Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations
Abstract
:1. Introduction
1.1. Background
1.2. Research Significance
2. Methods
- Year of publication: 2014–2023;
- Document type: Articles;
- Source type: Peer-reviewed journals;
- Language: English.
3. Results
3.1. Geographical and Chronological Analysis
3.2. Building Use and Project Phase
3.3. Digital Technologies Applied to Modular Construction
3.3.1. BIM Modelling and Digital Twinning Applications
3.3.2. Smart Homes
3.3.3. “Calibration Twins”
3.3.4. Reality Capture Technologies
3.3.5. Automated Design Applications
3.3.6. openBIM Applications
3.3.7. Automated Manufacturing Tools
3.3.8. Finite Element Modelling (FEM)
3.3.9. Game Engines and Extended Reality
3.3.10. BIM Applications Without Additional Technologies
3.3.11. General Digital Remarks
3.4. Building Construction Solutions
3.5. Building Sustainability
4. Discussion
4.1. Digital-Oriented Modular Construction
4.2. Sustainable Industrial Manufacturing
4.3. Sustainable Solutions Towards Environmentally Friendly Modular Construction
5. Conclusions and Future Works
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AEC | Architecture, Engineering, and Construction |
AI | Artificial Intelligence |
BEM | Building Energy Modelling |
BIM | Building Information Modelling |
BIPV | Building-Integrated Photovoltaic |
CDW | Construction and Demolition Waste |
CNC | Computer Numerical Control |
DfMA | Design for Manufacture and Assembly |
EPS | Expanded Polystyrene |
FEM | Finite Element Modelling |
GWP | Global Warming Potential |
HVAC | Heating, Ventilation and Air Conditioning |
IoT | Internet of Things |
LCA | Life Cycle Assessment |
nZEB | nearly-Zero Energy Buildings |
O&M | Operations and Maintenance |
PCM | Phase Change Material |
PET | Polyethylene terephthalate |
PIR | Polyisocyanurate |
PUR | Polyurethane |
PV/T | Photovoltaic and Thermal |
PVC | Polyvinyl chloride |
RFID | Radio-Frequency Identification |
U | Thermal transmittance coefficient |
VR | Virtual Reality |
XPS | Extruded Polystyrene |
Including the following Köppen–Geiger climate zones: | |
Af | tropical rainforest |
Aw | tropical savanna |
BSh | hot arid steppes |
BSk | cold arid steppes |
BWh | hot desert climate |
Csa | hot summer Mediterranean climate |
Csb | warm summer Mediterranean climate |
Cwa | dry winter humid subtropical climate |
Cwb | subtropical highland climate (temperate oceanic climate with dry winters) |
Cfa | humid subtropical climate |
Cfb | oceanic climate |
Dwa | dry winter humid subtropical climate |
Dfa | hot summer humid continental climate |
Dfb | warm summer humid continental climate |
References
- Staib, G.; Dörrhöfer, A.; Rosenthal, M. Components and Systems: Modular Construction Design, Structure, New Technologies; DETAIL; Birkhäuser: Basel, Switzerland, 2008; ISBN 978-3-7643-8656-6. [Google Scholar]
- Smith, R.E. History of Prefabrication: A Cultural Survey. In Proceedings of the Third International Congress on Construction History, Cottbus, Germany, 20–24 May 2009; pp. 1355–1364. [Google Scholar]
- O’Brien, M.J. Success and Failure in Industrialized Prefabricated Housing. In Proceedings of the ISEC 2015—8th International Structural Engineering and Construction Conference: Implementing Innovative Ideas in Structural Engineering and Project Management, Sydney, Australia, 23–28 November 2015; pp. 1217–1222. [Google Scholar] [CrossRef]
- Savvides, A.; Michael, A.; Vassiliades, C.; Parpa, D.; Triantafyllidou, E.; Englezou, M. An Examination of the Design for a Prefabricated Housing Unit in Cyprus in Terms of Energy, Daylighting and Cost. Sci. Rep. 2023, 13, 12611. [Google Scholar] [CrossRef] [PubMed]
- Carbone, C. The Kit of Parts as Medium and Message for Developing Post-War Dwellings. Hist. Postwar Archit. 2019, 4, 54–74. [Google Scholar] [CrossRef]
- Khalili-Araghi, S.; Kolarevic, B. Variability and Validity: Flexibility of a Dimensional Customization System. Autom. Constr. 2020, 109, 102970. [Google Scholar] [CrossRef]
- gluon Inc. 3D Digital Archive—Nakagin Capsule Tower. Available online: https://gluon.tokyo/en/projects/3d-digital-archive-nakagin-capsule-tower (accessed on 4 December 2024).
- Brozovsky, J.; Labonnote, N.; Vigren, O. Digital Technologies in Architecture, Engineering, and Construction. Autom. Constr. 2024, 158, 105212. [Google Scholar] [CrossRef]
- Delgado, J.M.P.Q.; Guimarães, A.S.; Poças Martins, J.; Parracho, D.F.R.; Freitas, S.S.; Lima, A.G.B.; Rodrigues, L. BIM and BEM Interoperability–Evaluation of a Case Study in Modular Wooden Housing. Energies 2023, 16, 1579. [Google Scholar] [CrossRef]
- Qi, B.; Costin, A. BIM and Ontology-Based DfMA Framework for Prefabricated Component. Buildings 2023, 13, 394. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J. BIM-Based 4D Simulation to Improve Module Manufacturing Productivity for Sustainable Building Projects. Sustainability 2017, 9, 426. [Google Scholar] [CrossRef]
- Lu, W.; Tan, T.; Xu, J.; Wang, J.; Chen, K.; Gao, S.; Xue, F. Design for Manufacture and Assembly (DfMA) in Construction: The Old and the New. Archit. Eng. Des. Manag. 2021, 17, 77–91. [Google Scholar] [CrossRef]
- Gallo, P.; Romano, R.; Belardi, E. Smart Green Prefabrication: Sustainability Performances of Industrialized Building Technologies. Sustainability 2021, 13, 4701. [Google Scholar] [CrossRef]
- Ikudayisi, A.E.; Chan, A.P.C.; Darko, A.; Adedeji, Y.M.D. Integrated Practices in the Architecture, Engineering, and Construction Industry: Current Scope and Pathway towards Industry 5.0. J. Build. Eng. 2023, 73, 106788. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q. Barriers to the Adoption of Modular Integrated Construction: Systematic Review and Meta-Analysis, Integrated Conceptual Framework, and Strategies. J. Clean. Prod. 2020, 249, 119347. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q. Critical Success Factors for Modular Integrated Construction Projects: A Review. Build. Res. Inf. 2020, 48, 763–784. [Google Scholar] [CrossRef]
- Alhawamdeh, M.; Lee, A. A Systematic Review and Meta-Synthesis of the Barriers of Offsite Construction Projects. Int. J. Constr. Manag. 2024, 1–13. [Google Scholar] [CrossRef]
- Abdelmageed, S.; Zayed, T. A Study of Literature in Modular Integrated Construction—Critical Review and Future Directions. J. Clean. Prod. 2020, 277, 124044. [Google Scholar] [CrossRef]
- Nguyen, T.D.H.N.; Moon, H.; Ahn, Y. Critical Review of Trends in Modular Integrated Construction Research with a Focus on Sustainability. Sustainability 2022, 14, 12282. [Google Scholar] [CrossRef]
- Soltani, S.; Abbasnejad, B.; Gu, N.; Yu, R.; Maxwell, D. A Multi-Faceted Analysis of Enablers and Barriers of Industrialised Building: Global Insights for the Australian Context. Buildings 2025, 15, 214. [Google Scholar] [CrossRef]
- Bello, A.O.; Eje, D.O.; Idris, A.; Semiu, M.A.; Khan, A.A. Drivers for the Implementation of Modular Construction Systems in the AEC Industry of Developing Countries. J. Eng. Des. Technol. 2024, 22, 2043–2062. [Google Scholar] [CrossRef]
- Saliu, L.O.; Monko, R.; Zulu, S.; Maro, G. Barriers to the Integration of Building Information Modeling (BIM) in Modular Construction in Sub-Saharan Africa. Buildings 2024, 14, 2448. [Google Scholar] [CrossRef]
- Wuni, I.Y.; Shen, G.Q.; Hwang, B.-G. Risks of Modular Integrated Construction: A Review and Future Research Directions. Front. Eng. Manag. 2020, 7, 63–80. [Google Scholar] [CrossRef]
- Ribeiro, A.M.; Arantes, A.; Cruz, C.O. Barriers to the Adoption of Modular Construction in Portugal: An Interpretive Structural Modeling Approach. Buildings 2022, 12, 1509. [Google Scholar] [CrossRef]
- Darko, A.; Chan, A.P.C.; Yang, Y.; Tetteh, M.O. Building Information Modeling (BIM)-Based Modular Integrated Construction Risk Management—Critical Survey and Future Needs. Comput. Ind. 2020, 123, 103327. [Google Scholar] [CrossRef]
- Cheng, Z.; Tang, S.; Liu, H.; Lei, Z. Digital Technologies in Offsite and Prefabricated Construction: Theories and Applications. Buildings 2023, 13, 163. [Google Scholar] [CrossRef]
- Yevu, S.K.; Owusu, E.K.; Chan, A.P.C.; Oti-Sarpong, K.; Wuni, I.Y.; Tetteh, M.O. Systematic Review on the Integration of Building Information Modelling and Prefabrication Construction for Low-Carbon Building Delivery. Build. Res. Inf. 2023, 51, 279–300. [Google Scholar] [CrossRef]
- He, R.; Li, M.; Gan, V.J.L.; Ma, J. BIM-Enabled Computerized Design and Digital Fabrication of Industrialized Buildings: A Case Study. J. Clean. Prod. 2021, 278, 123505. [Google Scholar] [CrossRef]
- Council of the European Union. ‘Fit for 55’: Council and Parliament Reach Deal on Proposal to Revise Energy Performance of Buildings Directive. Available online: https://www.consilium.europa.eu/en/press/press-releases/2023/12/07/fit-for-55-council-and-parliament-reach-deal-on-proposal-to-revise-energy-performance-of-buildings-directive/ (accessed on 4 December 2024).
