Experimental and Numerical Investigation on Flexural Behaviors of a 30 m Full-Scale Prestressed UHPC-NC Composite Box Girder
Abstract
1. Introduction
2. Experimental Program
2.1. Details of Tested UHPC-NC Beams
2.2. Experimental Setup, Instrumentations, and Loading Protocol
3. Experimental Results
3.1. Load–Displacement Curves
Displacement Data Processing
3.2. Strain Data Analysis
Data Processing
4. ABAQUS Numerical Simulation
4.1. Finite Element Model Development
4.1.1. Simulation Background
4.1.2. Element Types and Mesh Generation
4.1.3. Prestress Simulation Methodology
- —Temperature variation applied (°C)
- —Initial prestressing force (N)
- —Thermal expansion coefficient
- —Elastic modulus 195 GPa
- —Cross-sectional area (mm2)
- —Initial prestress value (MPa)
4.2. Finite Element Analysis Results
4.2.1. Load–Displacement Curve Analysis
4.2.2. Strain Localizations Analysis
4.2.3. Plastic Hinge Formation, Rotation Capacity, and Curvature Ductility
4.2.4. Simulation of Flexural and Shear Failure Modes
4.3. Results of ABAQUS Numerical Simulation
- The finite element models effectively capture the mechanical behavior of the test beam.
- Pronounced strain localization phenomena are observed in the model beam.
- The model beam enters the elastic-plastic stage at a midspan load of 4608 kN, developing plastic hinges at midspan with a curvature coefficient of 0.353.
- Flexural failure governs when the shear span-to-depth ratio λ ≥ 6.3, while shear failure occurs when λ < 6.3.
- The maximum sectional bending moment sustained by the test beam is predicted as 37,597.1 kN·m.
5. Response-2000 Flexural Capacity Analysis
6. Code-Based Flexural Capacity Calculation
6.1. Calculation
6.2. Results of Code-Based Flexural Capacity Calculation
- represents the design flexural capacity, calculated by incorporating all relevant safety factors, reduction coefficients, and the design tensile strength of prestressing strands , yielding the design flexural capacity .
- Design flexural capacity at loading section: . Corresponding test load: .
- represents the ultimate flexural capacity, calculated without considering safety factors or reduction coefficients, using the characteristic tensile strength of strands to determine the ultimate moment capacity .
- Ultimate flexural capacity at the loading section . Corresponding test load of .
7. Comprehensive Analysis of Flexural Capacity
8. Conclusions
- (1)
- The 30 m prestressed full-scale UHPC-NC composite box girder demonstrated excellent load-bearing capacity, withstanding a maximum load of 4400 kN without experiencing either shear or flexural failure, significantly exceeding the design load of 2042.6 kN.
- (2)
- The test beam was modeled and analyzed using Abaqus finite element software. The analysis indicates the following: when the concentrated load-to-support distance exceeds 9.62 m (λ = 6.3), the box girder fails in flexure; and when less than 9.62 m (λ = 6.3), the box girder fails in shear. The calculated flexural strength is 37,597 kN·m, corresponding to a test load of 4851.5 kN.
- (3)
- The flexural strength of the full-scale beams predicted by Response-2000 software yielded a calculated flexural strength of 30,816 kN·m, corresponding to a load of 3508.8 kN. It demonstrates that Response-2000’s calculation of normal section flexural capacity underestimates the actual flexural capacity of this test beam.
- (4)
- The ultimate flexural capacity calculated according to the Chinese code T/CCES 27-2021 (technical specification for ultra-high-performance concrete girder bridge) is 33,810 kN·m, corresponding to a load of 4304.8 kN. The calculation method in the specification ultimately underestimates the actual flexural capacity of this test beam.
- (5)
- Both the calculation results from the Chinese code T/CCES 27-2021 (technical specification for ultra-high-performance concrete girder bridge) (, ) and the Response-2000 software () provide conservative estimates of flexural capacity (), which remain applicable for the design of prestressed UHPC-NC composite beams.
