Resilient House Evaluation Matrix: Attributes and Quality Indicators for Social Housing
Abstract
:1. Introduction
2. Theoretical Foundation
2.1. Resilience in the Built Environment Within the Context of Brazilian Social Housing
2.2. Development of the Resilient Housing Evaluation Matrix (RHEM)
2.3. Attributes, Indicators, and Sub-Indicators of Resilience in SH
3. Materials and Methods
3.1. Case Study
3.2. Resilience Evaluation
3.3. Sampling Plan Definition
4. Results and Discussion
4.1. Flexibility
4.2. Thermal Comfort
4.3. Energy Efficiency
4.4. Accessibility to the Elderly
4.5. Potential of the Instrument for Assessing/Promoting Resilience in SH
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Instituto de Pesquisa Econômica Aplicada (Brasil). Melhorias Habitacionais e Assistência Técnica; IPEA: Brasília, Brazil, 2023. Available online: https://repositorio.ipea.gov.br/bitstream/11058/12402/1/NT%20_Dirur_melhorias_habitacionais_e_Assistencia_tecnica.pdf (accessed on 24 June 2024).
- Amore, C.S.; Shimbo, L.Z.; Rufino, M.B.C. Minha Casa… e a Cidade? 1st ed.; Letra Capital: Rio de Janeiro, Brazil, 2015; pp. 11–28. Available online: https://www.ufmg.br/online/arquivos/anexos/livro%20PDF.pdf (accessed on 24 June 2024).
- Kowaltowski, D.C.C.K.; Muianga, E.A.D.; Granja, D.C.M.; Bernardini, S.P.; Castro, M.R. A critical analysis of research of a mass housing programme. Build. Res. Inf. 2019, 47, 716–733. [Google Scholar] [CrossRef]
- Senado Notícias. As Novas Possibilidades Para o Programa Minha Casa, Minha Vida. Available online: https://www12.senado.leg.br/noticias/especiais/especial-cidadania/as-novas-possibilidades-para-o-programa-minha-casa-minha-vida (accessed on 22 February 2025).
- Garrefa, F.; Villa, S.B.; Bortoli, K.C.R.d.; Stevenson, F.; Vasconcellos, P.B. Resilience in social housing developments through post-occupancy evaluation and co-production. Ambiente Construído 2021, 21, 151–175. [Google Scholar] [CrossRef]
- Muianga, E.A.D.; Kowaltowski, D.C.C.K. A panorama of Brazilian social housing research: Scope, gaps and intersections. Ambiente Construído 2024, 24, e130925, ISSN 1678-8621. [Google Scholar] [CrossRef]
- Formoso, C.T.; Leite, F.L.; Miron, L.I.G. Client requirements management in social housing: Case study on the residential leasing program in Brazil. J. Constr. Dev. Ctries. 2011, 16, 47–67. [Google Scholar]
- Villa, S.B.; Vasconcellos, P.B.; De Bortoli, K.C.R.; De Araujo, L.B. (The lack of) Adaptability in Brazilian social housing: Impacts on residents. Build. Cities 2022, 3, 376–397. Available online: https://journal-buildingscities.org/articles/10.5334/bc.180 (accessed on 22 February 2025). [CrossRef]
- Villa, S.B.; Pena, I.C.; Barbosa, M.C.R. Resilience ruler in social housing: A case study in the city of Uberlândia/Brazil. In Design for Resilient Communities; Rubbo, A., Du, J., Thomsen, M.R., Tamke, M., Eds.; Springer: Cham, Switzerland, 2023; Volume 1, pp. 1–25. [Google Scholar] [CrossRef]
- Brasil. Minha Casa, Minha Vida Entidades e Rural Selecionam Mais de 112 Mil Unidades Habitacionais. Portal Planalto. 2024. Available online: https://www.gov.br/planalto/pt-br/acompanhe-o-planalto/noticias/2024/04/minha-casa-minha-vida-entidades-e-rural-selecionam-mais-de-112-mil-unidades-habitacionais#:~:text=RETOMADA%20-%20Desde%20sua%20cria%C3%A7%C3%A3o%2C%20em%202009%2C%20o,de%20novas%20unidades%20habitacionais%20em%20todo%20o%20Brasil (accessed on 25 June 2024).
- Fundação João Pinheiro. SP e MG Têm o Maior Déficit Habitacional no Brasil. Fundação João Pinheiro. Available online: https://fjp.mg.gov.br/sp-e-mg-tem-o-maior-deficit-habitacional-no-brasil/ (accessed on 22 February 2025).