- The European Commission. 2050 Long-Term Strategy. Available online: https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en (accessed on 4 December 2024).
- The European Commission—Directorate-General for Climate Action. Going Climate-Neutral by 2050: A Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate-Neutral EU Economy; European Union: Luxembourg, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- The European Parliament and the Council of the European Union. Directive (EU) 2024/1275 of the European Parliament and of the Council of 24 April 2024 on the Energy Performance of Buildings. Off. J. Eur. Union 2024, 1275, 1–68. [Google Scholar]
- Recuperar Portugal: PRR—Plano de Recuperação e Resiliência. Ficha de Projeto: R2U Technologies. 2022. Available online: https://r2utechnologies.pt/wp-content/uploads/2024/01/Ficha-Projeto_R2U.pdf (accessed on 1 February 2025).
- Abanda, F.H.; Tah, J.H.M.; Cheung, F.K.T. BIM in Off-Site Manufacturing for Buildings. J. Build. Eng. 2017, 14, 89–102. [Google Scholar] [CrossRef]
- Olawumi, T.O.; Chan, D.W.M.; Ojo, S.; Yam, M.C.H. Automating the Modular Construction Process: A Review of Digital Technologies and Future Directions with Blockchain Technology. J. Build. Eng. 2022, 46, 103720. [Google Scholar] [CrossRef]
- Rangasamy, V.; Yang, J.-B. The Convergence of BIM, AI and IoT: Reshaping the Future of Prefabricated Construction. J. Build. Eng. 2024, 84, 108606. [Google Scholar] [CrossRef]
- Khan, A.A.; Yu, R.; Liu, T.; Gu, N.; Walsh, J. Volumetric Modular Construction Risks: A Comprehensive Review and Digital-Technology-Coupled Circular Mitigation Strategies. Sustainability 2023, 15, 7019. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, J.; Lu, W. Human-Robot Collaboration for Modular Construction Manufacturing: Review of Academic Research. Autom. Constr. 2024, 158, 105196. [Google Scholar] [CrossRef]
- Kamali, M.; Hewage, K. Life Cycle Performance of Modular Buildings: A Critical Review. Renew. Sustain. Energy Rev. 2016, 62, 1171–1183. [Google Scholar] [CrossRef]
- Savvides, A.; Michael, A.; Vassiliades, C.; Kartsiou, A. Building Integration of Environmental Systems and Strategies in Off-Grid Environmentally-Friendly Prefabricated Housing Units. Introduction of a Taxonomy and Evaluation Methodology. In Proceedings of the Sustainable Development of Energy, Water and Environment Systems (SDEWES), Palermo, Italy, 30 September–4 October 2018; pp. 1–9. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Gibb, A.G.F. Standardization and Pre-Assembly- Distinguishing Myth from Reality Using Case Study Research. Constr. Manag. Econ. 2001, 19, 307–315. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.-A. Lifespan Prediction Technique for Digital Twin-Based Noise Barrier Tunnels. Sustainability 2020, 12, 2940. [Google Scholar] [CrossRef]
- Huang, M.Q.; Chen, X.L.; Ninić, J.; Bai, Y.; Zhang, Q.B. A Framework for Integrating Embodied Carbon Assessment and Construction Feasibility in Prefabricated Stations. Tunn. Undergr. Sp. Technol. 2023, 132, 104920. [Google Scholar] [CrossRef]
- Liu, W. Intelligent Identification and Construction System of Prefabricated Tunnel Structure Based on BIM Technology. Adv. Multimed. 2022, 2022, 9173929. [Google Scholar] [CrossRef]
- Krantz, J.; Larsson, J.; Lu, W.Z.; Olofsson, T. Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects. Buildings 2015, 5, 1156–1170. [Google Scholar] [CrossRef]
- Nguyen, D.C.; Park, S.J.; Shim, C.S. Digital Engineering Models for Prefabricated Bridge Piers. Smart Struct. Syst. 2022, 30, 35–47. [Google Scholar] [CrossRef]
- Zhao, W. Research on Project Management System of Prefabricated Bridge of Jinzhai Road Viaduct South Extension in Hefei Based on Cloud Platform. Wirel. Commun. Mob. Comput. 2022, 2022, 2664984. [Google Scholar] [CrossRef]
- Varela, S.; Saiidi, M. Resilient Deconstructible Columns for Accelerated Bridge Construction in Seismically Active Areas. J. Intell. Mater. Syst. Struct. 2017, 28, 1751–1774. [Google Scholar] [CrossRef]
- Sharif, M.M.; Haas, C.; Walbridge, S. Using Termination Points and 3D Visualization for Dimensional Control in Prefabrication. Autom. Constr. 2022, 133, 103998. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Wu, G. Modular and Offsite Construction of Piping: Current Barriers and Route. Appl. Sci. 2017, 7, 547. [Google Scholar] [CrossRef]
- Chen, M.; Weng, Y.; Semple, K.; Zhang, S.; Hu, Y.; Jiang, X.; Ma, J.; Fei, B.; Dai, C. Sustainability and Innovation of Bamboo Winding Composite Pipe Products. Renew. Sustain. Energy Rev. 2021, 144, 110976. [Google Scholar] [CrossRef]
- Teslyuk, V.; Tsmots, I.; Michal, G.m.; Teslyuk, T.; Kazymyra, I. Methods for the Efficient Energy Management in a Smart Mini Greenhouse. Comput. Mater. Contin. 2022, 70, 3169–3187. [Google Scholar] [CrossRef]
- Chen, L.; Zhai, C.; Wang, L.; Hu, X.; Huang, X. Modular Structure Construction Progress Scenario: A Case Study of an Emergency Hospital to Address the COVID-19 Pandemic. Sustainability 2022, 14, 11243. [Google Scholar] [CrossRef]
- Jayawardana, J.; Sandanayake, M.; Kulatunga, A.K.; Jayasinghe, J.A.S.C.; Zhang, G.; Osadith, S.A.U. Evaluating the Circular Economy Potential of Modular Construction in Developing Economies—A Life Cycle Assessment. Sustainability 2023, 15, 16336. [Google Scholar] [CrossRef]
- Tan, T.; Mills, G.; Papadonikolaki, E.; Li, B.; Huang, J. Digital-Enabled Design for Manufacture and Assembly (DfMA) in Offsite Construction: A Modularity Perspective for the Product and Process Integration. Archit. Eng. Des. Manag. 2023, 19, 267–282. [Google Scholar] [CrossRef]
- Raposo, C.; Rodrigues, F.; Rodrigues, H. BIM-Based LCA Assessment of Seismic Strengthening Solutions for Reinforced Concrete Precast Industrial Buildings. Innov. Infrastruct. Solut. 2019, 4, 51. [Google Scholar] [CrossRef]
- Bonamente, E.; Cotana, F. Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis. Energies 2015, 8, 12685–12701. [Google Scholar] [CrossRef]
- Harrouz, J.P.; Katramiz, E.; Ghali, K.; Ouahrani, D.; Ghaddar, N. Comparative Analysis of Sustainable Desiccant—Evaporative Based Ventilation Systems for a Typical Qatari Poultry House. Energy Convers. Manag. 2021, 245, 114556. [Google Scholar] [CrossRef]
- Krommweh, M.S.; Rösmann, P.; Büscher, W. Investigation of Heating and Cooling Potential of a Modular Housing System for Fattening Pigs with Integrated Geothermal Heat Exchanger. Biosyst. Eng. 2014, 121, 118–129. [Google Scholar] [CrossRef]
- Ćuković Ignjatović, N.; Vranješ, A.; Ignjatović, D.; Milenić, D.; Krunić, O. Sustainable Modularity Approach to Facilities Development Based on Geothermal Energy Potential. Appl. Sci. 2021, 11, 2691. [Google Scholar] [CrossRef]
- Ceranic, B.; Beardmore, J.; Cox, A. Rapid Deployment Modular Building Solutions and Climatic Adaptability: Case Based Study of a Novel Approach to “Thermal Capacity on Demand”. Energy Build. 2018, 167, 124–135. [Google Scholar] [CrossRef]
- Turnšek, B.A.-J.; Stanojević, A.; Jevremović, L. Developing a Model for Sustainable Conversion of Blockhouse Bunkers in Serbia. Teh. Vjesn.-Tech. Gaz. 2020, 27, 1337–1344. [Google Scholar] [CrossRef]
- Najjar, M.K.; De Araujo, L.O.C.; Oladimeji, O.; Khalas, M.; Figueiredo, K.V.; Boer, D.; Soares, C.A.P.; Haddad, A. Influence of Ventilation Openings on the Energy Efficiency of Metal Frame Modular Constructions in Brazil Using BIM. Eng 2023, 4, 1635–1654. [Google Scholar] [CrossRef]
- Akinradewo, O.; Aigbavboa, C.; Aghimien, D.; Oke, A.; Ogunbayo, B. Modular Method of Construction in Developing Countries: The Underlying Challenges. Int. J. Constr. Manag. 2023, 23, 1344–1354. [Google Scholar] [CrossRef]
- Feldmann, F.G.; Birkel, H.; Hartmann, E. Exploring Barriers towards Modular Construction—A Developer Perspective Using Fuzzy DEMATEL. J. Clean. Prod. 2022, 367, 133023. [Google Scholar] [CrossRef]
- Medeiros, J.S.; de Melo, R.S.S. Lessons Learned from Adopting Modular Construction in Brazil: A Startup Journey. In Proceedings of the 2022 Modular and Offsite Construction (MOC) Summit, Edmonton, AB, Canada, 27–29 July 2022; pp. 58–65. [Google Scholar] [CrossRef]
- Ortega, J.; Mesa, H.A.; Alarcón, L.F. The Interrelationship between Barriers Impeding the Adoption of Off-Site Construction in Developing Countries: The Case of Chile. J. Build. Eng. 2023, 73, 106824. [Google Scholar] [CrossRef]