- (6)
- Based on comprehensive analysis, we recommend adopting the Chinese code T/CCES 27-2021 (technical specification for ultra-high-performance concrete girder bridge) for projects requiring more conservative design approaches.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sun, Y.; Zhu, M.Q.; JIa, J.Q.; Long, G. Failure modes and deformation characteristics of steel reinforced high-strength concrete columns. J. Inn. Mong. Univ. Technol. (Nat. Sci. Ed.) 2024, 43, 351–359. [Google Scholar]
- Guan, Y.L.; Zou, C.J.; Kang, Y.P.; Yang, B.P. Mechanical properties and stress-strain constitutive models of desert sand concrete in different regions. J. Inn. Mong. Univ. Technol. (Nat. Sci. Ed.) 2024, 43, 63–69. [Google Scholar] [CrossRef]
- Xiao, J.; Shuai, J.; Deng, W.; Liu, L.; Wang, P.; Li, L. Low-Carbon and Green Materials in Construction: Latest Advances and Prospects. Buildings 2025, 15, 1508. [Google Scholar] [CrossRef]
- Zhang, L.F.; Deng, B.W.; He, B.N.; Jiang, H.B.; Xiao, J.; Tian, Y.Q.; Fang, J.F. Experimental Investigation on Shear Behavior of Non-Stirrup UHPC Beams under Larger Shear Span-Depth Ratios. Buildings 2024, 14, 1374. [Google Scholar] [CrossRef]
- Jiang, H.B.; Mei, G.Y.; Shen, R.Y.; Xiao, J.; Deng, S.W.; Zhang, S.F. Experimental study and theoretical analysis on the flexural behaviors of UHPC-strengthened NC overlay in bridge deck. Case Stud. Constr. Mater. 2025, 22, 22. [Google Scholar] [CrossRef]
- Hung, C.C.; Chen, Y.T.; Yen, C.H. Workability, fiber distribution, and mechanical properties of UHPC with hooked end steel macro-fibers. Constr. Build. Mater. 2020, 260, 12. [Google Scholar] [CrossRef]
- Fang, H.Z.; Gu, M.G.; Zhang, S.F.; Jiang, H.B.; Fang, Z.C.; Hu, J.X. Effects of Steel Fiber and Specimen Geometric Dimensions on the Mechanical Properties of Ultra-High-Performance Concrete. Materials 2022, 15, 3027. [Google Scholar] [CrossRef]
- Deng, B.W.; Zhang, L.F.; Wu, S.Z.; Jiang, H.B.; Tian, Y.Q.; Fang, J.F.; Zhou, C.A. Shear Behavior of Non-Stirrup Ultra-High-Performance Concrete Beams: Contribution of Steel Fibers and UHPC. Buildings 2024, 14, 2705. [Google Scholar] [CrossRef]
- Li, P.J.; Cheng, Q.; Chen, N.X.; Tian, Y.Q.; Fang, J.F.; Jiang, H.B. Experimental Study on Shear Behavior of Non-Stirrup Ultra-High Performance Concrete Beams. Materials 2023, 16, 4177. [Google Scholar] [CrossRef]
- Xiao, J.; Huang, L.; Weng, R.; Murong, Y.; Liu, L.; Zeng, H.; Jiang, H. Mechanism of chloride ion transport and associated damage in ultra-high-performance concrete subjected to hydrostatic pressure. J. Build. Eng. 2025, 112, 113700. [Google Scholar] [CrossRef]
- Jiang, H.B.; Zhang, L.F.; Deng, B.W.; Gao, X.J.; Xie, S.Y.; Sha, Z.J.; Chen, M.Z. The direct shear behavior of the ultra-high performance concrete-filled socket connections between the bridge piers and footings. Structures 2024, 66, 14. [Google Scholar] [CrossRef]
- Reda, M.M.; Shrive, N.G.; Gillott, J.E. Microstructural investigation of innovative UHPC. Cem. Concr. Res. 1999, 29, 323–329. [Google Scholar] [CrossRef]
- Attar, A.; Bendada, A.; Connolly, R.; Dénommé, Y.; Dallaire, É.; Aitcin, P.C. Novel ultra-high performance concrete as mold material for the blow molding process. Sampe J. 2000, 36, 45–49. [Google Scholar]
- Schrefler, B.A.; Khoury, G.A.; Gawin, D.; Majorana, C.E. Thermo-hydro-mechanical modelling of high performance concrete at high temperatures. Eng. Comput. 2002, 19, 787–819. [Google Scholar] [CrossRef]
- Graybeal, B.A. Characterization of the Behavior of Ultra-High Performance Concrete. Ph.D. Thesis, University of Maryland, College Park, MD, USA, 2005. [Google Scholar]