- Villa, S.B.; Garrefa, F.; Stevenson, F.; Souza, A.R.; Bortoli, K.C.R.; Arantes, J.S.; Vasconcellos, P.B.; Campelo, V.A. Método de Análise da Resiliência e Adaptabilidade em Conjuntos Habitacionais Sociais Através da Avaliação Pós-Ocupação e Coprodução; Relatório Final de Pesquisa; Universidade Federal de Uberlândia, Universidade de Sheffield: Uberlândia, Brazil, 2017; p. 393. [Google Scholar]
- De Bortoli, K.C.R. Resiliência e Conforto Térmico em Habitações de Interesse Social Horizontais em Uberlândia (MG): Avaliação Para Orientação de Reformas. Ph.D. Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2023. [Google Scholar] [CrossRef]
- Vasconcellos, P.B. Co-Produzindo Resiliência em Conjuntos Habitacionais Sociais: Como Avaliar a Resiliência Através da Prática Colaborativa. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2019. [Google Scholar] [CrossRef]
- Parreira, F.V.M. Estratégias de Flexibilidade Orientadas ao Usuário Como Facilitador da Resiliência em Habitação de Interesse Social. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2020. [Google Scholar] [CrossRef]
- Araújo, G.M. Bem-Estar e Resiliência em Habitação Social: Uma Relação Necessária. Estratégias Orientadas Aos Usuários. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2020. [Google Scholar] [CrossRef]
- Villa, S.B.; Bortoli, K.C.R.; Vasconcellos, P.B.; Parreira, F.V.M.; Araújo, G.M.; Braga, T.H.C.; Moraes, R.A.; Oliveira, M.N.; Oliveira, N.F.G.; Barbosa, M.C.R.; et al. Relatório Final–BER HOME–Resiliência No Ambiente Construído em Habitação Social: Métodos de Avaliação Tecnologicamente Avançados; PPGAU, FAUED; Universidade Federal de Uberlândia: Uberlândia, Brazil, 2022. [Google Scholar]
- Oliveira, L.V. Avaliação dos Impactos da COVID-19 na Habitação Social e Suas Adaptações Para um Ambiente Construído Mais Resiliente. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2023. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; McGrath, B.; Cadenasso, M.L.; Felson, A.J. Ecological resilience and resilient cities. Build. Res. Inf. 2014, 42, 143–157. [Google Scholar] [CrossRef]
- Hassler, U.; Kohler, N. Resilience in the built environment. Build. Res. Inf. 2014, 42, 119–129. [Google Scholar] [CrossRef]
- Rodin, J. The Resilience Dividend; Profile Books: London, UK, 2015. [Google Scholar]
- Garcia, E.; Vale, B. Unravelling Sustainability and Resilience in the Built Environment; Routledge: London, UK, 2017. [Google Scholar]
- Garcia, E.; Vale, B.; Vale, R. Collapsing Gracefully: Making a Built Environment That Fits for the Future; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Villa, S.B.; de Bortoli, K.C.R.; Vasconcellos, P.B. Assessing the built environment resilience in Brazilian social housing: Challenges and reflections. Caminhos Geogr. 2023, 24, 293–312. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Urban resilience for whom, what, when, where, and why? Urban Geogr. 2019, 40, 309–329. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2023; Available online: https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf (accessed on 24 June 2024).
- Banks, B. Should Resilience Begin with the Home? 2019. Available online: https://resilientcitiesnetwork.org/downloadable_resources/UR/Should-Resilience-Begin-At-Home.pdf (accessed on 25 June 2024).
- Parreira, F.V.M.; Villa, S.B. Resiliência na habitação social: Avaliação Pós-ocupação da flexibilidade. In Simpósio Brasileiro de Qualidade do Projeto no Ambiente Construído; PPGAU/FAUeD/UFU; Anais: Uberlândia, Brazil, 2019; Volume 1, pp. 1377–1389. [Google Scholar] [CrossRef]
- Oliveira, M.N. Eficiência Energética Como Atributo da Resiliência na Habitação de Interesse Social: Avaliação e Proposição de Estratégias Para Reformas e Intervenções. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2022. [Google Scholar] [CrossRef]
- Moraes, R.A. Avaliação da Relação Entre Ampliabilidade e Consumo Energético em Habitação de Interesse Social: Atributos Facilitadores da Resiliência. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2021. [Google Scholar] [CrossRef]
- Garrefa, F.; Villa, S.B.; Stevenson, F.; Mendes, P.C.; Lima, S.C.; Bortoli, K.C.R.; Vasconcellos, P.B.; Barbosa, G.S.; Borges, L.; Carvalho, N.L.; et al. Final Report–Co-Producing Healthy Communities: Backyard Retrofit to Prevent Arboviruses Epidemics in Brazilian Social Housing Developments; UFU/PPGAU/FAUED, TUoS/SSoA; Global Challenges Research Fund: Uberlândia, Brazil, 2021. [Google Scholar]
- Villa, S.B.; Pezzato, L.M.; Souza, A.R.; Lima, R.B.F. Relatório Final–Resiliência e Adaptabilidade em Conjuntos Habitacionais Sociais Através da Coprodução; PPGAU, FAUED; Universidade Federal de Uberlândia: Uberlândia, Brazil, 2020. [Google Scholar]
- CAU/BR. ATHIS Assistência Técnica em Habitação de Interesse Social. Um Direito e Muitas Possibilidades. 2018. Available online: https://www.caubr.gov.br/wp-content/uploads/2018/12/nova-cartilha.pdf (accessed on 1 August 2021).
- CAU/SC. ATHIS–Guia da Assistência Técnica para Habitação Social: O Passo a Passo. Como Fazer? 2020. Available online: https://www.causc.gov.br/wp-content/uploads/2020/08/Guia-de-ATHIS-o-passo-a-passo-1.pdf (accessed on 22 September 2021).