- Stankovic, J.; Krasic, S.; Mitkovic, P.; Nikolic, M.; Kocic, N.; Mitkovic, M. Floating Modular Houses as Solution for Rising Sea Levels—A Case Study in Kiribati Island. In Proceedings of the International Conference on Education and Research in Computer Aided Architectural Design in Europe, Novi Sad, Serbia, 8–10 September 2021; Volume 1, pp. 161–170. [Google Scholar] [CrossRef]
- Hooper, M. Prefabricating Marginality: Long-Term Housing Impacts of Displacement in Post-Disaster Montserrat. Hous. Soc. 2021, 48, 114–136. [Google Scholar] [CrossRef]
- Rockwood, D.; da Silva, J.T.; Olsen, S.; Robertson, I.; Tran, T. Design and Prototyping of a FRCC Modular and Climate Responsive Affordable Housing System for Underserved People in the Pacific Island Nations. J. Build. Eng. 2015, 4, 268–282. [Google Scholar] [CrossRef]
- Shahzad, W.M.; Reddy, S.M.; Kahandawa, R.; Rotimi, J.O.B. Benefits, Constraints and Enablers of Modular Offsite Construction (MOSC) in New Zealand High-Rise Buildings. Eng. Constr. Archit. Manag. 2024, 31, 4042–4061. [Google Scholar] [CrossRef]
- Eltaweel, A.; Saint, R.; D’Amico, B.; Pomponi, F. A Parametric Thermal Analysis of Refugees’ Shelters Using Incremental Design and Affordable Construction Material. Energy Build. 2023, 290, 113110. [Google Scholar] [CrossRef]
- Hudson, K.P.C. Functional Futurism: Architectural Competitions in Antarctica. Polar J. 2023, 13, 49–70. [Google Scholar] [CrossRef]
- Noor, L.H.W.; van der Kroef, D.A.; Wattam, D.; Pinnock, M.; van Rossum, R.; Smit, M.G.; Brussaard, C.P.D. Innovative Transportable Laboratories for Polar Science. Polar Rec. 2018, 54, 18–28. [Google Scholar] [CrossRef]
- Guedes, M.C.; Duarte, A.C.; Silva, J.P.; Mestarehi, M.; Cantuária, G.; Marques, B.; Silvestre, N.; Roaf, S. Structural Design of a Movable Modular Shelter for Extreme Wind Conditions: A Study in Collins Bay, Antarctica. In Proceedings of the Comfort at the Extremes Conference, Dubai, United Arab Emirates, 10–11 April 2019; pp. 189–197. [Google Scholar]
- Araújo, G.; Roaf, S.; Guedes, M.C.; Leitão, A.; Pinelo, J. Back to the Future—Reverse-Designing a Shelter for Extreme Weather in Antarctica. In Proceedings of the 35th Passive and Low Energy Architecture (PLEA) Conference—Planning Post-Carbon Cities, A Coruña, Spain, 1–3 September 2020; Volume 2, pp. 1167–1172. [Google Scholar]
- Cantuária, G.; Marques, B.; Silva, J.P.; Guedes, M.C. Low Energy, Low-Tech Building Design for the Extreme Cold of Antarctica. In Proceedings of the 33rd PLEA International Conference: Design to Thrive, Edinburgh, UK, 2–5 July 2017; Volume 3, pp. 3906–3913. [Google Scholar]
- Bamba, J.C.; González, A.J. Prefabricando Lo Natural. Los Ecomateriales En La Era de Su Reproductibilidad Técnica. Ra. Rev. Arquit. 2018, 20, 204–215. [Google Scholar] [CrossRef]
- Wenkenbach, I.; Meijer, E.; Roper, A.; Craigie, S. An Innovative “flat-Pack” Wharf: Overcoming Construction Challenges in Antarctica. Proc. Inst. Civ. Eng. Civ. Eng. 2021, 175, 19–26. [Google Scholar] [CrossRef]
- Armstrong, G.; Gilge, C.; Max, K.; Vora, S. Familiar Challenges—New Approaches: KPMG International 2023 Global Construction Survey. 2023. Available online: https://assets.kpmg.com/content/dam/kpmg/xx/pdf/2023/06/familiar-challenges-new-solutions.pdf (accessed on 4 December 2024).
- Assaad, R.H.; El-adaway, I.H.; Hastak, M.; LaScola Needy, K. The COVID-19 Pandemic: A Catalyst and Accelerator for Offsite Construction Technologies. J. Manag. Eng. 2022, 38, 4022062. [Google Scholar] [CrossRef]
- Chen, L.-K.; Yuan, R.-P.; Ji, X.-J.; Lu, X.-Y.; Xiao, J.; Tao, J.-B.; Kang, X.; Li, X.; He, Z.-H.; Quan, S.; et al. Modular Composite Building in Urgent Emergency Engineering Projects: A Case Study of Accelerated Design and Construction of Wuhan Thunder God Mountain/Leishenshan Hospital to COVID-19 Pandemic. Autom. Constr. 2021, 124, 103555. [Google Scholar] [CrossRef]
- Zhang, Y.; Tatarintseva, L.; Clewlow, T.; Clark, E.; Botsford, G.; Shea, K. A Template Design and Automated Parametric Model for Sustainable Corbel Dwellings with Interlocking Blocks. Dev. Built Environ. 2023, 14, 100148. [Google Scholar] [CrossRef]
- Tavares, V.; Freire, F. Life Cycle Assessment of a Prefabricated House for Seven Locations in Different Climates. J. Build. Eng. 2022, 53, 104504. [Google Scholar] [CrossRef]
- Ghannad, P.; Lee, Y.-C. Automated Modular Housing Design Using a Module Configuration Algorithm and a Coupled Generative Adversarial Network (CoGAN). Autom. Constr. 2022, 139, 104234. [Google Scholar] [CrossRef]
- Wei, Y.X.; Choi, H.; Lei, Z. A Generative Design Approach for Modular Construction in Congested Urban Areas. Smart Sustain. Built Environ. 2022, 11, 1163–1181. [Google Scholar] [CrossRef]
- Alwisy, A.; Bu Hamdan, S.; Barkokebas, B.; Bouferguene, A.; Al-Hussein, M. A BIM-Based Automation of Design and Drafting for Manufacturing of Wood Panels for Modular Residential Buildings. Int. J. Constr. Manag. 2019, 19, 187–205. [Google Scholar] [CrossRef]
- Smith, R.E.; Hamedani, M.N.; Griffin, G. Developing Timber Volume Calculators Through a Comparative Case Study Analysis of Wood Utilization in On-Site and Off-Site Construction Methods. Technol.|Archit.+ Des. 2018, 2, 55–67. [Google Scholar] [CrossRef]
- Benjamin, S.; Christopher, R.; Carl, H. Feature Modeling for Configurable and Adaptable Modular Buildings. Adv. Eng. Inform. 2022, 51, 101514. [Google Scholar] [CrossRef]
- Podder, A.; Pless, S.; Nahmens, I.; Labik, O.; Donovan, A. How Can Construction Process Simulation Modeling Aid the Integration of Lean Principles in the Factory-Built Housing Industry? Cityscape A J. Policy Dev. Res. 2022, 24, 331–343. [Google Scholar]
- Salama, T.; Salah, A.; Moselhi, O. Integrating Critical Chain Project Management with Last Planner System for Linear Scheduling of Modular Construction. Constr. Innov. 2021, 21, 525–554. [Google Scholar] [CrossRef]
- Ghannad, P.; Lee, Y.-C. Optimizing Modularization of Residential Housing Designs for Rapid Postdisaster Mass Production of Housing. J. Constr. Eng. Manag. 2023, 149, 04023046. [Google Scholar] [CrossRef]
- Colistra, J. Innovations in Housing for Smart Cities. J. Archit. Eng. 2019, 25, 06019001. [Google Scholar] [CrossRef]
- Celis-D’Amico, F.; Echeverria-Valiente, E.; Garcia-Alvarado, R.; Escorcia-Oyola, O.; da Casa-Martín, F. CASA+: Highly Energy-Efficient Housing System for the Central-South of Chile. Constr. Innov. 2023, 25, 306–327. [Google Scholar] [CrossRef]
- Garcia, L.C.; Kamsu-Foguem, B. BIM-Oriented Data Mining for Thermal Performance of Prefabricated Buildings. Ecol. Inform. 2019, 51, 61–72. [Google Scholar] [CrossRef]
- García-Alvarado, R.; Moroni-Orellana, G.; Banda, P. Development of Variable Residential Buildings with 3D-Printed Walls. Buildings 2022, 12, 1796. [Google Scholar] [CrossRef]
- Cui, Y.; Li, S.; Liu, C.; Sun, N. Creation and Diversified Applications of Plane Module Libraries for Prefabricated Houses Based on BIM. Sustainability 2020, 12, 453. [Google Scholar] [CrossRef]
- Wong, J.K.-W.; Kuan, K.-L. Implementing ‘BEAM Plus’ for BIM-Based Sustainability Analysis. Autom. Constr. 2014, 44, 163–175. [Google Scholar] [CrossRef]
- Su, M.; Yang, B.; Wang, X. Research on Integrated Design of Modular Steel Structure Container Buildings Based on BIM. Adv. Civ. Eng. 2022, 2022, 4574676. [Google Scholar] [CrossRef]
- Shao, J.; Chen, H.; Zhu, T. Solar Energy Block-Based Residential Construction for Rural Areas in the West of China. Sustainability 2016, 8, 362. [Google Scholar] [CrossRef]
- Hwang, K.-E.; Kim, I.; Kim, J.I.; Cha, S.H. Client-Engaged Collaborative Pre-Design Framework for Modular Housing. Autom. Constr. 2023, 156, 105123. [Google Scholar] [CrossRef]
- Xu, J.; Teng, Y.; Pan, W.; Zhang, Y. BIM-Integrated LCA to Automate Embodied Carbon Assessment of Prefabricated Buildings. J. Clean. Prod. 2022, 374, 133894. [Google Scholar] [CrossRef]
- Budig, M.; Heckmann, O.; Hudert, M.; Ng, A.Q.B.; Xuereb Conti, Z.; Lork, C.J.H. Computational Screening-LCA Tools for Early Design Stages. Int. J. Archit. Comput. 2021, 19, 6–22. [Google Scholar] [CrossRef]
