Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties
Abstract
1. Introduction
2. Experimental Program
2.1. Materials
2.2. Mortar and Concrete Proportions
2.3. Test Procedures
2.4. Finite Element Modeling
3. Results and Discussion
3.1. Phase 1: Mortar Fresh and Hardened Properties
3.2. Phase 2: Concrete Mechanical Properties
3.2.1. Plain Concrete Properties
3.2.2. Shear Strength Properties
3.2.3. Finite Element Results
4. Conclusions
- Mortar testing demonstrated that the optimum replacement levels are 10% MK and 5% WG, balancing improved strength and workability while avoiding excessive dilution or bond loss. This validates the Concrete-Equivalent Mortar (CEM) approach as a practical screening tool for sustainable mix design.
- At the concrete scale, MK enhanced compressive strength and reduced sorptivity, while WG improved workability but decreased ductility when used alone. The combined MK–WG system achieved a 13% increase in shear strength relative to the control mix, demonstrating clear benefits in structural performance.
- Beams with 5% WG alone exhibited a reduced ductility index (µ = 1.338), reflecting a brittle response that could limit energy dissipation in real structures. The incorporation of steel fibers effectively mitigated this issue, raising µ to 2.489 and restoring resilience, a critical feature for seismic or impact-resistant design.
- The ABAQUS Concrete Damage Plasticity (CDP) model closely reproduced the experimental results, confirming its reliability in simulating load–deflection behavior, crack evolution, and ductility variations. This provides a predictive framework for extending laboratory findings to large-scale applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- El-Mir, A.; Nehme, S.; Assaad, J. Feasibility of Concrete Mixtures Containing Coarse and/or Fine Recycled Brick Aggregates. Mag. Civ. Eng. 2022, 116, 11603. [Google Scholar] [CrossRef]
- Nasser Eddine, Z.; Barraj, F.; Khatib, J.; Elkordi, A. From Waste to Resource: Utilizing Municipal Solid Waste Incineration Bottom Ash and Recycled Rubber in Pervious Concrete Pavement. Innov. Infrastruct. Solut. 2023, 8, 319. [Google Scholar] [CrossRef]
- Ghannoum, M.; Shamoun, L.; Nasr, D.; Assaad, J.J.; Riahi, H.; Khatib, J. Efficiency of Stochastic Finite Element Random Fields and Variables to Predict Shear Strength of Fiber-Reinforced Concrete Beams Without Stirrups. Buildings 2025, 15, 721. [Google Scholar] [CrossRef]
- Edlebi, G.A. Review of Enhancing Performance and Sustainability of RC Shear Walls. Steps Civ. Constr. Environ. Eng. 2023, 1, 38–51. [Google Scholar] [CrossRef]
- Awad, Z. Sustainable Restoration Techniques for Historic Buildings in Tyre City. Steps Civ. Constr. Environ. Eng. 2023, 1, 10–17. [Google Scholar] [CrossRef]
- Assaad, J.; Daou, Y.; Harb, J. Use of CEM Approach to Develop and Optimize High-Performance Underwater Concrete. J. Mater. Civ. Eng. (ASCE) 2011, 23, 1094–1102. [Google Scholar] [CrossRef]
- El Mir, A.; Nehme, S.G. Effect of Air Entraining Admixture on the Properties of Self-Compacting Concrete Incorporating Supplementary Cementitious Materials. Pollack Period. 2017, 12, 85–98. [Google Scholar] [CrossRef]
- Barraj, F.; Hatoum, A.; Khatib, J.; Assaad, J.; Castro, A.; Elkordi, A. Uncertainty Analysis for the Dynamic Modulus of Recycled Asphalt Mixtures Using Unclassified Fractionated RAP Materials. Constr. Build. Mater. 2024, 421, 135721. [Google Scholar] [CrossRef]
- Barraj, F.; Hatoum, A.; Assaad, J.J.; Alhakim, G.; Khatib, J.; Assaf, Y.; Elkordi, A. Characterisation of Superpave Recycled Asphalt Mixtures Utilising Optimum Contents of Fatty Amine-Based Asphalt Additive. Int. J. Mason. Res. Innov. 2024, 10, 76–99. [Google Scholar] [CrossRef]
- Nagrockiene, D.; Paliulis, D. The Effect of Crushed Glass and Metakaolin Waste in the Properties of Modified Concrete. Ceram.—Silik. 2022, 66, 520–526. [Google Scholar] [CrossRef]