- Simões, G.M.F.; Leder, S.M. More space, please: Spatial adaptations (modifications) and their impact on the habitability of social houses. Ambiente Construído 2022, 22, 7–29. [Google Scholar] [CrossRef]
- Simões, G.M.F.; Leder, S.M.; Labaki, L.C. How uncomfortable and unhealthy can social (low-cost) housing in Brazil become with use? Build. Environ. 2021, 205, 108218. [Google Scholar] [CrossRef]
- Elsayed, M.; Pelsmakers, S.; Pistore, L.; Castaño-Rosa, R.; Romagnoni, P. Post-occupancy evaluation in residential buildings: A systematic literature review of current practices in the EU. Build. Environ. 2023, 236, 110307. [Google Scholar] [CrossRef]
- Castaño-Rosa, R.; Pelsmakers, S.; Järventausta, H.; Poutanen, J.; Tähtinen, L.; Rashidfarokhi, A.; Toivonen, S. Resilience in the built environment: Key characteristics for solutions to multiple crises. Sustain. Cities Soc. 2022, 85, 104259. [Google Scholar] [CrossRef]
- Samuel, F. Housing for Hope and Wellbeing, 1st ed.; Routledge: Abingdon, UK, 2022. [Google Scholar] [CrossRef]
- Braga, T.H.C. Resiliência e Acessibilidade de Moradias de Interesse Social Impactadas Pelo Envelhecimento de Seus Moradores. Master’s Thesis, Faculdade de Arquitetura e Urbanismo e Design, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2021. [Google Scholar] [CrossRef]
- Valadão, J.A.G. Assistência Técnica Para Reformas Mais Resilientes em HIS: Aprimoramentos e Testes de Usabilidade da Plataforma Digital [Reforma] na Palma da Mão. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2023. [Google Scholar]
- Otoni, M.E.F. Sistema Construtivo e Ampliabilidade em Habitações de Interesse Social: Análise e Proposições de Soluções na Busca de Resiliência; Projeto de pesquisa de qualificação, Programa de Pós-Graduação em Arquitetura e Urbanismo; Faculdade de Arquitetura e Urbanismo e Design, Universidade Federal de Uberlândia: Uberlândia, Brazil, 2024. [Google Scholar]
- Martins, B.C. Adaptação e Reforma da Habitação Social Para Renda: Análises Para Intervenções Mais Resilientes. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2023. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Lemos, M.F. Sustentabilidade e Resiliência. In Enanparq-Arquitetura, Cidade e Projeto: Uma Construção Coletiva; Anais: São Paulo, Brazil; ANPARQ: Rio de Janeiro, Brazil, 2014; Volume 3, pp. 1–14. [Google Scholar]
- Kleim, R.; Nicholls, R.; Thomalla, F. Resilience to natural hazards: How useful is this concept? Environ. Hazards 2004, 5, 35–45. [Google Scholar] [CrossRef]
- Walker, B.; Holling, C.; Carpenter, S.; Kinzig, A. Resilience, adaptability and transformability in social: Ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Brugmann, J.; Cugurullo, F. Urban Resilience: A Multiscale Perspective. Annu. Rev. Environ. Resour. 2021, 46, 297–323. [Google Scholar]
- Gadelha, M.C.; Moura, F.M. Strategies for promoting resilience in social housing in Brazil: The experience of the Minha Casa, Minha Vida program. Habitat Int. 2019, 89, 101974. [Google Scholar] [CrossRef]
- Jackson, W.W.; Malone, J. Emerging technologies in social work: Solutions and challenges to traditional and modern interventions. Int. J. Arts Humanit. Soc. Sci. 2024, 5, 11–19. [Google Scholar] [CrossRef]
- Nações Unidas Brasil. Transformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável. 2015. Available online: https://brasil.un.org/pt-br/sdgs/11 (accessed on 22 September 2024).
- Arup and The Rockefeller Foundation. City Resilience Framework. 2015. Available online: https://www.rockefellerfoundation.org/wp-content/uploads/City-Resilience-Framework-2015.pdf (accessed on 22 September 2024).
- Bortoli, K.C.R. Avaliando a Resiliência no Ambiente Construído: Adequação Climática e Ambiental em Habitações de Interesse Social no Residencial Sucesso Brasil (Uberlândia/MG)-Uberlândia. Master’s Thesis, Universidade Federal de Uberlândia, Uberlândia, Brazil, 2018. [Google Scholar]
- Fischer, R.S.; Schmid, A.L. Estratégias de adaptabilidade na habitação social: Implicações no ciclo de vida energético do edifício. Rev. Mundi Eng. Tecnologia Gestão 2017, 2, 38. Available online: https://revistas.ifpr.edu.br/index.php/mundietg/article/view/1159/1024 (accessed on 22 February 2025). [CrossRef]
- Costa, H.A.; Logsdon, L.; Fabricio, M.M. Flexibilidade em projetos de arquitetura: Contribuições a partir de uma revisão sistemática da literatura. Parc. Pesqui. Arquitetura Construção 2017, 8, 144–160. [Google Scholar] [CrossRef]
- Dias, L.M.L. Estratégias de Flexibilidade Arquitetônica para Habitações Sociais Brasileiras: Análise Crítica do PMCMV e Suas Limitações Quanto à Flexibilidade Habitacional. Bachelor’s Thesis, Universidade Federal de Ouro Preto, Ouro Preto, Brazil, 2019. [Google Scholar]
- Logsdon, L.; Fabrício, M.M. Instrumentos associados de apoio ao processo de projeto de moradias sociais. Ambiente Construído 2020, 20, 401–423. [Google Scholar] [CrossRef]
- Lopes, J.M.A.; Shimbo, L.Z. Projeto e Produção da Habitação na Região Central do Estado de São Paulo: Condições e Contradições do PMCMV. In Minha Casa e a Cidade? Avaliação do Programa Minha Casa, Minha Vida em Seis Estados Brasileiros. Tradução; Letra Capital: Rio de Janeiro, Brazil, 2015; Available online: https://www.ufmg.br/online/arquivos/anexos/livro%20PDF.pdf (accessed on 27 March 2023).