- Gan, V.J.L.; Liu, T.; Li, K. Integrated BIM and VR for Interactive Aerodynamic Design and Wind Comfort Analysis of Modular Buildings. Buildings 2022, 12, 333. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, J.; Zhang, S. Applying Shape Grammar and BIM for Generating the Mass Modular Housing Design in ShanLiChenJia Village, ZhaoYuan, China. J. Asian Archit. Build. Eng. 2023, 24, 178–198. [Google Scholar] [CrossRef]
- Zhai, Y.; Chen, K.; Zhou, J.X.; Cao, J.; Lyu, Z.; Jin, X.; Shen, G.Q.P.; Lu, W.; Huang, G.Q. An Internet of Things-Enabled BIM Platform for Modular Integrated Construction: A Case Study in Hong Kong. Adv. Eng. Inform. 2019, 42, 100997. [Google Scholar] [CrossRef]
- Li, C.Z.; Xue, F.; Li, X.; Hong, J.; Shen, G.Q. An Internet of Things-Enabled BIM Platform for on-Site Assembly Services in Prefabricated Construction. Autom. Constr. 2018, 89, 146–161. [Google Scholar] [CrossRef]
- Zhou, J.X.; Shen, G.Q.; Yoon, S.H.; Jin, X. Customization of On-Site Assembly Services by Integrating the Internet of Things and BIM Technologies in Modular Integrated Construction. Autom. Constr. 2021, 126, 103663. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Kang, K.; Wang, Z.; Zhong, R.Y.; Huang, G.Q. Blockchain-Enabled Cyber-Physical Smart Modular Integrated Construction. Comput. Ind. 2021, 133, 103553. [Google Scholar] [CrossRef]
- Ding, H.; Li, M.; Zhong, R.Y.; Huang, G.Q. Multistage Self-Adaptive Decision-Making Mechanism for Prefabricated Building Modules with IoT-Enabled Graduation Manufacturing System. Autom. Constr. 2023, 148, 104755. [Google Scholar] [CrossRef]
- Li, X.; Chi, H.; Wu, P.; Shen, G.Q. Smart Work Packaging-Enabled Constraint-Free Path Re-Planning for Tower Crane in Prefabricated Products Assembly Process. Adv. Eng. Inform. 2020, 43, 101008. [Google Scholar] [CrossRef]
- Ansah, M.K.; Chen, X.; Yang, H.; Lu, L.; Lam, P.T.I. Developing an Automated BIM-Based Life Cycle Assessment Approach for Modularly Designed High-Rise Buildings. Environ. Impact Assess. Rev. 2021, 90, 106618. [Google Scholar] [CrossRef]
- Antwi-Afari, P.; Ng, S.T.; Chen, J.; Zheng, X.M. Determining the Impacts and Recovery Potentials of a Modular Designed Residential Building Using the Novel LCA-C2C–PBSCI Method. J. Clean. Prod. 2022, 378, 134575. [Google Scholar] [CrossRef]
- Tong, Y.; Yang, H.; Bao, L.; Guo, B.; Shi, Y.; Wang, C. Analysis of Thermal Insulation Thickness for a Container House in the Yanqing Zone of the Beijing 2022 Olympic and Paralympic Winter Games. Int. J. Environ. Res. Public Health 2022, 19, 16417. [Google Scholar] [CrossRef]
- Wang, Y.; Long, E.; Deng, S. Applying Passive Cooling Measures to a Temporary Disaster-Relief Prefabricated House to Improve Its Indoor Thermal Environment in Summer in the Subtropics. Energy Build. 2017, 139, 456–464. [Google Scholar] [CrossRef]
- Sabaghian, T.; Asefi, M.; Hosseini, S.B. Environmental Design of Emergency Prefabricated Structures with the Approach of Reducing Energy Consumption and Pollution. J. Environ. Stud. 2021, 47, 167–179. [Google Scholar] [CrossRef]
- Jin, Y.; Li, J.; Wu, W. I-Yard 2.0: Integration of Sustainability into a Net-Zero Energy House. Appl. Sci. 2020, 10, 3541. [Google Scholar] [CrossRef]
- Zhou, Q.; Xue, F. Pushing the Boundaries of Modular-Integrated Construction: A Symmetric Skeleton Grammar-Based Multi-Objective Optimization of Passive Design for Energy Savings and Daylight Autonomy. Energy Build. 2023, 296, 113417. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, X.; Wang, Z.; Li, M.; Zhong, R.Y.; Huang, G.Q. Blockchain-Enabled Digital Twin Collaboration Platform for Fit-out Operations in Modular Integrated Construction. Autom. Constr. 2023, 148, 104747. [Google Scholar] [CrossRef]
- Sun, H.; Kim, I. Automated Checking System for Modular BIM Objects. J. Civ. Eng. Manag. 2022, 28, 554–563. [Google Scholar] [CrossRef]
- Tan, Y.; Li, S.; Wang, Q. Automated Geometric Quality Inspection of Prefabricated Housing Units Using BIM and LiDAR. Remote Sens. 2020, 12, 2492. [Google Scholar] [CrossRef]
- Kristiansen, A.B.; Zhao, B.Y.; Ma, T.; Wang, R.Z. The Viability of Solar Photovoltaic Powered Off-Grid Zero Energy Buildings Based on a Container Home. J. Clean. Prod. 2021, 286, 125312. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, M.; Guo, D.; Wu, W.; Zhong, R.Y.; Huang, G.Q. Digital Twin-Enabled Smart Modular Integrated Construction System for on-Site Assembly. Comput. Ind. 2022, 136, 103594. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Chahine, K.; Castelain, C. Energetic and Economic Analyses of Integrating Enhanced Macro-Encapsulated PCM’s with Active Underfloor Hydronic Heating System. Energy Rep. 2022, 8, 848–862. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. Experimental Study on the Use of Enhanced Coconut Oil and Paraffin Wax Phase Change Material in Active Heating Using Advanced Modular Prototype. J. Energy Storage 2021, 41, 102815. [Google Scholar] [CrossRef]
- Szalay, Z.; Szagri, D.; Bihari, Á.; Nagy, B.; Kiss, B.; Horváth, M.; Medgyasszay, P. Development of a Life Cycle Net Zero Carbon Compact House Concept. Energy Rep. 2022, 8, 12987–13013. [Google Scholar] [CrossRef]
- Pibal, S.S.; Khoss, K.; Kovacic, I. Framework of an Algorithm-Aided BIM Approach for Modular Residential Building Information Models. Int. J. Archit. Comput. 2022, 20, 777–800. [Google Scholar] [CrossRef]
- Oorschot, L.; Asselbergs, T. New Housing Concepts: Modular, Circular, Biobased, Reproducible, and Affordable. Sustainability 2021, 13, 13772. [Google Scholar] [CrossRef]
- Ezzeddine, A.; García de Soto, B. Connecting Teams in Modular Construction Projects Using Game Engine Technology. Autom. Constr. 2021, 132, 103887. [Google Scholar] [CrossRef]
- Vassiliades, C.; Barone, G.; Buonomano, A.; Forzano, C.; Giuzio, G.F.; Palombo, A. Assessment of an Innovative Plug and Play PV/T System Integrated in a Prefabricated House Unit: Active and Passive Behaviour and Life Cycle Cost Analysis. Renew. Energy 2022, 186, 845–863. [Google Scholar] [CrossRef]
- Kechidi, S.; Banks, N. Minimising Upfront Carbon Emissions of Steel-Framed Modular Housing: A Case Study. J. Build. Eng. 2023, 72, 106707. [Google Scholar] [CrossRef]
- Rakotonjanahary, M.; Scholzen, F.; Waldmann, D. Summertime Overheating Risk Assessment of a Flexible Plug-In Modular Unit in Luxembourg. Sustainability 2020, 12, 8474. [Google Scholar] [CrossRef]
- Arslan, D.; Sharples, S.; Mohammadpourkarbasi, H.; Khan-Fitzgerald, R. Carbon Analysis, Life Cycle Assessment, and Prefabrication: A Case Study of a High-Rise Residential Built-to-Rent Development in the UK. Energies 2023, 16, 973. [Google Scholar] [CrossRef]
- Tirella, V.; Fabbricatore, C.; Carpino, C.; Arcuri, N.; Barreca, F. Configuration Optimization for Sustainable Temporary Houses Employing BIM Procedure. Buildings 2023, 13, 2728. [Google Scholar] [CrossRef]
- Barreca, F.; Arcuri, N.; Cardinali, G.D.; Di Fazio, S.; Rollo, A.; Tirella, V. A Highly Sustainable Timber-Cork Modular System for Lightweight Temporary Housing. Civ. Eng. J. 2022, 8, 2336–2352. [Google Scholar] [CrossRef]
- Ramaji, I.J.; Memari, A.M. Product Architecture Model for Multistory Modular Buildings. J. Constr. Eng. Manag. 2016, 142, 04016047. [Google Scholar] [CrossRef]
- Pérez-Valcárcel, J.; Muñiz, S.; Mosquera, E.; Freire-Tellado, M.; Aragón, J.; Corral, A. Modular Temporary Housing for Situations of Humanitarian Catastrophe. J. Archit. Eng. 2021, 27, 05021004. [Google Scholar] [CrossRef]
- Pérez-Valcárcel, J.; Aragón, J.; Muñiz, S.; Freire-Tellado, M.; Mosquera, E. Transportable Temporary Homes with Folding Roof. Archit. Eng. Des. Manag. 2023, 20, 337–357. [Google Scholar] [CrossRef]
- Moga, L.; Petran, I.; Santos, P.; Ungureanu, V. Thermo-Energy Performance of Lightweight Steel Framed Constructions: A Case Study. Buildings 2022, 12, 321. [Google Scholar] [CrossRef]
- Wasim, M.; Oliveira, O. Efficient Design of a Prefabricated Steel Structure Integrating Design for Manufacture and Assembly Concepts. Aust. J. Struct. Eng. 2022, 23, 356–369. [Google Scholar] [CrossRef]
- O’Grady, T.M.; Brajkovich, N.; Minunno, R.; Chong, H.-Y.; Morrison, G.M. Circular Economy and Virtual Reality in Advanced BIM-Based Prefabricated Construction. Energies 2021, 14, 4065. [Google Scholar] [CrossRef]
- Construction Industry Council. MiC Resources Centre. Available online: https://mic.cic.hk/en/MiCDisplayCenter (accessed on 4 December 2024).