- Leal, R.B.; Morais, S.; Santos, S. Assessing the Impact of Waste Glass and Metakaolin on the Durability and Mechanical Strength Properties of Concrete. Matéria 2024, 29, e20240103. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Özkılıç, Y.O.; Zeybek, Ö.; Karalar, M.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Bejinariu, C. Mechanical Behavior of Crushed Waste Glass as Replacement of Aggregates. Materials 2022, 15, 8093. [Google Scholar] [CrossRef]
- Karalar, M.; Başaran, B.; Aksoylu, C.; Zeybek, Ö.; Althaqafi, E.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Umiye, O.A.; Özkılıç, Y.O. Utilizing Recycled Glass Powder in Reinforced Concrete Beams: Comparison of Shear Performance. Sci. Rep. 2025, 15, 6919. [Google Scholar] [CrossRef]
- Aksoylu, C.; Başaran, B.; Karalar, M.; Zeybek, Ö.; Althaqafi, E.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Umiye, O.A.; Özkılıç, Y.O. Experimental, Theoretical and Digital Image Correlation Methods to Assess Bending Performance of RC Beams with Recycled Glass Powder Replacing Cement. Sci. Rep. 2025, 15, 25163. [Google Scholar] [CrossRef]
- Rachid, T.A.; Dbouk, F.; Hamad, B.; Assaad, J.J. Structural behavior of beams cast using normal and high strength concrete containing blends of ceramic waste powder and blast furnace slag. Clean. Mater. 2023, 7, 100179. [Google Scholar] [CrossRef]
- Nodehi, M.; Mohamad Taghvaee, V. Sustainable Concrete for Circular Economy: A Review on Use of Waste Glass. Glass Struct. Eng. 2021, 7, 3–22. [Google Scholar] [CrossRef]
- Bhat, K.R.; Dumre, G.; Gyawali, T.R. Transforming Waste into Strength: Evaluating Properties of Concrete with Waste Glass Substitution. Clean. Waste Syst. 2024, 9, 100179. [Google Scholar] [CrossRef]
- Bawab, J.; Khatib, J.; Jahami, A.; Elkordi, A.; Ghorbel, E. Structural Performance of Reinforced Concrete Beams Incorporating Cathode-Ray Tube (CRT) Glass Waste. Buildings 2021, 11, 67. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Başaran, B.; Aksoylu, C.; Karalar, M.; Althaqafi, E.; Beskopylny, A.N.; Stel’makh, S.A.; Shcherban, E.M.; Ahmed Umiye, O.; Onuralp Özkılıç, Y. Shear Performance in Reinforced Concrete Beams with Partial Aggregate Substitution Using Waste Glass: A Comparative Analysis via Digital Imaging Processing and a Theoretical Approach. ACS Omega 2024, 9, 41662–41675. [Google Scholar] [CrossRef]
- Amer, A.A.; El-Hoseny, S. Properties and Performance of Metakaolin Pozzolanic Cement Pastes. J. Therm. Anal. Calorim. 2017, 129, 33–44. [Google Scholar] [CrossRef]
- Ravi, N.; Bhavani, P. Strength and Durability Properties of Metakaolin with Partial Replacement of Cement. IOSR J. Comput. Eng. 2019, 21, 74–83. [Google Scholar]
- Lenka, S.; Panda, K.C. Effect of Metakaolin on the Properties of Conventional and Self Compacting Concrete. Adv. Concr. Constr. 2017, 5, 31–48. [Google Scholar] [CrossRef]
- Kaur, A.; Sran, S. Use of Metakaolin as Pozzolanic Material and Partial Replacement with Cement in Concrete (M30). Asian Rev. Mech. Eng. 2016, 5, 9–13. [Google Scholar] [CrossRef]
- Taiye, A.; Olubunmi, A.; Aliyu, S. A Review on the Effect of Pozzolanic Properties of Metakaolin in Concrete. Int. J. Res. Publ. Rev. J. 2022, 3, 1383–1388. [Google Scholar]
- Al-Akhras, N.M. Durability of Metakaolin Concrete to Sulfate Attack. Cem. Concr. Res. 2006, 36, 1727–1734. [Google Scholar] [CrossRef]
- Khatib, J.M.; Baalbaki, O.; ElKordi, A.A. Metakaolin. In Waste and Supplementary Cementitious Materials in Concrete; Woodhead Publishing: Cambridge, UK, 2018; pp. 493–511. [Google Scholar] [CrossRef]
- Yerramala, A.; Ramachandurdu, C.; Bhaskar Desai, V. Flexural Strength of Metakaolin Ferrocement. Compos. Part B Eng. 2013, 55, 176–183. [Google Scholar] [CrossRef]
- Assaad, J.J.; Saba, M. Use of Metakaolin and Slag Geopolymer Adhesives for Fixing Tiles. ACI Mater. J. 2024, 121, 3–14. [Google Scholar] [CrossRef]
- Homayoonmehr, R.; Ramezanianpour, A.A.; Mirdarsoltany, M. Influence of Metakaolin on Fresh Properties, Mechanical Properties and Corrosion Resistance of Concrete and Its Sustainability Issues: A Review. J. Build. Eng. 2021, 44, 103011. [Google Scholar] [CrossRef]
- ASTM C150; Standard Specification for Portland Cement. ASTM International: West Conshohocken, PA, USA, 2024. Available online: https://www.astm.org/c0150_c0150m-24.html (accessed on 2 July 2025).