- Grünberg, J.; Lohaus, L.; Ertel, C.; Wefer, M. Multiaxial mechanical model of ultra-high-performance concrete. Beton-Und Stahlbetonbau 2007, 102, 388–398. [Google Scholar] [CrossRef]
- Shi, C.J.; Wu, Z.M.; Xiao, J.F.; Wang, D.H.; Huang, Z.Y.; Fang, Z. A review on ultra high performance concrete: Part I. Raw materials and mixture design. Constr. Build. Mater. 2015, 101, 741–751. [Google Scholar] [CrossRef]
- Wang, D.H.; Shi, C.J.; Wu, Z.M.; Xiao, J.F.; Huang, Z.Y.; Fang, Z. A review on ultra high performance concrete: Part II. Hydration, microstructure and properties. Constr. Build. Mater. 2015, 96, 368–377. [Google Scholar] [CrossRef]
- Zhu, J.S.; Liu, Z.Q.; Liu, X.X.; Li, L.J.; Li, Y.Z. Bending performance of wet joints in negative moment zone of prefabricated small-box girder bridges: Experimental and numerical study. Structures 2024, 62, 16. [Google Scholar] [CrossRef]
- Xue, J.; Briseghella, B.; Huang, F.; Nuti, C.; Tabatabai, H.; Chen, B. Review of ultra-high performance concrete and its application in bridge engineering. Constr. Build. Mater. 2020, 260, 119844. [Google Scholar] [CrossRef]
- Zhou, M.; Lu, W.; Song, J.; Lee, G.C. Application of Ultra-High Performance Concrete in bridge engineering. Constr. Build. Mater. 2018, 186, 1256–1267. [Google Scholar] [CrossRef]
- Zhang, S.F.; Cao, Z.P.; Zhang, L.F.; Li, Z.F.; Jiang, H.B.; Hu, J.X. Design and Construction of a Novel Steel-UHPC Truss Pedestrian Bridge in Guangdong Province, People’s Republic of China. Struct. Eng. Int. 2025. online first. [Google Scholar] [CrossRef]
- Yang, I.-H.; Kim, K.-C.; Joh, C.-B. Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending. J. Korea Concr. Inst. 2014, 26, 771–778. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, R.; Jia, L.-J.; Wang, J.-Y. Flexural behaviour of rebar-reinforced ultra-high-performance concrete beams. Mag. Concr. Res. 2018, 70, 997–1015. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Mai, V.C. Flexural behavior of 60 m UHPC pre-stressed box girder. Mag. Civ. Eng. 2022, 112, 12. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, Z.W.; Deng, S.W.; Jiang, H.B.; Tian, Y.Q.; Geng, J.Y. Full-Scale Experimental Study on Flexural Performance of the New Precast UHPC Diaphragm Slab in Utility Tunnels. Buildings 2023, 13, 1349. [Google Scholar] [CrossRef]
- Lin, P.; Yan, W.; Zhao, H.; Ma, J. Theoretical and Experimental Investigation on the Flexural Behaviour of Prestressed NC-UHPC Composite Beams. Materials 2023, 16, 879. [Google Scholar] [CrossRef]
- Luo, S.; Zhao, H.; Qiao, D.; Tan, C.; Shao, X.; Ma, J.; Qian, H.; Liao, Z.; Hu, Z.; Zhou, C. Experimental and numerical investigation on deck system of a 102 m simply supported prestressed UHPC box-girder highway bridge. Eng. Struct. 2024, 316, 118601. [Google Scholar] [CrossRef]
- Tu, W.J.; Cheng, Q.; Zhang, L.F.; Li, P.J.; Jiang, H.B.; Tian, Y.Q.; Fang, J.F. Shear performance of 25 m full-scale prestressed UHPC-NC composite I-beam without stirrups. Case Stud. Constr. Mater. 2024, 21, 21. [Google Scholar] [CrossRef]
- Jiang, H.B.; Mo, F.; Chen, Z.Q.; Wu, J.J.; Fang, H.Z.; Fang, Z.C.; Zhang, S.F.; Xu, Z.M. Full-Scale Experimental Study of Shear and Flexural Behavior of 16-m Retired Reinforced Concrete T-Beams. Buildings 2023, 13, 2075. [Google Scholar] [CrossRef]
- JTG 3362-2018; Specifications for Design of Highway Reinforced Concrete and Prestressed Concrete Bridges and Culverts. Standardization Administration of China: Beijing, China, 2018.