- Moraes, R.A.; Villa, S.B. Ampliabilidade e gasto energético em HIS: Estratégias orientadas ao usuário para moradias mais resilientes. In Encontro Nacional de Tecnologia do Ambiente Construído; ANTAC, Anais: Porto Alegre, Brazil, 2020; Volume 18, pp. 1–8. Available online: https://eventos.antac.org.br/index.php/entac/article/view/955 (accessed on 17 August 2023).
- Pequeno, L.R.B.; Rosa, S.V. Inserção urbana e segregação espacial: Análise do programa minha casa minha vida em Fortaleza. In Encontro Nacional Espaço, Planejamento e Insurgências; ENANPUR, Anais: Belo Horizonte, Brazil, 2015; Volume 16, pp. 1–17. Available online: https://repositorio.ufc.br/bitstream/riufc/24487/1/2015_eve_lrbpequeno.pdf (accessed on 20 February 2022).
- Oliveira, J.L.; Medvedovski, N.S.; Scherer, R. Caderno de Recomendações Construtivas para Habitação Social Evolutiva. An. Semin. Estud. Urbanos Reg. 2018. Available online: https://wp.ufpel.edu.br/naurb/files/2020/08/Caderno_de_Recomendacoes_Construtivas_NAURB.pdf (accessed on 22 February 2025).
- Cardoso, F.S.; Lopes, J.M.d.A. Assessoria e Assistência Técnica para Habitação de Interesse Social: Do discurso à construção da prática profissional. Rev. Bras. Estud. Urbanos Reg. 2022, 24, e202210. [Google Scholar] [CrossRef]
- Chornobai, S.R. Habitação Flexível: Estratégia de Sustentabilidade; Universidade Tecnológica Federal do Paraná: Curitiba, Brazil, 2017. [Google Scholar]
- Brandão, D.Q. Diversidade e Potencial de Flexibilidade Arranjos Espaciais de Apartamentos: Uma Análise do Produto Imobiliário. Ph.D. Thesis, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil, 2002. [Google Scholar]
- Brandão, D.Q.; Heineck, L.F.M. Estratégias de flexibilização de projetos residenciais iniciadas na década de 1990 no Brasil: Tão somente um recurso mercadológico? Ambiente Construído 2007, 7, 71–87. [Google Scholar]
- Brasileiro, A.; Morgado, C.; Luz, C. Conjunto do PMCMV no RJ: Razões da (in)eficiência energética no decorrer de sua vida útil. In Encontro Nacional de Conforto no Ambiente Construído; Encontro Latino-Americano de Conforto no Ambiente Construído: Habitat Humano: Em Busca de Conforto Ambiental, Eficiência Energética e Sustentabilidade no Século XXI; ANTAC: Camboriú, Brazil, 2017. [Google Scholar]
- Triana, M.A.; Lamberts, R.; Sassi, P. Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures. Energy Build. 2018, 158, 1379–1392. [Google Scholar] [CrossRef]
- Bacha, A.E.; Ahriz, A.; Alshenaifi, M.; Alfraidi, S.; Noaime, E.; Alsolami, B.; Ghosh, A.; Bouzaher, S.; Doulos, L.T.; Mesloub, A. A comprehensive study on outdoor thermal comfort in arid urban environments through microclimatic analysis of urban density. Buildings 2024, 14, 700. [Google Scholar] [CrossRef]
- Oliveira, R.D. Classificação do Desempenho Térmico da Envoltória de Habitação Popular em Concreto Armado. Ph.D. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil, 2015. [Google Scholar]
- Vasquez, E.M.A. Análise do Conforto Ambiental em Projetos de Habitações de Interesse Social Segundo a NBR 15.575: 2013. Master’s Thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil, 2017. [Google Scholar]
- IPEA, Ministério das Cidades. Pesquisa de Satisfação dos Beneficiários do Programa Minha Casa Minha Vida; Relatório Técnico: Brasília, Brazil, 2014. [Google Scholar]
- Barros, J.R. Abordagens teórico-metodológicas sobre a relação entre clima e saúde na geografia. In Clima e Saúde no Brasil; Paco Editorial: Jundiaí, Brazil, 2021. [Google Scholar]
- Pascoalino, A. Variação Térmica e a Distribuição Têmporo-Espacial da Mortalidade Por Doenças Cardiovasculares na Cidade de Limeira/SP. Ph.D. Thesis, Universidade Estadual Paulista Julio de Mesquita Filho, Rio Claro, Brazil, 2013. [Google Scholar]
- Kovats, R.S.; Hajat, S. Heat Stress and Public Health: A Critical Review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef] [PubMed]
- Sartori, M.G.B. Clima e Percepção. Ph.D. Thesis, Universidade de São Paulo, São Paulo, Brazil, 2000. [Google Scholar]
- Standard 55; Thermal Environment Conditions for Human Occupancy. ASHRAE: Peachtree Corners, GA, USA, 2004.
- Gonçalves, J.C.S.; Bode, K. Edifício Ambiental; Oficina de Textos: São Paulo, Brazil, 2015. [Google Scholar]
- Romero, M.A.B.; Fernandes, J.T. ; Reabilitação Ambiental Sustentável Arquitetônica e Urbanístico–Registro de Curso de Especialização à Distância Reabilita; Faculdade de Arquitetura e Urbanismo, Universidade de Brasília: Brasília, Brazil, 2015. [Google Scholar]
- Widera, B. Bioclimatic architecture as an opportunity for developing countries. In Proceedings of the 30th PLEA Conference, Ahmedabad, India, 16–18 December 2014. [Google Scholar]
- Ozarisoy, B.; Altan, H. Systematic literature review of bioclimatic design elements: Theories, methodologies and cases in the South-eastern Mediterranean climate. Energy Build. 2021, 250, 111281. [Google Scholar] [CrossRef]
- Ministério do Meio Ambiente. Plano Nacional de Adaptação à Mudança do Clima; Ministério do Meio Ambiente: Brasília, Brazil, 2016.