- ISO 19650-1:2018; Organization and Digitization of Information about Buildings and Civil Engineering Works, Including Building Information Modelling (BIM)—Information Management Using Building Information Modelling—Part 1: Concepts and Principles. International Organization for Standardization: Geneva, Switzerland, 2018.
- Nour El-Din, M.; Pereira, P.F.; Poças Martins, J.; Ramos, N.M.M. Digital Twins for Construction Assets Using BIM Standard Specifications. Buildings 2022, 12, 2155. [Google Scholar] [CrossRef]
- Barricelli, B.R.; Casiraghi, E.; Fogli, D. A Survey on Digital Twin: Definitions, Characteristics, Applications, and Design Implications. IEEE Access 2019, 7, 167653–167671. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.E. Differentiating Digital Twin from Digital Shadow: Elucidating a Paradigm Shift to Expedite a Smart, Sustainable Built Environment. Buildings 2021, 11, 151. [Google Scholar] [CrossRef]
- Osadcha, I.; Jurelionis, A.; Fokaides, P. Geometric Parameter Updating in Digital Twin of Built Assets: A Systematic Literature Review. J. Build. Eng. 2023, 73, 106704. [Google Scholar] [CrossRef]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Sugiyama, G.; Bourgeois, I.; Rodrigues, H. A Holistic Methodology for the Assessment of Heritage Digital Twin Applied to Portuguese Case Studies. Digit. Appl. Archaeol. Cult. Herit. 2025, 36, e00390. [Google Scholar] [CrossRef]
- Calvetti, D.; Mêda, P.; Gonçalves, M.C.; Sousa, H. Worker 4.0: The Future of Sensored Construction Sites. Buildings 2020, 10, 169. [Google Scholar] [CrossRef]
- Facchinetti, G.; Petrucci, G.; Albanesi, B.; De Marinis, M.G.; Piredda, M. Can Smart Home Technologies Help Older Adults Manage Their Chronic Condition? A Systematic Literature Review. Int. J. Environ. Res. Public Health 2023, 20, 1205. [Google Scholar] [CrossRef]
- Vardharajan, M. Proof-of-Concept of a Fall Detection System Based on Low-Cost IoT Devices. Master’s Thesis, Department of Information Engineering, University of Padova , Padua, Italy, 2023. [Google Scholar]
- ISO 16739-1:2018; Industry Foundation Classes (IFC) for Data Sharing in the Construction and Facility Management Industries—Part 1: Data Schema. International Organization for Standardization: Geneva, Switzerland, 2018.
- buildingSMART International Ltd. Industry Foundation Classes (IFC)—An Introduction. Available online: https://technical.buildingsmart.org/standards/ifc/ (accessed on 4 December 2024).
- buildingSMART Germany. IFC4precast: New Standardized Data Exchange Format in the Precast Industry. Available online: https://www.youtube.com/watch?v=cbTq0WlKyG8 (accessed on 4 December 2024).
- buildingSMART International Ltd. MVD Database—BuildingSMART Technical. Available online: https://technical.buildingsmart.org/standards/ifc/mvd/mvd-database/ (accessed on 4 December 2024).
- buildingSMART International Ltd. IFC4precast—Prefabricated Concrete Information Delivery Manual (v2.4); 2021. Available online: https://app.box.com/s/knvbdnufdckvkeaslyh194gnu6a2c5pz (accessed on 4 December 2024).
- buildingSMART International Ltd. IFC4precast Is a BSI Final Standard. Available online: https://www.buildingsmart.org/standards/domains/building/ifc4precast-bsi-final-standard/ (accessed on 4 December 2024).
- Sanchez, B.; Halder, S.; Soman, R.K.; Yu, O.-Y. BIM Model View Definition (MVD) for Disassembly Planning of Buildings. In Proceedings of the 41st International Symposium on Automation and Robotics in Construction, Lille, France, 3–5 June 2024; pp. 1198–1205. [Google Scholar]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Thai, H.-T.; Ngo, T.; Uy, B. A Review on Modular Construction for High-Rise Buildings. Structures 2020, 28, 1265–1290. [Google Scholar] [CrossRef]
- Akanbi, L.A.; Oyedele, L.O.; Akinade, O.O.; Ajayi, A.O.; Davila Delgado, M.; Bilal, M.; Bello, S.A. Salvaging Building Materials in a Circular Economy: A BIM-Based Whole-Life Performance Estimator. Resour. Conserv. Recycl. 2018, 129, 175–186. [Google Scholar] [CrossRef]
- Balmori, J.-A.; Casado-Sanz, M.; Machimbarrena, M.; Quirós-Alpera, S.; Mostaza, R.; Acuña, L. The Use of Waste Tyre Rubber Recycled Products in Lightweight Timber Frame Systems as Acoustic Insulation: A Comparative Analysis of Acoustic Performance. Buildings 2023, 14, 35. [Google Scholar] [CrossRef]
- Islam, S.; Bhat, G. Environmentally-Friendly Thermal and Acoustic Insulation Materials from Recycled Textiles. J. Environ. Manage. 2019, 251, 109536. [Google Scholar] [CrossRef]
- Ricciardi, P.; Belloni, E.; Cotana, F. Innovative Panels with Recycled Materials: Thermal and Acoustic Performance and Life Cycle Assessment. Appl. Energy 2014, 134, 150–162. [Google Scholar] [CrossRef]
- Echeverría-Maggi, E.; Flores-Alés, V.; Martín-del-Río, J.J. Reuse of Banana Fiber and Peanut Shells for the Design of New Prefabricated Products for Buildings. Rev. Constr. 2022, 21, 461–472. [Google Scholar] [CrossRef]
- Soleimani, K.; Matini, M. Reusing Earthquake Rubble in a Temporary Housing Structure for Hot Arid Climates. J. Archit. Eng. 2022, 28, 04022015. [Google Scholar] [CrossRef]
- Asdrubali, F.; D’Alessandro, F.; Schiavoni, S. A Review of Unconventional Sustainable Building Insulation Materials. Sustain. Mater. Technol. 2015, 4, 1–17. [Google Scholar] [CrossRef]
- Pina dos Santos, C.A.; Matias, L. ITE 50—Coeficientes de Transmissão de Elementos da Envolvente de Edifícios, 2nd ed.; LNEC—Laboratório Nacional de Engenharia Civil: Lisboa, Portugal, 2006. [Google Scholar]
- Al-Homoud, M.S. Performance Characteristics and Practical Applications of Common Building Thermal Insulation Materials. Build. Environ. 2005, 40, 353–366. [Google Scholar] [CrossRef]
- Papadopoulos, A.M. State of the Art in Thermal Insulation Materials and Aims for Future Developments. Energy Build. 2005, 37, 77–86. [Google Scholar] [CrossRef]
- Silva, F.M.F. Estudo de Materiais de Isolamento Térmico Inovadores. Master’s Thesis, Department of Civil Engineering, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal, 2013. [Google Scholar]
- Tártaro, A.S.; Mata, T.M.; Martins, A.A.; Esteves da Silva, J.C.G. Carbon Footprint of the Insulation Cork Board. J. Clean. Prod. 2017, 143, 925–932. [Google Scholar] [CrossRef]
- Sun, C.; Gu, J.; Dong, Q.; Qu, D.; Chang, W.; Yin, X. Are Straw Bales Better Insulation Materials for Constructions? A Review. Dev. Built Environ. 2023, 15, 100209. [Google Scholar] [CrossRef]
- Briga-Sá, A.; Ferreira, L.; Paulo, B.; Bentes, I.; Teixeira, C.A. Energy and Environmental Performance Assessment of Reused PET Bottles Panels for Building Thermal Insulation Solutions. Energy Build. 2023, 298, 113529. [Google Scholar] [CrossRef]
- Faraj, K.; Khaled, M.; Faraj, J.; Hachem, F.; Castelain, C. A Summary Review on Experimental Studies for PCM Building Applications: Towards Advanced Modular Prototype. Energies 2022, 15, 1459. [Google Scholar] [CrossRef]
- Mehling, H.; Brütting, M.; Haussmann, T. PCM Products and Their Fields of Application—An Overview of the State in 2020/2021. J. Energy Storage 2022, 51, 104354. [Google Scholar] [CrossRef]
- Díaz-López, C.; Serrano-Jiménez, A.; Verichev, K.; Barrios-Padura, Á. Passive Cooling Strategies to Optimise Sustainability and Environmental Ergonomics in Mediterranean Schools Based on a Critical Review. Build. Environ. 2022, 221, 109297. [Google Scholar] [CrossRef]
- Shafique, M.; Kim, R.; Rafiq, M. Green Roof Benefits, Opportunities and Challenges—A Review. Renew. Sustain. Energy Rev. 2018, 90, 757–773. [Google Scholar] [CrossRef]
- Casini, M. Smart Windows for Energy Efficiency of Buildings. In Proceedings of the 2nd International Conference on Advances in Civil, Structural and Environmental Engineering, Zurich, Switzerland, 25–28 October 2014; pp. 273–281. [Google Scholar]
- Kamalisarvestani, M.; Saidur, R.; Mekhilef, S.; Javadi, F.S. Performance, Materials and Coating Technologies of Thermochromic Thin Films on Smart Windows. Renew. Sustain. Energy Rev. 2013, 26, 353–364. [Google Scholar] [CrossRef]
- Rossi, D.; Nagy, Z.; Schlueter, A. Adaptive Distributed Robotics for Environmental Performance, Occupant Comfort and Architectural Expression. Int. J. Archit. Comput. 2012, 10, 341–359. [Google Scholar] [CrossRef]
- Powell, D.; Hischier, I.; Jayathissa, P.; Svetozarevic, B.; Schlüter, A. A Reflective Adaptive Solar Façade for Multi-Building Energy and Comfort Management. Energy Build. 2018, 177, 303–315. [Google Scholar] [CrossRef]
- Nagy, Z.; Svetozarevic, B.; Jayathissa, P.; Begle, M.; Hofer, J.; Lydon, G.; Willmann, A.; Schlueter, A. The Adaptive Solar Facade: From Concept to Prototypes. Front. Archit. Res. 2016, 5, 143–156. [Google Scholar] [CrossRef]
- Tabadkani, A.; Valinejad Shoubi, M.; Soflaei, F.; Banihashemi, S. Integrated Parametric Design of Adaptive Facades for User’s Visual Comfort. Autom. Constr. 2019, 106, 102857. [Google Scholar] [CrossRef]
- Cilento, K. Al Bahar Towers Responsive Facade/Aedas. Available online: https://www.archdaily.com/270592/al-bahar-towers-responsive-facade-aedas (accessed on 4 December 2024).
