceedings of the 2024 12th RSI International Conference on Robotics and Mechatronics (ICRoM), Tehran, Iran, 17 December 2024; pp. 431–436. [Google Scholar] [CrossRef]
- Jing, Y.; Weiya, L. RL-QPSO Net: Deep Reinforcement Learning-Enhanced QPSO for Efficient Mobile Robot Path Planning. Front. Neurorobot. 2025, 18. [Google Scholar] [CrossRef]
- Bingol, M.C. A Safe Navigation Algorithm for Differential-Drive Mobile Robots by Using Fuzzy Logic Reward Function-Based Deep Reinforcement Learning. Electronics 2025, 14, 1593. [Google Scholar] [CrossRef]
- Lu, Z.; He, L.; Wang, H.; Yuan, L.; Xiao, W.; Liu, Z.; Chen, Y. CMADRL: Cross-Modal Attention Based Deep Reinforcement Learning for Mobile Robot’s Obstacle Avoidance. Meas. Sci. Technol. 2025, 36, 036306. [Google Scholar] [CrossRef]
- Yu, Z.; Hou, Y.; Zhang, Q.; Liu, Q. Safety-Guided Deep Reinforcement Learning for Path Planning of Autonomous Mobile Robots. In Proceedings of the 2024 International Joint Conference on Neural Networks (IJCNN), Yokohama, Japan, 30 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Song, H.; Li, A.; Wang, T.; Wang, M. Multimodal Deep Reinforcement Learning with Auxiliary Task for Obstacle Avoidance of Indoor Mobile Robot. Sensors 2021, 21, 1363. [Google Scholar] [CrossRef]
- Tang, W.; Wu, F.; Lin, S.; Ding, Z.; Liu, J.; Liu, Y.; He, J. Causal Deconfounding Deep Reinforcement Learning for Mobile Robot Motion Planning. Knowl. Based Syst. 2024, 303, 112406. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, Y.; Li, X.; Liu, Y.; Jin, J. Hierarchical Control Framework for Path Planning of Mobile Robots in Dynamic Environments Through Global Guidance and Reinforcement Learning. IEEE Internet Things J. 2024, 12, 309–333. [Google Scholar] [CrossRef]
- Chen, G.; Pan, L.; Chen, Y.; Xu, P.; Wang, Z.; Wu, P.; Ji, J.; Chen, X. Deep Reinforcement Learning of Map-Based Obstacle Avoidance for Mobile Robot Navigation. SN Comput. Sci. 2021, 2, 417. [Google Scholar] [CrossRef]
- Mahandule, V.; Patil, H.; Thombare, V.; Wagh, B.; More, M.; Gaykar, A. A Comprehensive Framework for Human-Robot Collaboration in Industrial Environments. Int. J. Adv. Res. Sci. Commun. Technol. 2024, 4, 289–295. [Google Scholar] [CrossRef]
- Wang, X. Mobile Robot Environment Perception System Based on Multimodal Sensor Fusion. Appl. Comput. Eng. 2025, 127, 42–49. [Google Scholar] [CrossRef]
- Khattak, S.; Nguyen, H.; Mascarich, F.; Dang, T.; Alexis, K. Complementary Multi–Modal Sensor Fusion for Resilient Robot Pose Estimation in Subterranean Environments. In Proceedings of the 2020 International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 1–4 September 2020; pp. 1024–1029. [Google Scholar] [CrossRef]
- Nguyen Canh, T.; Son Nguyen, T.; Hoang Quach, C.; HoangVan, X.; Duong Phung, M. Multisensor Data Fusion for Reliable Obstacle Avoidance. In Proceedings of the 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS), Hanoi, Vietnam, 21 November 2022; pp. 385–390. [Google Scholar] [CrossRef]
- Sumalatha, I.; Chaturvedi, P.; Gowtham, R.R.; Patil, S.; Thethi, H.P.; Hameed, A.A. Autonomous Multi-Sensor Fusion Techniques for Environmental Perception in Self-Driving Vehicles. In Proceedings of the 2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE), Gautam Buddha Nagar, India, 9 May 2024; pp. 1146–1151. [Google Scholar] [CrossRef]
- Mees, O.; Eitel, A.; Burgard, W. Choosing Smartly: Adaptive Multimodal Fusion for Object Detection in Changing Environments. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October 2016; pp. 151–156. [Google Scholar] [CrossRef]
- Xie, S.; Gong, L.; Chen, Z.; Chen, B. Simulation of Real-Time Collision-Free Path Planning Method with Deep Policy Network in Human-Robot Interaction Scenario. In Proceedings of the 2023 International Conference on Advanced Robotics and Mechatronics (ICARM), Sanya, China, 8 July 2023; pp. 360–365. [Google Scholar] [CrossRef]