- Ayoade, K.O. Introdução à Climatologia para os Trópicos; Bertrand Brasil: Rio de Janeiro, Brazil, 2013. [Google Scholar]
- Mendonça, F.A. Mudanças climáticas e saúde humana: Concepções, desafios e particularidades do mundo tropical. In Clima e Saúde no Brasil; Paco Editorial: Jundiaí, Brazil, 2021. [Google Scholar]
- Attia, S.; Levinson, R.; Ndongo, E.; Holzer, P.; Berk Kazanci, O.; Homaei, S.; Zhang, C.; Olesen, B.W.; Qi, D.; Hamdy, M.; et al. Resilient cooling of buildings to protect against heat waves and power outages: Key concepts and definition. Energy Build. 2021, 239, 110869. [Google Scholar] [CrossRef]
- Homaei, S.; Hamdy, M. Thermal resilient buildings: How to be quantified? A novel benchmarking framework and labelling metric. Build. Environ. 2021, 201, 108022. [Google Scholar] [CrossRef]
- Schweiker, M. Rethinking resilient comfort–definitions of resilience and comfort and their consequences for design, operation, and energy use. In Proceedings of the Windsor, Windsor, UK, 16–19 April 2020. [Google Scholar]
- Bortoli, K.C.R.; Resende, V.F.P.; Carlo, J.C.; Villa, S.B. Thermal comfort and air renewal in social housing: A case study in Uberlândia, Brazil. ES Eng. Sci. 2023, 12, 1–24. [Google Scholar]
- Pott, A.C. Mudança Climática na Era do Antropoceno: A Percepção dos Brasileiros. 2022. Available online: https://www.percepcaoclimatica.com.br/_files/ugd/6dff39_1b4e74741ceb4777839ace998e106d59.pdf (accessed on 11 June 2024).
- Lamberts, R.; Dutra, L.; Pereira, F.O.R. Eficiência Energética na Arquitetura, 3rd ed.; Eletrobras: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Buonocore, C.; André, M.; Castro, L.; De Vecchi, R.; Lamberts, R. A cross-country survey on occupants’ use of natural ventilation in Brazilian homes. In Proceedings of the 18th Healthy Buildings Europe Conference, Aachen, Germany, 11 June 2023. [Google Scholar]
- Lima, A.B.R. Ambiente Residencial e Envelhecimento Ativo: Estudos Sobre a Relação Entre Bem-Estar, Relações Sociais e Lugar na Terceira Idade. Ph.D. Thesis, Universidade de Brasília, Brasilia, Brazil, 2011. Available online: http://icts.unb.br/jspui/handle/10482/10277 (accessed on 11 June 2024).
- Schleder, R. Habitação para Idosos: Uma Casa para Todas as Estações. 2005. Available online: https://lume.ufrgs.br/handle/10183/264330 (accessed on 11 June 2024).
- Standard 9050; Acessibilidade a Edificações, Mobiliário, Espaços e Equipamentos Urbanos. ABNT: Rio de Janeiro, Brazil, 2015.
- Villa, S.B.; Bortoli, K.C.R.; Oliveira, L.V. Handy home improvements: A proposal for a prototype web application for technical assistance in social housing. Design Tecnol. 2024, 14, 90–110. [Google Scholar] [CrossRef]
- Yin, R.K. Estudo de Caso: Planejamento e Métodos; Bookman: Porto Alegre, Brazil, 2005. [Google Scholar]
- Martins, B.C.; Villa, S.B. Os impactos nas atividades de geração de renda em habitação social. Rev. Proj. Proj. Percepção Ambiente 2024, 9, 159–174. [Google Scholar] [CrossRef]
- Oliveira, L.V.; Villa, S.B. Avaliação dos impactos da COVID-19 na qualidade da habitação social brasileira. PARC Pesqui. Arquitetura Construção 2024, 15, e024024. [Google Scholar] [CrossRef]
- Oliveira, L.V.; Villa, S.B. Avaliação dos impactos da pandemia de COVID-19 nas moradias brasileiras: Uma análise longitudinal. Caminhos Geogr. 2024, 25, 43–64. [Google Scholar] [CrossRef]
- Elias-Trostmann, K.; Cassel, D.; Burke, L.; Rangwala, L. Mais forte do que a tempestade: Aplicando a avaliação de resiliência comunitária urbana aos eventos climáticos extremos. In Documento de Trabalho; World Resources Institute: Washington, DC, USA, 2018; Available online: https://www.wri.org/research/stronger-storm-applying-urban-community-resilience-assessment-extreme-climate-events (accessed on 22 February 2020).