- ASTM C494; Standard Specification for Chemical Admixtures for Concrete. ASTM International: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/c0494_c0494m-17.html (accessed on 2 July 2025).
- ASTM C33; Standard Specification for Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2018. Available online: https://www.astm.org/c0033_c0033m-18.html (accessed on 2 July 2025).
- Assaad, J.; Khayat, K.H. Effect of Coarse Aggregate Characteristics on Lateral Pressure Exerted by Self-Consolidating Concrete. ACI Mater. J. 2005, 102, 145–153. [Google Scholar] [CrossRef]
- ACI Committee 214; Guide to Evaluation of Strength Test Results of Concrete (ACI 214R-11) and Commentary. American Concrete Institute: Farmington Hills, MI, USA, 2011.
- BS EN 196-8:2005; Methods of Testing Cement—Part 8: Determination of Strength. British Standards Institution: London, UK, 2005. Available online: https://knowledge.bsigroup.com/products/methods-of-testing-cement-determination-of-strength-2 (accessed on 2 July 2025).
- ASTM C642; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/c0642-21.html (accessed on 2 July 2025).
- ASTM C39; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021. Available online: https://www.astm.org/c0039_c0039m-21.html (accessed on 2 July 2025).
- ASTM C469; Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression. ASTM International: West Conshohocken, PA, USA, 2002. Available online: https://www.astm.org/c0469-02.html (accessed on 2 July 2025).
- ASTM C496; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 1996. Available online: https://www.astm.org/c0496-96.html (accessed on 2 July 2025).
- ASTM C1585; Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic-Cement Concretes. ASTM International: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/c1585-20.html (accessed on 2 July 2025).
- Anas, S.M.; Alam, M.; Shariq, M. Damage Response of Conventionally Reinforced Two-Way Spanning Concrete Slab under Eccentric Impacting Drop Weight Loading. Def. Technol. 2022, 19, 12–34. [Google Scholar] [CrossRef]
- Jahami, A.; Dayaa, L.; Assaad, J.J.; Baalbaki, O.; Khatib, J. Flexural Strength of Structural Beams Cast Using Combined Normal-Weight and Lightweight Concrete Mixtures. Buildings 2024, 14, 3787. [Google Scholar] [CrossRef]
- Ali, E.E.; Al-Tersawy, S.H. Recycled Glass as a Partial Replacement for Fine Aggregate in Self Compacting Concrete. Constr. Build. Mater. 2012, 35, 785–791. [Google Scholar] [CrossRef]
- Chen, J.J.; Li, Q.H.; Ng, P.L.; Li, L.G.; Kwan, A.K.H. Cement Equivalence of Metakaolin for Workability, Cohesiveness, Strength and Sorptivity of Concrete. Materials 2020, 13, 1646. [Google Scholar] [CrossRef]
- Mydin, M.A.O.; Jagadesh, P.; Bahrami, A.; Majeed, S.S.; Dulaimi, A.; Omar, R. Study on Fresh and Hardened State Properties of Eco-Friendly Foamed Concrete Incorporating Waste Soda-Lime Glass. Sci. Rep. 2024, 14, 18733. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and Calcined Clays as Pozzolans for Concrete: A Review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Assaad, J.J.; Saba, M. Use of Seashell and Limestone Fillers in Metakaolin-Based Geopolymers for Masonry Mortars. Minerals 2023, 13, 186. [Google Scholar] [CrossRef]