- Zhu, A.; Yang, S.X. A Framework for Coordination and Navigation of Multi-Robot Systems. In Proceedings of the 2010 IEEE International Conference on Automation and Logistics, Hong Kong, China, 16–20 August 2010; pp. 350–355. [Google Scholar] [CrossRef]
- Chen, Y.; Rosolia, U.; Ames, A.D. Decentralized Task and Path Planning for Multi-Robot Systems. IEEE Robot. Autom. Lett. 2021, 6, 4337–4344. [Google Scholar] [CrossRef]
- Xu, Z.; Zhan, X.; Xiu, Y.; Suzuki, C.; Shimada, K. Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation with RGB-D Camera. IEEE Robot. Autom. Lett. 2023, 9, 651–658. [Google Scholar] [CrossRef]
- Costin, A.; McNair, J. IoT and Edge Computing in the Construction Site. In Buildings and Semantics; CRC Press: London, UK, 2022; pp. 223–237. [Google Scholar]
- Goel, A.; Tung, C.; Lu, Y.-H.; Thiruvathukal, G.K. A Survey of Methods for Low-Power Deep Learning and Computer Vision. In Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Sudevan, V.; Zayer, F.; Javed, S.; Karki, H.; De Masi, G.; Dias, J. Hybrid-Neuromorphic Approach for Underwater Robotics Applications: A Conceptual Framework. arXiv 2024. [Google Scholar] [CrossRef]
- Park, S.; Kim, H.; Jeon, W.; Yang, J.; Jeon, B.; Oh, Y.; Choi, J. Quantization-Aware Imitation-Learning for Resource-Efficient Robotic Control. arXiv 2024. [Google Scholar] [CrossRef]
- Hanzal, S.; Tvrda, L.; Harvey, M. An Investigation into Discomfort and Fatigue Related to the Wearing of an EEG Neurofeedback Headset. medrxiv 2023. [Google Scholar] [CrossRef]
- Cheng, B.; Fan, C.; Fu, H.; Huang, J.; Chen, H.; Luo, X. Measuring and Computing Cognitive Statuses of Construction Workers Based on Electroencephalogram: A Critical Review. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1644–1659. [Google Scholar] [CrossRef]
- Kot, T.; Bajak, J.; Novak, P. Analysis and Prevention of Selected Risks of Remotely and Autonomously Controlled Mobile Robot TeleRescuer. In Proceedings of the 2017 18th International Carpathian Control Conference (ICCC), Sinaia, Romania, 28–31 May 2017; pp. 551–554. [Google Scholar] [CrossRef]
- Ambroszkiewicz, S.; Bartyna, W.; Skarzynski, K.; Stepniak, M. Fault Tolerant Automated Task Execution in a Multi-Robot System. In Intelligent Distributed Computing IX; Springer: Berlin/Heidelberg, Germany, 2016; pp. 101–107. [Google Scholar] [CrossRef]
Keywords | |
---|---|
Category 1 | “Human-robot collaboration” or “Human-robot interaction” or “Human-robot teaming” or “Worker-robot interaction” or “worker-robot collaboration” or “multi-robot collaboration” or “multi-robot teaming” or “multiple robotic agents” |
Category 2 | “indoor environments” or “indoor manufacturing” or “indoor” or “indoor built environments” or “indoor industrial environments” |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duorinaah, F.X.; Rajendran, M.; Kim, T.W.; Kim, J.I.; Lee, S.; Lee, S.; Kim, M.-K. Human and Multi-Robot Collaboration in Indoor Environments: A Review of Methods and Application Potential for Indoor Construction Sites. Buildings 2025, 15, 2794. https://doi.org/10.3390/buildings15152794
Duorinaah FX, Rajendran M, Kim TW, Kim JI, Lee S, Lee S, Kim M-K. Human and Multi-Robot Collaboration in Indoor Environments: A Review of Methods and Application Potential for Indoor Construction Sites. Buildings. 2025; 15(15):2794. https://doi.org/10.3390/buildings15152794
Chicago/Turabian StyleDuorinaah, Francis Xavier, Mathanraj Rajendran, Tae Wan Kim, Jung In Kim, Seulbi Lee, Seulki Lee, and Min-Koo Kim. 2025. "Human and Multi-Robot Collaboration in Indoor Environments: A Review of Methods and Application Potential for Indoor Construction Sites" Buildings 15, no. 15: 2794. https://doi.org/10.3390/buildings15152794
APA StyleDuorinaah, F. X., Rajendran, M., Kim, T. W., Kim, J. I., Lee, S., Lee, S., & Kim, M.-K. (2025). Human and Multi-Robot Collaboration in Indoor Environments: A Review of Methods and Application Potential for Indoor Construction Sites. Buildings, 15(15), 2794. https://doi.org/10.3390/buildings15152794