- Bekkouche, S.M.A.; Benouaz, T.; Cherier, M.K.; Hamdani, M.; Yaiche, R.M.; Khanniche, R. Influence of Building Orientation on Internal Temperature in Saharian Climates, Building Located in Ghardaia Region (Algeria). Therm. Sci. 2013, 17, 349–364. [Google Scholar] [CrossRef]
- Barbosa, K.H. Avaliação da Influência da Orientação Solar, Associada ao Comportamento do Usuário, no Desempenho Térmico de Uma Tipologia de Residência Unifamiliar em Goiânia. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2017. [Google Scholar]
- Guerra-Santin, O.; Boess, S.; Konstantinou, T.; Herrera, N.R.; Klein, T.; Silvester, S. Designing for residents: Building monitoring and co-creation in social housing renovation in The Netherlands. Energy Res. Soc. Sci. 2017, 32, 164–179. [Google Scholar] [CrossRef]
- Cambiaghi, S. Desenho Universal: Métodos e Técnicas para Arquitetos e Urbanistas, 4th ed.; Editora Senac: São Paulo, Brazil, 2019. [Google Scholar]
- Bonfim, S.M. Legislação Sobre Pessoa Com Deficiência, 9th ed; Edições Câmara: Brasília, Brazil, 2020. [Google Scholar]
- Dalla Vecchia, L.F.; Medvedovski, N.S. Social Housing Customization in Brazil. Encyclopedia 2021, 1, 589–601. Available online: https://www.mdpi.com/2673-8392/1/3/49#:~:text=Research%20and%20Development)-,Definition,for%20the%20lowest%2Dincome%20population (accessed on 22 February 2025). [CrossRef]
- Ferreira, M.B. Autoconstrução e autogestão habitacional no Brasil: Um estudo comparativo em dois períodos: 1975-1986 e 2004-2018. J. Urban Technol. Sustain. 2020, 3, 51–64. [Google Scholar] [CrossRef]
- Salingaros, N.A. Spontaneous Cities: Lessons to Improve Planning for Housing. Land 2021, 10, 535. [Google Scholar] [CrossRef]
- Pablo, Z.; Littleton, C.; London, K. Reconceptualising resilience in housing policy: An actor-network approach. Build. Cities 2024, 271, 271–290. [Google Scholar] [CrossRef]
- Fuchs, M.; Klee, K.; Huning, S.; Szypulski, A. Climate-resilience-oriented transformations of housing policy: Strategic impulses from a multi-level real-world lab in the Ruhr. Town Plan. Rev. 2022, 93, 211–233. [Google Scholar] [CrossRef]
- Mansoor, N.; Anuar, A.N.; Mahdzir, A.M.; Adnan, N.H.M. Enhancing disaster resilience: Overview of resilient housing. Int. J. Acad. Res. Bus. Soc. Sci. 2023, 13, 261–275. [Google Scholar] [CrossRef]
- D’Amore, A.D.A. Projeta-se Habitação Social: A Abordagem do Tema em Cursos de Arquitetura e Urbanismo. Ph.D. Thesis, Departamento de Arquitetura e Urbanismo, Universidade Federal do Rio Grande do Sul, Viçosa, Brazil, 2019. [Google Scholar]
- Ribeiro, J.L.A.; Villa, S.B. Resiliência no ambiente construído, habitação social e avaliação pós-ocupação: Uma relação necessária para obtenção da ODS 11 (Revisão da Literatura). Sci. J. ANAP 2023, 1, 6. Available online: https://publicacoes.amigosdanatureza.org.br/index.php/anap/article/view/4285 (accessed on 22 February 2025). [CrossRef]
- Metwally, E.A.; Ismail, M.R.; Farid, A.A. Advancing building assessment tools: Achieving sustainable development goals through the fusion of occupant-centric IoT principles and sustainable practices. Buildings 2024, 14, 1798. [Google Scholar] [CrossRef]
- Urazán-Bonells, C.F.; Rondón-Quintana, H.A.; Caicedo-Londoño, M.A. The effects of economic sector GDP on low-income housing supply: Colombia’s regions case. Buildings 2024, 14, 267. [Google Scholar] [CrossRef]
Topics | Key Results | Authors |
---|---|---|
Inadequate technical guidance | Renovations without technical guidance compromised structural quality, increasing constructive pathologies and inadequate consumption of resources. | Martins (2023) [43]; Oliveira (2023) [18]; Moraes (2021) [30]; Bortoli (2023) [13]; Otoni (2024) [42]. |
Building expansions and physical interventions | Renovations without technical guidance aggravated ventilation and lighting failures, resulting in environmental discomfort and higher energy consumption. | Martins (2023) [43]; Braga (2021) [42]; Valadão (2024) [41]; Oliveira (2022) [29]. |
Adaptations to accommodate physical changes | The need to adapt spaces to new demands, such as remote work, showed limitations in the flexibility of existing projects. | Martins (2023) [43]; Oliveira (2023) [18]; Vasconcellos (2019) [14]; Araújo (2020) [16]; Otoni (2024) [42]. |
Functionality limitations | The lack of flexibility limits the ability of dwellings to meet emerging needs, such as accessibility demands and changes in the family profile. | Martins (2023) [43]; Oliveira (2023) [18]; Parreira (2020) [15]; Parreira (2019) [28]. |
Deficiencies in thermal comfort | Dwellings without adequate thermal comfort experienced high energy consumption and low thermal efficiency. | Oliveira (2023) [18]; Valadão (2024) [41]; Bortoli (2023) [13]; Bortoli (2018); Araújo (2020); Otoni (2024) [42]. |
Flexibility | The Flexibility Attribute refers to the ability of the built environment to adapt to changes according to users’ needs, providing spatial quality to the project. | |
---|---|---|
Indicators | Definition | Sub-Indicators |
Adaptability | Adaptability is linked to the adaptive conditions of the living space, allowing internal and external modifications without detriment to the project (without increasing the area). | Conversion; polyvalence; customize. |
Ampliability | Ampliability consists of the house’s ability to accommodate new rooms, i.e., new spaces that can be put to better use in subsequent stages, or by adding adjacent parts [66,67]. | Elasticity; expansion. |
Thermal Comfort | The Thermal Comfort Attribute refers to satisfaction with the thermal environment according to ASHRAE (2004) [76], which is crucial for resilience by balancing the bioclimatic characteristics of the environment and people’s adaptability to the climate, reducing dependence on artificial conditioning. This allows both people and their homes to cope with climate impacts While maintaining their functionality and essence. | |