- Siddique, R.; Klaus, J. Influence of Metakaolin on the Properties of Mortar and Concrete: A Review. Appl. Clay Sci. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Rakhshanimehr, M.; Esfahani, M.R.; Kianoush, M.R.; Mohammadzadeh, B.A.; Mousavi, S.R. Flexural Ductility of Reinforced Concrete Beams with Lap-Spliced Bars. Can. J. Civ. Eng. 2014, 41, 594–604. [Google Scholar] [CrossRef]
- Redondo-Pérez, N.M.; Redondo-Mosquera, J.D.; Abellán-García, J.A. Comprehensive Overview of Recycled Glass as Mineral Admixture for Circular UHPC Solutions. Sustainability 2024, 16, 5077. [Google Scholar] [CrossRef]
- Assaad, J.; Khayat, K.H. Formwork Pressure of Self-Consolidating Concrete Made with Various Binder Types and Contents. ACI Mater. J. 2005, 102, 215–223. [Google Scholar] [CrossRef]
- Mohamed, A.M.; Tayeh, B.A. Metakaolin in Ultra-High-Performance Concrete: A Critical Review of Its Effectiveness as a Green and Sustainable Admixture. Case Stud. Constr. Mater. 2024, 21, e03967. [Google Scholar] [CrossRef]
- Harrison, E.; Berenjian, A.; Seifan, M. Recycling of Waste Glass as Aggregate in Cement-Based Materials. Environ. Sci. Ecotechnology 2020, 4, 100064. [Google Scholar] [CrossRef]
- Poudel, S.; Bhetuwal, U.; Kharel, P.; Khatiwada, S.; KC, D.; Dhital, S.; Lamichhane, B.; Yadav, S.K.; Suman, S. Waste Glass as Partial Cement Replacement in Sustainable Concrete: Mechanical and Fresh Properties Review. Buildings 2025, 15, 857. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, H.; Umair, M.; Hanif, A. Axial Compressive Behavior of Confined Steel Fiber Reinforced High Strength Concrete. Constr. Build. Mater. 2020, 230, 117043. [Google Scholar] [CrossRef]
- Jayasooriya, D.; Rajeev, P.; Sanjayan, J. Tensile Stress-Strain Models for Steel Fiber Reinforced Concrete. J. Build. Eng. 2024, 96, 110533. [Google Scholar] [CrossRef]
- Babafemi, A.; Šavija, B.; Paul, S.; Anggraini, V. Engineering Properties of Concrete with Waste Recycled Plastic: A Review. Sustainability 2018, 10, 3875. [Google Scholar] [CrossRef]
- Mallum, I.; Mohd.Sam, A.R.; Lim, N.H.A.S.; Omolayo, N. Sustainable Utilization of Waste Glass in Concrete: A Review. Silicon 2021, 14, 3199–3214. [Google Scholar] [CrossRef]
- Autrup, F.; Jørgensen, H.B.; Hoang, L.C. Dowel Action of the Tensile Reinforcement in RC Beams without Shear Reinforcement: Novel Experimental Investigation and Mechanical Modelling. Eng. Struct. 2023, 279, 115471. [Google Scholar] [CrossRef]
- Lakavath, C.; Joshi, S.S.; Prakash, S.S. Investigation of the Effect of Steel Fibers on the Shear Crack-Opening and Crack-Slip Behavior of Prestressed Concrete Beams Using Digital Image Correlation. Eng. Struct. 2019, 193, 28–42. [Google Scholar] [CrossRef]
- Ghali, A.E.A.; El Ezz, N.E.; Hamad, B.; Assaad, J.; Yehya, A. Comparative Study on Shear Strength and Life Cycle Assessment of Reinforced Concrete Beams Containing Different Types of Fibers. Case Stud. Constr. Mater. 2023, 19, e02497. [Google Scholar] [CrossRef]
- Yooprasertchai, E.; Bahrami, A.; Saingam, P.; Hussain, Q.; Ejaz, A.; Joyklad, P. Incorporation of Steel Fibers to Enhance Performance of Sustainable Concrete Made with Waste Brick Aggregates: Experimental and Regression-Based Approaches. Buildings 2023, 13, 2820. [Google Scholar] [CrossRef]