- Vladyková, P. An Energy Efficient Building for the Arctic Climate: Is a Passive House Sensible Solution for Greenland? Ph.D. Thesis, Department of Civil Engineering, DTU—Technical University of Denmark, Kongens Lyngby, Denmark, 2011. [Google Scholar]
- Buijze, J.A.J.C.; Wright, A.J. The Potential for the Passive House Standard in Longyearbyen—The High Arctic. Build. Serv. Eng. Res. Technol. 2021, 42, 307–325. [Google Scholar] [CrossRef]
- Rodrigues, L.; Delgado, J.M.P.Q.; Mendes, A.; Lima, A.G.B.; Guimarães, A.S. Sustainability Assessment of Buildings Indicators. Sustainability 2023, 15, 3403. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- EN 15978:2011; Sustainability of Construction Works—Assessment of Environmental Performance of Buildings—Calculation Method. CEN—European Committee for Standardization: Brussels, Belgium, 2011.
- EN 15894:2012+A2:2019; Sustainability of Construction Works—Environmental Product Declarations—Core Rules for the Product Category of Construction Products. CEN—European Committee for Standardization: Brussels, Belgium,, 2019.
- EN 15643-1:2021; Sustainability of Construction Works—Sustainability Assessment of Buildings—Part 1: General Framework. CEN—European Committee for Standardization: Brussels, Belgium, 2021.
- Lützkendorf, T.; Balouktsi, M. Embodied Carbon Emissions in Buildings: Explanations, Interpretations, Recommendations. Build. Cities 2022, 3, 964–973. [Google Scholar] [CrossRef]
- Ayassamy, P.; Pellerin, R. Social Life-Cycle Assessment in the Construction Industry: A Review of Characteristics, Limitations, and Challenges of S-LCA through Case Studies. Sustainability 2023, 15, 14569. [Google Scholar] [CrossRef]
- United Nations Environmental Programme. Methodological Sheets for Subcategories in Social Life Cycle Assessment (S-LCA) 2021; Traverso, M., Valdivia, S., Luthin, A., Roche, L., Arcese, G., Neugebauer, S., Petti, L., D’Eusanio, M., Tragnone, B.M., Mankaa, R., et al., Eds.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2021. [Google Scholar]
- United Nations Environmental Programme. Guidelines for Social Life Cycle Assessment of Products and Organizations 2020; Benoît Norris, C., Traverso, M., Neugebauer, S., Ekener, E., Schaubroeck, T., Russo Garrido, S., Berger, M., Valdivia, S., Lehmann, A., Finkbeiner, M., et al., Eds.; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2020. [Google Scholar]
- Clifford, C. Europe Will Count Natural Gas and Nuclear as Green Energy in Some Circumstances. Available online: https://www.cnbc.com/2022/07/06/europe-natural-gas-nuclear-are-green-energy-in-some-circumstances-.html (accessed on 4 December 2024).
- The European Commission. Commission Delegated Regulation (EU) 2021/2139. Off. J. Eur. Union 2021, 64, L442/1–L442/349. [Google Scholar]
- Passivhaus Institut. Passive House Requirements. Available online: https://passiv.de/en/02_informations/02_passive-house-requirements/02_passive-house-requirements.htm (accessed on 4 December 2024).
- Kuller, M.; Kohlmorgen, F.; Karaoglan, N.; Niemeyer, M.; Kunold, I.; Wohrle, H. Conceptual Design of a Digital Twin Based on Semantic Web Technologies in the Smart Home Context. In Proceedings of the CANDO-EPE 2020—IEEE 3rd International Conference and Workshop in Óbuda on Electrical and Power Engineering, Budapest, Hungary, 18–19 November 2020; pp. 000167–000172. [Google Scholar]
- Corssac, L.B. A Digital Twin-Based Smart Home: A Proof-of-Concept Study. Bachelor’s Thesis, Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 2022. [Google Scholar]
- Corssac, L.B.; Wickboldt, J.A. A Digital Twin-Based Smart Home: A Proof of Concept Study. arXiv 2022. [Google Scholar] [CrossRef]
- Parente, J.; Rodrigues, E.; Rangel, B.; Poças Martins, J. Integration of Convolutional and Adversarial Networks into Building Design: A Review. J. Build. Eng. 2023, 76, 107155. [Google Scholar] [CrossRef]
- Ostrowska-Wawryniuk, K. Prefabrication 4.0: BIM-Aided Design of Sustainable DIY-Oriented Houses. Int. J. Archit. Comput. 2021, 19, 142–156. [Google Scholar] [CrossRef]
- Ruggiero, R.; Kobayashi, H.; Cognoli, R.; Kaito, S. Digital Innovation for the Post-Earthquake “Second Emergency Phase” (SEP). Research Experience in Central Italy. Int. J. Disaster Risk Reduct. 2021, 61, 102293. [Google Scholar] [CrossRef]
- Jesus, M.; Costa, J.; Teixeira, J.; Pessoa, S.; Guimarães, A.S.; Rangel, B.; Moreira, L.; Maia, L.; Neto, R.; Alves, J.L. Use of Waste Materials to Reduce Cement and Natural Aggregates in 3D Printing Mortars. In 3D Printing for Construction with Alternative Materials; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 127–153. ISBN 9783031093197. [Google Scholar]
- Hager, I.; Golonka, A.; Putanowicz, R. 3D Printing of Buildings and Building Components as the Future of Sustainable Construction? Procedia Eng. 2016, 151, 292–299. [Google Scholar] [CrossRef]
- Jesus, M.; Pessoa, S.; Rangel, B. A Reflection on Sustainable Opportunities for 3D Printing in Construction. In Proceedings of the CEES 2023 | 2nd International Conference on Construction, Energy, Environment & Sustainability, Funchal, Portugal, 27–30 June 2023. [Google Scholar]
- Pessoa, S.; Guimarães, A.S.; Lucas, S.S.; Simões, N. 3D Printing in the Construction Industry—A Systematic Review of the Thermal Performance in Buildings. Renew. Sustain. Energy Rev. 2021, 141, 110794. [Google Scholar] [CrossRef]
- Weng, Y.; Li, M.; Ruan, S.; Wong, T.N.; Tan, M.J.; Ow Yeong, K.L.; Qian, S. Comparative Economic, Environmental and Productivity Assessment of a Concrete Bathroom Unit Fabricated through 3D Printing and a Precast Approach. J. Clean. Prod. 2020, 261, 121245. [Google Scholar] [CrossRef]
- Jesus, M.; Guimarães, A.S.; Rangel, B.; Lino Alves, J. The Potential of 3D Printing in Building Pathology: Rehabilitation of Cultural Heritage. Int. J. Build. Pathol. Adapt. 2023, 41, 647–674. [Google Scholar] [CrossRef]
- Bourgeois, I.; Ascensão, G.; Ferreira, V.; Rodrigues, H. Methodology for the Application of 3D Technologies for the Conservation and Recovery of Built Heritage Elements. Int. J. Archit. Herit. 2024, 1–12. [Google Scholar] [CrossRef]
- Singh, N.; Colangelo, F.; Farina, I. Sustainable Non-Conventional Concrete 3D Printing—A Review. Sustainability 2023, 15, 10121. [Google Scholar] [CrossRef]
- Nian, S.; Pham, T.; Haas, C.; Ibrahim, N.; Yoon, D.; Bregman, H. A Functional Demonstration of Adaptive Reuse of Waste into Modular Assemblies for Structural Applications: The Case of Bicycle Frames. J. Clean. Prod. 2022, 348, 131162. [Google Scholar] [CrossRef]
- Gonçalves, H.; Graça, J.M. Conceitos Bioclimáticos Para os Edifícios em Portugal; INETI: Lisboa, Portugal, 2004; ISBN 972-8268-34-3. [Google Scholar]
- Genovese, P.V.; Zoure, A.N. Architecture Trends and Challenges in Sub-Saharan Africa’s Construction Industry: A Theoretical Guideline of a Bioclimatic Architecture Evolution Based on the Multi-Scale Approach and Circular Economy. Renew. Sustain. Energy Rev. 2023, 184, 113593. [Google Scholar] [CrossRef]
- Bajcinovci, B.; Jerliu, F. Achieving Energy Efficiency in Accordance with Bioclimatic Architecture Principles. Environ. Clim. Technol. 2016, 18, 54–63. [Google Scholar] [CrossRef]