---|---|---|
Indicators | Definition | Sub-Indicators |
Bioclimatic building | A bioclimatic building is one whose conception has been supported by design principles that use suitability to the place, its climate, and its culture, reducing its exposure and amplifying its potential, as fundamental design parameters [77,78,79,80,81]. | Building systems considering interactions with solar radiation and natural ventilation; geometry considering interactions with solar radiation; geometry considering interactions with natural ventilation; functional landscaping. |
Climate sensitivity | Climate sensitivity is understood as the human capacity to perceive the influence exerted by climatic conditions, and their succession over time, on vulnerable individuals and the physical environment, and to act to mitigate their negative effects [82,83]. | Search for information about the climate; action to deal with the climate; understanding the relationship between climate and characteristics of the built environment in thermal comfort; existence of means of communication to ask for help. |
Energy Efficiency | Energy Efficiency refers to the ability of the built environment to use energy more efficiently, minimizing the consumption of energy resources while maintaining or improving the performance and comfort of users. | |
---|---|---|
Indicators | Definition | Sub-Indicators |
Efficient envelope | An efficient envelope is one that has characteristics that reduce unwanted heat transfer between the internal and external environments. | Efficient materiality; efficient geometry; maintainability. |
Efficient lighting | Efficient lighting aims to achieve a balance between reducing energy consumption and maintaining adequate lighting levels. | Use of natural light; LED lamps. |
Water heating | Solar heating refers to the use of systems and technologies that harness solar energy to heat water for consumption. | Heating system; maintainability |
Efficient electrical equipment | These electronics are designed to consume less electricity than conventional models while maintaining or even improving performance and functionality. | Equipment with a Procel label; newer equipment. |
Conscious behavior | Behavior marks the relationship between the use and occupation of the building and energy savings. | Daily habits; awareness. |
Integrated green areas | Integrated green areas contribute to energy efficiency by reducing the heat island effect, providing natural thermal insulation, improving air quality and residents’ health, and enabling sustainable rainwater management. | Integrated landscaping; green preservation. |
Accessibility for the Elderly | The Accessibility for the Elderly Attribute refers to the ability of the built environment to be easily used by elderly people, providing safety, comfort, and independence, with solutions that facilitate mobility and access to all areas. |
---|---|
Indicators | Definition |
Type of seal | Support bars and handrails can help the elderly move around the house and use the bathroom. Structures must be sturdy enough to allow support bars or handrails to be attached. According to NBR 9050/2020 [93], the bars must support at least 150 kg. |
Sharing and acoustic insulation of fences | Hearing decline can make it more difficult for older people to distinguish sounds in noise. This makes communication difficult. The house should have fences with adequate acoustic properties, with adequate acoustic properties to avoid conflicts with neighbors. |
Width of passage gaps in fences | Elderly individuals may face mobility challenges and require orthotic devices to assist them in locomotion. Depending on the type of orthotic device used, it may be necessary to widen passages. |
Quality of the external view of each environment | Windows must face pleasant areas that allow for both contemplation and interaction with the neighborhood. Enabling contact between the elderly and their neighbors and surrounding events can help reduce potential isolation and feelings of loneliness. |
Sunlight entry in every environment | Direct sunlight is essential for the healthiness of environments, especially for the elderly, due to their increased susceptibility to infections. Windows and doors should allow the entry of sunlight but in moderation, as excessive exposure can be harmful due to the sensitive skin of the elderly and their reduced ability to regulate body temperature. |
Possibility of viewing the external environment | Elderly individuals who spend a lot of time sitting or lying down benefit from lower windowsills or parapets, facilitating the view of the exterior environment. |
Window handling capacity | High windows can be difficult for the elderly to handle, as the locks and levers are generally located in the center of the frame. The use of stairs is not recommended for the elderly due to the risk of falls and serious injuries. |
Elevator area or compartment | The provision of an area or compartment for the installation of an elevator facilitates movement between floors without the need for major adaptations to the dwelling. |
Ramps with adequate incline and width | Very steep ramps can be difficult to use. Ramps must follow the appropriate slope and width according to NBR 9050 to ensure the safe mobility of the elderly. |
Bathrooms with suitable area for approach and use | Due to the decline in the musculoskeletal system, it may be necessary for bathrooms to be larger to accommodate elderly individuals using walkers or wheelchairs. |
Width of circulation areas between fences | Likewise, it may be necessary to have wider circulation spaces to allow access for the elderly using walkers or wheelchairs. |