- Gong, C.; Kang, L.; Zhou, W.; Liu, L.; Lei, M. Tensile Performance Test Research of Hybrid Steel Fiber—Reinforced Self-Compacting Concrete. Materials 2023, 16, 1114. [Google Scholar] [CrossRef]
- Avci-Karatas, C.; Celik, O.C.; Eruslu, S.O. Modeling of Buckling Restrained Braces (BRBs) Using Full-Scale Experimental Data. KSCE J. Civ. Eng. 2019, 23, 4431–4444. [Google Scholar] [CrossRef]
Nomenclature | Control | 10% MK | 5% WG | 10% MK + 5% WG | 10% MK + 5% WG + 1% SF |
---|---|---|---|---|---|
Cement, kg/m3 | 375 | 337.5 | 375 | 337.5 | 337.5 |
MK, kg/m3 | 0 | 37.5 | 0 | 37.5 | 37.5 |
Water, kg/m3 | 190 | 190 | 190 | 190 | 190 |
Natural sand, kg/m3 | 790 | 790 | 780 | 780 | 780 |
WG (0–4.75 mm), kg/m3 | 0 | 0 | 40 | 40 | 40 |
Coarse aggregate, kg/m3 | 980 | 980 | 980 | 980 | 980 |
Steel fibers, kg/m3 | 0 | 0 | 0 | 0 | 78.5 |
HRWR, % of binder | 1.4 | 1.65 | 1.35 | 1.45 | 1.8 |
Material Property | R8 | T16 |
---|---|---|
Density (kg/m3) | 7850 | |
Modulus of Elasticity (MPa) | 199,000 | 196,000 |
Yield strength (MPa) | 580 | 575 |
Yield strain (%) | 0.290 | 0.290 |
Ultimate strength (MPa) | 660 | 750 |
Ultimate strain (%) | 13.5 | 14 |
Material Property | |
---|---|
Dilation angle (deg) | 35–42 |
Eccentricity | 0.1 |
fbo/fco | 1.16 |
K | 0.667 |
Viscosity parameter | 0.0001 |
Property | Control | 10% MK | 5% WG | 10% MK + 5% WG | 10% MK + 5% WG + 1% Fibers |
---|---|---|---|---|---|
HRWR, % of binder | 1.4 | 1.65 | 1.35 | 1.45 | 1.8 |
Density, kg/m3 | 2439.5 | 2415.9 | 2401.1 | 2429.3 | 2476.6 |
7-d f’c, MPa | 29.78 | 29.26 | 30.61 | 37.49 | 45.54 |
28-d f’c, MPa | 40.00 | 48.84 | 42.51 | 49.18 | 53.14 |
ft, MPa | 4.00 | 3.88 | 3.48 | 3.87 | 5.86 |
E, GPa | 30.47 | 34.25 | 33.21 | 35.02 | 40.11 |
Sorptivity, mm/hr0.5 | 0.393 | 0.255 | 0.36 | 0.167 | 0.214 |
Pmax, kN | 69.77 | 74.33 | 72.18 | 79.08 | 88.96 |
max, mm | 3.45 | 4.62 | 1.32 | 2.66 | 3.77 |
Ductility index | 1.513 | 1.807 | 1.338 | 1.695 | 2.489 |
Output | Control | 10% MK | 5% WG | 10% MK + 5% WG | 10% MK + 5% WG + 1% Fibers |
---|---|---|---|---|---|
Pmax, kN | 66.1 | 71.6 | 76.8 | 78.8 | 89.8 |
max, mm | 5.19 | 6.13 | 1.47 | 3 | 4.5 |
Ductility index | 2.21 | 2.73 | 1.41 | NA | NA |
Damaged zone, % | 42.6 | 46.7 | 41.8 | 47 | 51.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jahami, A.; Frangieh, H.; Assaad, J.; Alkhatib, A.; Avci-Karatas, C.; Chieffo, N. Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties. Buildings 2025, 15, 3185. https://doi.org/10.3390/buildings15173185
Jahami A, Frangieh H, Assaad J, Alkhatib A, Avci-Karatas C, Chieffo N. Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties. Buildings. 2025; 15(17):3185. https://doi.org/10.3390/buildings15173185
Chicago/Turabian StyleJahami, Ali, Hektor Frangieh, Joseph Assaad, Ahmad Alkhatib, Cigdem Avci-Karatas, and Nicola Chieffo. 2025. "Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties" Buildings 15, no. 17: 3185. https://doi.org/10.3390/buildings15173185
APA StyleJahami, A., Frangieh, H., Assaad, J., Alkhatib, A., Avci-Karatas, C., & Chieffo, N. (2025). Experimental and Numerical Study Assessing the Synergistic Effect of Metakaolin and Waste Glass on the Concrete Mechanical and Structural Properties. Buildings, 15(17), 3185. https://doi.org/10.3390/buildings15173185