- Kartal, S.; Chousein, Ö. Utilization of Renewable Energy Sources in Bioclimatic Architecture in Greece. World J. Eng. 2016, 13, 18–22. [Google Scholar] [CrossRef]
- Michael, A.; Savvides, A.; Vassiliades, C.; Triantafyllidou, E. Design and Creation of an Energy Efficient Prefabricated Housing Unit Based on Specific Taxonomy and Optimization Techniques. Procedia Manuf. 2020, 44, 261–268. [Google Scholar] [CrossRef]
- Chmiel, Z.; Bhattacharyya, S.C. Analysis of Off-Grid Electricity System at Isle of Eigg (Scotland): Lessons for Developing Countries. Renew. Energy 2015, 81, 578–588. [Google Scholar] [CrossRef]
- Bukar, A.L.; Tan, C.W.; Lau, K.Y. Optimal Sizing of an Autonomous Photovoltaic/Wind/Battery/Diesel Generator Microgrid Using Grasshopper Optimization Algorithm. Sol. Energy 2019, 188, 685–696. [Google Scholar] [CrossRef]
- Baneshi, M.; Hadianfard, F. Techno-Economic Feasibility of Hybrid Diesel/PV/Wind/Battery Electricity Generation Systems for Non-Residential Large Electricity Consumers under Southern Iran Climate Conditions. Energy Convers. Manag. 2016, 127, 233–244. [Google Scholar] [CrossRef]
- Come Zebra, E.I.; van der Windt, H.J.; Nhumaio, G.; Faaij, A.P.C. A Review of Hybrid Renewable Energy Systems in Mini-Grids for off-Grid Electrification in Developing Countries. Renew. Sustain. Energy Rev. 2021, 144, 111036. [Google Scholar] [CrossRef]
- Ghenai, C.; Salameh, T.; Merabet, A. Technico-Economic Analysis of off Grid Solar PV/Fuel Cell Energy System for Residential Community in Desert Region. Int. J. Hydrogen Energy 2020, 45, 11460–11470. [Google Scholar] [CrossRef]
- Muñoz-García, A.B.; Benesperi, I.; Boschloo, G.; Concepcion, J.J.; Delcamp, J.H.; Gibson, E.A.; Meyer, G.J.; Pavone, M.; Pettersson, H.; Hagfeldt, A.; et al. Dye-Sensitized Solar Cells Strike Back. Chem. Soc. Rev. 2021, 50, 12450–12550. [Google Scholar] [CrossRef]
- Langston, C.; Zhang, W. DfMA: Towards an Integrated Strategy for a More Productive and Sustainable Construction Industry in Australia. Sustainability 2021, 13, 9219. [Google Scholar] [CrossRef]
- The Beijing Organising Committee for the 2022 Olympic and Paralympic Winter Games. Legacy Case Studies: Olympic and Paralympic Winter Games Beijing 2022; Beijing Sport University: Beijing, China, 2022. [Google Scholar]
- Pasanen, P.; Castro, R. Carbon Heroes Benchmark Program—Whole Building Embodied Carbon Profiling. IOP Conf. Ser. Earth Environ. Sci. 2019, 323, 012028. [Google Scholar] [CrossRef]
Group A | Group B | Group C | Group D | Group E |
---|---|---|---|---|
Modular | BIM | DfMA | Sustainab* | nZEB |
Prefabricated | “Digital Twin” | “Design for Manufacturing” | Lean | Off-grid |
- | “Construction 4.0” | “Design for Assembly” | Energ* | Hous* |
- | - | “Design for Disassembly” | Lifecycle OR “Life Cycle” | Passive |
- | - | IPD OR “Integrated Project Delivery” | Circular [economy, construction] | Smart [systems, buildings, sensors] |
Keyword Combinations | |
---|---|
A AND B AND C | (Modular OR Prefabricated) AND (BIM OR “Digital Twin” OR “Construction 4.0”) AND (DfMA OR “Design for Manufacturing” OR “Design for Assembly” OR “Design for Disassembly”) |
A AND B AND D | (Modular OR Prefabricated) AND (BIM OR “Digital Twin” OR “Construction 4.0”) AND (Sustainab* OR Lean OR Energ* OR Lifecycle OR “Life Cycle” OR Circular) |
A AND B AND E | (Modular OR Prefabricated) AND (BIM OR “Digital Twin” OR “Construction 4.0”) AND (nZEB OR Off-grid OR Hous* OR Passive OR Smart) |
A AND C AND D | (Modular OR Prefabricated) AND (DfMA OR “Design for Manufacturing” OR “Design for Assembly” OR “Design for Disassembly” OR IPD OR “Integrated Project Delivery”) AND (Sustainab* OR Lean OR Energ* OR Lifecycle OR “Life Cycle” OR Circular) |
A AND C AND E | (Modular OR Prefabricated) AND (DfMA OR “Design for Manufacturing” OR “Design for Assembly” OR “Design for Disassembly”) AND (nZEB OR Off-grid OR Hous* OR Passive OR Smart) |
A AND D AND E | (Modular OR Prefabricated) AND (Sustainab* OR Lean OR Energ* OR Lifecycle OR “Life Cycle” OR Circular) AND (nZEB OR Off-grid OR Hous* OR Passive OR Smart) |
Continent | Building Use | Project Phase | Number of Articles | References | |||
---|---|---|---|---|---|---|---|
Design | Off-Site | On-Site | O&M | ||||
Africa | Residential | X | - | - | - | 2 | [84,85] |
North America | Residential | X | - | - | - | 5 | [86,87,88,89,90] |
- | X | - | - | 1 | [91] | ||
- | X | X | - | 1 | [92] | ||
Temporary Housing | X | - | - | - | 1 | [93] | |
Senior Residence | - | X | - | X | 1 | [94] | |
Hotel | X | - | - | - | 1 | [10] | |
South America | Residential | X | - | - | - | 3 | [64,85,95] |
- | - | - | X | 1 | [96] | ||
Prototype | X | - | - | - | 1 | [97] | |
Asia | Residential | X | - | - | - | 5 | [98,99,100,101,102] |
Multi-Storey Residential | X | - | - | - | 6 | [28,99,103,104,105,106] | |
- | X | - | - | 1 | [11] | ||
- | X | X | - | 5 | [107,108,109,110,111] | ||
- | - | X | - | 1 | [112] | ||
- | - | - | X | 2 | [113,114] | ||
Temporary Housing | X | - | - | - | 3 | [115,116,117] | |
Senior Residence | - | - | - | X | 1 | [118] | |
Student Residence | X | - | - | X | 1 | [119] | |
Multifunctional | - | X | X | - | 1 | [120] | |
Bathroom (only) | X | - | - | - | 1 | [121] | |
- | X | - | - | 1 | [122] | ||
Prototypes | X | - | - | X | 1 | [123] | |
X | - | X | - | 1 | [124] | ||
- | - | - | X | 2 | [125,126] | ||
Europe | Residential | X | - | - | - | 4 | [4,127,128,129] |
X | X | X | - | 1 | [130] | ||
X | - | - | X | 1 | [85] | ||
- | - | - | X | 3 | [9,131,132] | ||
Multi-Storey Residential | X | - | - | - | 3 | [128,129,133] | |
- | - | - | X | 1 | [134] | ||
Temporary Housing | X | - | - | - | 2 | [135,136] | |
Student Residence | X | - | - | - | 1 | [137] | |
Prototypes | X | X | - | - | 1 | [138] | |
- | - | X | X | 1 | [139] | ||
- | - | - | X | 1 | [140] | ||
Oceania | Bathroom (only) | X | X | - | - | 1 | [141] |
Prototype | X | - | - | - | 1 | [142] |
Building Use | Number of Articles | References |
---|---|---|
Residential | 25 | [4,9,64,84,85,86,87,88,89,90,91,92,95,96,98,99,100,101,102,127,128,129,130,131,132] |
Multi-Storey Residential | 19 | [11,28,99,103,104,105,106,107,108,109,110,111,112,113,114,128,129,133,134] |
Temporary Housing | 6 | [93,115,116,117,135,136] |
Senior Residence | 2 | [94,118] |
Student Residence | 2 | [119,137] |
Hotel | 1 | [10] |
Multifunctional | 1 | [120] |
Bathroom * | 3 | [121,122,141] |
Prototype | 9 | [97,123,124,125,126,138,139,140,142] |
Project Phase | Number of Articles | References |
---|---|---|
Design | 41 | [4,10,28,64,84,85,86,87,88,89,90,93,95,97,98,99,100,101,102,103,104,105,106,115,116,117,119,121,123,124,127,128,129,130,133,135,136,137,138,141,142] |
Off-Site Construction | 14 | [11,91,92,94,107,108,109,110,111,120,122,130,138,141] |
On-Site Construction | 11 | [92,107,108,109,110,111,112,120,124,130,139] |
O&M | 15 | [9,85,94,96,113,114,118,123,125,126,131,132,134,139,140] |
BIM? | IFC? | Digital Twin? | Number of Articles | References |
---|---|---|---|---|
Yes | Yes | No | 8 | [28,86,90,97,100,103,121,137] |
Yes | 1 | [110] | ||