- T/CCES 27-2021; Technical Specification for Ultra-High Performance Concrete Girder Bridge. Standardization Administration of China: Beijing, China, 2021.
- Zou, S.; Chen, R.Z.; Wang, H.L.; Fang, Z.C.; Qu, C.X.; Zhang, C.B. Effect of shear key geometrical dimensions on seismic performance of prefabricated concrete piers with shallow socket connections. Structures 2025, 71, 20. [Google Scholar] [CrossRef]
- Luo, J.B.; Wu, G.Z.; Zhao, G.F.; Ma, Y.H.; Fang, Z.C.; Fang, S. Experimental and numerical analysis on shear performance of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite structures under cyclic loading. Structures 2025, 73, 18. [Google Scholar] [CrossRef]
- Weng, R.; He, Z.; Liu, J.; Lei, B.; Huang, L.; Xu, J.; Liu, L.; Xiao, J. Shear Performance of UHPC-NC Composite Structure Interface Treated with Retarder: Quantification by Fractal Dimension and Optimization of Process Parameters. Buildings 2025, 15, 2591. [Google Scholar] [CrossRef]
- Xiao, J.; Liu, L.; Zeng, H.; Zhai, K.; Fu, J.; Jiang, H.; Pang, L. Research on the bond performance between glass fiber reinforced polymer (GFRP) bars and Ultra-high performance concrete (UHPC). J. Build. Eng. 2024, 98, 111340. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Q.Y.; Hu, S.Y.; Wang, C.J. Paraneters verification of concrete danaged hastic model of abaqus. Build. Struct. 2008, 127–130. [Google Scholar] [CrossRef]
- Lubliner, J.; Oliver, J.; Oller, S.; Oñate, E. A plastic-damage model for concrete. Int. J. Solids Struct. 1989, 25, 299–326. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-damage model for cyclic loading of concrete structures. J. Eng. Mech. (ASCE) 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Yang, J.; Fang, Z. Research on stress-strain relation of ultra high performance concrete. Concrete 2008, 8, 11–15. [Google Scholar]
- Shi, Z.C.; Su, Q.T.; Kavoura, F.; Veljkovic, M. Uniaxial tensile response and tensile constitutive model of ultra-high performance concrete containing coarse aggregate (CA-UHPC). Cem. Concr. Compos. 2023, 136, 17. [Google Scholar] [CrossRef]
- Stramandinoli, R.S.B.; La Rovere, H.L. FE model for nonlinear analysis of reinforced concrete beams considering shear deformation. Eng. Struct. 2012, 35, 244–253. [Google Scholar] [CrossRef]
- Bentz, E. Sectional Analysis of Reinforced Concrete Members. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 2000. [Google Scholar]
Parameter | Unit | Technical Specifications |
---|---|---|
Model | 120–80AA | |
Gauge Length × Width | mm | 85.8 × 4.7 |
Grid Length × Count | mm | 80.0 × 3.0 |
Base Material | Epoxy Phenolic | |
Grid Material | Constantan | |
Nominal Resistance Tolerance | Ω | 120 ± 1 Ω |
Average Resistance Deviation | Ω | ≤±0.1% |
Operating Temperature | −30 °C to 60 °C | |
Gauge Factor | 2.0–2.2 | |
Gauge Factor Deviation | ≤±1% | |
Strain Limit | % | 2.0 ± 1% |
Fatigue Life (±1000 με) | cycles | 1,000,000 |
Thermal Output Coefficient | μm/m/°C | ≤2 |
Thermal Output Deviation | ±μm/m | ≤30 |
Insulation Resistance | MΩ | 10,000 |
Room Temp Strain Limit | μm/m | 20,000 |
Mechanical Hysteresis | μm/m | 1.2 |