No | No | 38 | [4,10,11,64,84,85,87,88,89,91,92,93,95,96,98,99,101,102,104,105,106,113,114,117,119,122,127,128,129,130,132,133,134,135,136,138,141,142] | |
CT | 3 | [9,131,139] | ||
DS | 5 | [94,123,125,126,140] | ||
Yes | 6 | [107,108,109,112,120,124] | ||
No | No | CT | 2 | [115,116] |
DS | 2 | [111,118] |
Other Technologies? | Which? | Occurrences | References |
---|---|---|---|
Yes | BEM | 19 | [4,9,64,85,95,96,100,113,115,116,119,123,127,128,131,133,135,136,139] |
Sensors | 18 | [4,9,94,107,108,109,111,112,115,116,118,123,125,126,131,138,139,140] | |
LCA Tools | 13 | [85,89,99,103,104,113,114,127,131,132,134,135,136] | |
Automated Design Tools | 12 | [28,84,86,87,90,93,97,106,117,119,128,135] | |
RFID Tags | 8 | [107,108,109,110,111,112,120,124] | |
Worker’s Monitor Devices | 6 | [107,108,109,111,112,124] | |
Optimisation Algorithms | 5 | [90,93,117,119,141] | |
Smart Home | 5 | [4,94,118,123,131] | |
3D Printing | 4 | [28,84,97,124] | |
FEM | 4 | [84,100,136,141] | |
Game Engine | 4 | [112,124,130,142] | |
Machine Learning | 4 | [86,93,96,102] | |
2D CAD | 3 | [88,91,141] | |
XR | 3 | [105,112,142] | |
Blockchain | 2 | [110,120] | |
CNC Machines | 2 | [138,141] | |
Off-Site Robots | 2 | [124,129] | |
Rule Checking Algorithms | 2 | [10,121] | |
Data Mining | 1 | [96] | |
Drone | 1 | [9] | |
GIS | 1 | [105] | |
Laser Scanning | 1 | [122] | |
No | - | 5 | [11,92,98,101,137] |
Climate | Climate Zones | Panels | Insulation | Framing | External Walls | Floor | Roof | Windows | Doors | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Uext_walls (W/m2·K) | Insulation (cm) | Ufloor (W/m2·K) | Insulation (cm) | Uroof (W/m2·K) | Insulation (cm) | Uwindows (W/m2·K) | Udoor (W/m2·K) | |||||
A (Tropical) | Af | Precast Concrete | - | - | - | - | - | - | - | - | - | - |
Aw | (Multiple) | PUR + Rock wool | Steel | 0.73 | 10 | - | - | 0.43 | 10 | - | - | |
B (Arid) | BSh | (Multiple) | PUR | Steel | 0.51 | 10 | 0.32 | - | 0.35 | 10 | 2.00 | - |
BSk | Metal | PUR + Mineral wool | Steel | 0.20 | 9 | 0.47 | 4.8 | 0.18 | 10.3 | 1.77 | 1.77 | |
BWh | Fibreglass | PUR | Steel | - | - | - | - | - | - | - | - | |
C (Temperate) | Csa | Wood | (Multiple) | Steel | 0.38 | 12.5 | 0.17 | 7.7 | 0.30 | 12.5 | 3.13 | 3.73 |
Csb | Wood | Rock wool | (Multiple) | 0.40 | 11.9 | 0.34 | 9 | 0.27 | 14.3 | 2.56 | 3.37 | |
Cwa | Precast Concrete | EPS + Rock wool | Reinforced Concrete | 0.72 | 5 | 3.82 | - | 0.44 | 7.5 | 5.78 | - | |
Cwb | Metal | PUR + Mineral wool | Steel | 0.18 | 5.5 | 0.56 | 2 | 0.18 | 5.5 | 1.76 | 1.76 | |
Cfa | Metal | PUR + Mineral wool | Steel | 0.22 | 12 | 0.38 | 10.8 | 0.18 | 14.3 | 1.32 | 1.46 | |
Cfb | Wood | (Multiple) | Steel | 0.34 | 21.8 | 0.32 | 8 | 0.25 | 16.5 | 1.87 | - | |
D (Continental) | Dwa | Metal | PUR + Mineral wool | Steel | 0.22 | 7.9 | 0.47 | 3.7 | 0.25 | 7.9 | 1.77 | 1.77 |
Dfa | Wood | - | Wood | - | - | - | - | - | - | - | - | |
Dfb | Wood | - | Wood | - | - | - | - | - | - | - | - | |
N/A | N/A | Wood | (Multiple) | Steel | - | - | - | - | - | - | - | - |
Average | Wood | PUR + Mineral wool | Steel | 0.33 | 11.7 | 0.54 | 6.7 | 0.25 | 11.3 | 2.15 | 2.28 |
Systems | Solutions | Reported Occurrences | References |
---|---|---|---|
Active | HVAC Systems | 15 | [95,96,114,115,118,119,120,123,125,126,127,129,131,133,134] |
Photovoltaic Panels | 13 | [4,89,101,114,118,123,127,129,132,135,138,140,142] | |
Solar Thermal Systems | 7 | [4,95,101,118,123,131,138] | |
Heat Pumps | 6 | [9,85,123,127,129,131] | |
Radiant Floors | 6 | [101,123,125,126,129,133] | |
Hybrid PV/T Systems | 2 | [123,131] | |
PCM | 2 | [125,126] | |
Biomass | 1 | [95] | |
Wind Energy | 1 | [140] | |
Geothermal Energy | 1 | [118] | |
Passive | Thermal Insulation | 28 | [4,9,64,85,92,95,96,97,99,101,114,115,116,117,118,123,125,126,129,131,132,133,135,136,138,139,140,142] |
Direct Solar Gains | 23 | [4,9,64,85,95,96,101,113,114,116,118,123,125,126,127,128,129,131,133,134,136,140,142] | |
Natural Lighting | 20 | [4,9,64,95,96,101,106,113,114,116,118,123,127,128,129,131,133,134,136,140] | |
Shading Systems | 16 | [4,9,95,96,101,114,116,118,123,127,131,133,136,138,139,140] | |
Natural Ventilation | 16 | [4,64,95,96,101,115,117,118,123,127,128,131,136,138,140,142] | |
Air Tightness | 11 | [4,94,95,115,118,129,131,134,136,139,140] | |
Water Harvesting | 8 | [95,101,115,118,123,135,138,139] | |
Green Roofs | 4 | [95,99,101,127] | |
PCM | 4 | [125,126,135,136] | |
Green Wall | 1 | [118] | |
Automation Systems | 8 | [4,94,101,118,123,125,126,131] | |
Off-Grid | 5 | [4,101,118,123,140] |
Climate | Climate Zones | Energy Use (kWh/m2/Year) | Renewable Energy Sources |
---|---|---|---|
A (Tropical) | Af | - | - |
Aw | 50 | Natural Gas (*) | |
B (Arid) | BSh | 71 | Solar + Natural Gas (*) |
BSk | 129 | Solar | |
BWh | - | - | |
C (Temperate) | Csa | 53 | Solar + Natural Gas (*) |
Csb | 56 | Solar + Biomass + Natural Gas (*) | |
Cwa | 128 | - | |
Cwb | 116 | Solar | |
Cfa | 124 | Solar + Wind | |
Cfb | 100 | Solar + Natural Gas (*) | |
D (Continental) | Dwa | 171 | Solar + Wind + Geothermal |
Dfa | - | - | |
Dfb | - | Solar | |
N/A | N/A | - | Solar |
Average | 100 | Solar |
Environmental Indicators | Solutions | Number of Articles | References |
---|---|---|---|
Bioclimatic Strategies | Green Roof | 4 | [95,99,101,127] |
Green Wall | 1 | [118] | |
Water Reuse | 7 | [95,101,115,118,123,138,139] | |
Material Circularity | Reused Materials | 5 | [100,115,123,136,142] |
Potential of Reusing Materials | 6 | [94,99,133,138,139,140] | |
Recycled Materials | 6 | [4,101,115,129,140,142] | |
Potential of Recycling Materials | 6 | [99,123,132,133,136,139] | |
Renewable Energy Sources | Solar | 13 | [4,89,95,101,115,118,123,131,132,135,138,140,142] |
Wind | 2 | [115,140] | |
Biomass | 1 | [95] | |
Geothermal | 1 | [118] | |
Natural Gas (*) | 2 | [9,85] | |
Building Classification | nZEB | 5 | [4,115,118,123,132] |
Off-Grid | 5 | [4,101,118,123,140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parracho, D.F.R.; Nour El-Din, M.; Esmaeili, I.; Freitas, S.S.; Rodrigues, L.; Poças Martins, J.; Corvacho, H.; Delgado, J.M.P.Q.; Guimarães, A.S. Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations. Buildings 2025, 15, 765. https://doi.org/10.3390/buildings15050765
Parracho DFR, Nour El-Din M, Esmaeili I, Freitas SS, Rodrigues L, Poças Martins J, Corvacho H, Delgado JMPQ, Guimarães AS. Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations. Buildings. 2025; 15(5):765. https://doi.org/10.3390/buildings15050765
Chicago/Turabian StyleParracho, Diogo F. R., Mohamed Nour El-Din, Iraj Esmaeili, Sara S. Freitas, Leonardo Rodrigues, João Poças Martins, Helena Corvacho, João M. P. Q. Delgado, and Ana Sofia Guimarães. 2025. "Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations" Buildings 15, no. 5: 765. https://doi.org/10.3390/buildings15050765
APA StyleParracho, D. F. R., Nour El-Din, M., Esmaeili, I., Freitas, S. S., Rodrigues, L., Poças Martins, J., Corvacho, H., Delgado, J. M. P. Q., & Guimarães, A. S. (2025). Modular Construction in the Digital Age: A Systematic Review on Smart and Sustainable Innovations. Buildings, 15(5), 765. https://doi.org/10.3390/buildings15050765