Self-Temperature-Compensation Number | 11 |
Expansion Angle | Eccentricity | Bonding Coefficient | ||
---|---|---|---|---|
0.1 | 1.16 | 0.667 | 0.004 |
Loading Point-to-N-Support Distance | Shear Span Ratio | Load | Left Support Reaction | Right Support Reaction | Maximum Moment |
---|---|---|---|---|---|
5.42 | 3.6 | 5355 | 1561.0 | 4941.5 | 26,157.3 |
6.71 | 4.4 | 5030 | 1501.0 | 4676.4 | 24,720.5 |
8 | 5.3 | 5084 | 1957.1 | 4274.3 | 32,877.1 |
9.62 | 6.3 | 5247 | 2290.6 | 4103.8 | 37,597.1 |
11.24 | 7.4 | 5040 | 2500.6 | 3686.9 | 38,893.6 |
14.40 | 9.5 | 4760 | 2905.1 | 3002.3 | 39,100.5 |
Shear Span Ratio | λ = 3.6 | λ = 4.4 | λ = 5.3 |
---|---|---|---|
Load (kN) | 5355 | 5030 | 5084 |
Stirrup stress (MPa) | 400 | 400 | 400 |
Longitudinal rebar stress (MPa) | 280 | 355 | 489 |
Prestressing tendon stress (MPa) | 1465 | 1588 | 1732 |
λ = 6.3 | ||||
Load (kN) | 4658 | 4882 | 5218 | 5247 |
Stirrup stress (MPa) | 400 | 400 | 400 | 400 |
Longitudinal rebar stress (MPa) | 473 | 500 | 500 | 500 |
Prestressing tendon stress (MPa) | 1696 | 1742 | 1860 | 1860 |
Reserve capacity | 11.2% | 7.0% | 0.6% | 0% |
λ = 7.4 | ||||
Load (kN) | 4279 | 4487 | 4847 | 5040 |
Stirrup stress (MPa) | 400 | 400 | 400 | 400 |
Longitudinal rebar stress (MPa) | 466 | 500 | 500 | 500 |
Prestressing tendon stress (MPa) | 1689 | 1731 | 1860 | 1860 |
Reserve capacity | 15.1% | 11.0% | 3.8% | 0% |
λ = 9.5 | ||||
Load (kN) | 4150 | 4150 | 4511 | 4760 |
Stirrup stress (MPa) | 400 | 400 | 400 | 400 |
Longitudinal rebar stress (MPa) | 500 | 500 | 500 | 500 |
Prestressing tendon stress (MPa) | 1741 | 1741 | 1860 | 1860 |
Reserve capacity | 12.8% | 12.8% | 5.2% | 0% |
Methods | ID | Ultimate Flexural Capacity | Corresponding Test Load | |
---|---|---|---|---|
Full-scale test | 34,469.2 | 4400 | 1.90 | |
Abaqus finite element simulation | 37,597.1 | 4851.5 | 2.07 | |
Response-2000 software | 30,816.1 | 3872.7 | 1.70 | |
Chinese code T/CCES 27-2021 | 25,414.4 | 3092.9 | 1.40 | |
33,810.9 | 4304.8 | 1.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, C.; Wu, S.; Wu, K.; Mo, F.; Jiang, H.; Tian, Y.; Fang, J. Experimental and Numerical Investigation on Flexural Behaviors of a 30 m Full-Scale Prestressed UHPC-NC Composite Box Girder. Buildings 2025, 15, 3089. https://doi.org/10.3390/buildings15173089
Zhou C, Wu S, Wu K, Mo F, Jiang H, Tian Y, Fang J. Experimental and Numerical Investigation on Flexural Behaviors of a 30 m Full-Scale Prestressed UHPC-NC Composite Box Girder. Buildings. 2025; 15(17):3089. https://doi.org/10.3390/buildings15173089
Chicago/Turabian StyleZhou, Chengan, Shengze Wu, Kaisheng Wu, Fan Mo, Haibo Jiang, Yueqiang Tian, and Junfa Fang. 2025. "Experimental and Numerical Investigation on Flexural Behaviors of a 30 m Full-Scale Prestressed UHPC-NC Composite Box Girder" Buildings 15, no. 17: 3089. https://doi.org/10.3390/buildings15173089
APA StyleZhou, C., Wu, S., Wu, K., Mo, F., Jiang, H., Tian, Y., & Fang, J. (2025). Experimental and Numerical Investigation on Flexural Behaviors of a 30 m Full-Scale Prestressed UHPC-NC Composite Box Girder. Buildings, 15(17), 3089. https://doi.org/10.3390/buildings15173089