Inexistence of isolated steps | NBR 9050 defines an isolated step as a sequence of up to two steps. The presence of isolated steps can hinder the access of elderly individuals with orthotic devices to the environments of their residences, reducing their independence. For those using walkers or wheelchairs, these steps can represent obstacles that are often difficult to overcome. |
Characteristics | RSB Residential | R2A4 Residential | |
---|---|---|---|
City sector | South | West | |
Years of implementation | 2010/2013 | 2016/2017 | |
Distance from the city center (shortest path) | 10.7 km | 17.0 km | |
Program | “Minha Casa, Minha Vida” | ||
Income range | 1 (0 to 3 minimum wages) | ||
Plot size | 8 × 25 (200 m2) | ||
Typology | Horizontal | ||
Layout | Paired houses (2 by 2) | Detached on the plot | |
Orientation type (front of plot) | 3 types (southeast, northwest, and northeast) | 4 types (north, south, east, and west) | |
Area of housing unit | Standard: 37.91 m2; adapted: 38.15 m2 | 42.35 m2 | |
Room organization | 2 bedrooms, living room, kitchen, bathroom, and external laundry | 2 bedrooms, integrated living room and kitchen, bathroom, and external laundry | |
Construction system | Roofing | Portuguese tiles on wooden structure | Concrete tiles on galvanized structures |
Walls | Structural masonry of ceramic block 9 × 19 × 19 cm | Solid concrete structural walls with a thickness of 10 cm | |
Windows | Metal frames Airflow coefficient through cracks when the opening is closed (kg/(s.m))—0.00063 | ||
Floor covering | Ceramic floor | ||
Frames | Wooden doors and metal windows | ||
Ceiling | White polyvinyl chloride (PVC) 8 mm | ||
Heating system provided | Solar heater |
Attribute | |||||||||
---|---|---|---|---|---|---|---|---|---|
Indicator | |||||||||
Sub-indicators | Evaluation item | Evaluation item details | 1 | 2 | 3 | 4 | 5 | Parameters | Data collection tool |
Not resilient | Litte resilient | Moderately resilient | Resilient | Very resilient |
Attribute: Flexibility | |||||||||
---|---|---|---|---|---|---|---|---|---|
Indicator: Adaptability | |||||||||
Sub-indicators | Evaluation item | Evaluation item details | 1 | 2 | 3 | 4 | 5 | Parameters | Data collection tool |
“Polyvalence” | “Adjustability” (based on funiture) | Furniture with casters | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | Based on what is oberved in the control cases and the amount of furniture considered primary according to NBR 15575/2013. | Questionnaires answered by residents, the researcher’s perception. |
Modular funiture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | ||||
Fixed multifunctional furniture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | ||||
Retractable furniture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | ||||
Expandable furniture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | ||||
Assembled furniture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | ||||
Stackable furniture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more | ||||
Fitted furniture | No furniture | 1 piece of furniture | 2 pieces of furniture | 3 pieces of furniture | 4 or more |
Attribute | Period of Application | POE Instruments Used | Sampling |
---|---|---|---|
Flexibility | January 2023 to April 2023 | Questionnaire and Walkthrough | 40 houses |
Thermal comfort | February 2023 to May 2023 | Questionnaire and Walkthrough | 42 houses |
Energy efficiency | February 2022 to May 2022 | Questionnaire and Walkthrough | 10 houses |
Accessibility for the elderly | November 2021 | Architectural Project Analysis | 11 houses |
Summary of the RR Results | Level of Resilience | ||
---|---|---|---|
R2A4 | RSB | ||
Attribute: Flexibility | 1.57 | 1.39 | |
Indicator: Adaptability | 1.54 | 1.56 | |
Sub-indicator | Conversion | 1 | 1 |
Polyvalence | 1.23 | 1.09 | |
Customize | 2.4 | 2.59 | |
Indicator: Ampliability | 1.6 | 1.21 | |
Sub-indicator | Elasticity | 1.59 | 1.14 |
Expansion | 1.62 | 1.22 |
Summary of the RR Results | Level of Resilience | ||
---|---|---|---|
R2A4 | RSB | ||
Attribute: Thermal Comfort | 2.06 | 2.22 | |
Indicator: Bioclimatic building | 2.08 | 2.21 | |
Sub-indicator | Construction systems considering interactions with solar radiation and natural ventilation | 1.14 | 2.00 |
Geometry considering interactions with solar radiation | 2.96 | 2.56 | |
Geometry considering interactions with natural ventilation | 2.42 | 2.17 | |
Functional landscaping | 1.54 | 1.73 | |
Indicator: Climate sensitivity | 2.04 | 2.24 | |
Sub-indicator | Seeking information about the climate | 1.29 | 1.76 |
Action to deal with the climate | 2.6 | 2.72 | |
Understanding the relationship between climate and built environment characteristics for thermal comfort | 2.95 | 3.18 | |
Existence of communication means for requesting help | 1.33 | 1.28 |
Summary of the RR Results | Level of Resilience | ||
---|---|---|---|
R2A4 | RSB | ||
Attribute: Energy Efficiency | 3.22 | 3.37 | |
Indicator: Efficient envelope | 2.51 | 2.47 | |
Sub-indicator | Efficient materiality (construction guidelines) | 1.45 | 2.21 |
Efficient geometry (geometric guidelines) | 4.28 | 4.04 | |
Maintainability | 1.8 | 1.27 | |
Indicator: Water heating | 2.76 | 2.6 | |
Sub-indicator | Efficient heating system | 4.12 | 3.4 |
Maintainability | 1.4 | 1.8 | |
Indicator: Efficient lighting | 4.6 | 3.8 | |
Sub-indicator | Utilization of natural light | 4.6 | 2.6 |
LED bulbs | 4.6 | 4 | |
Indicator: Efficient electrical equipment | 3.3 | 3.8 | |
Sub-indicator | Equipment with PROCEL seal | 3.2 | 4.0 |
Newer equipment | 3.4 | 3.6 | |
Indicator: Conscious behavior | 3.15 | 3.95 | |
Sub-indicator | Daily habits | 3.1 | 3.7 |
Daily habits | 3.2 | 4.2 | |
Indicator: Integrated green areas | 3.0 | 3.6 | |
Sub-indicator | Integrated landscaping | 3.2 | 4.2 |
Green preservation | 2.8 | 3.0 |
Summary of the RR Results | Level of Resilience | |
---|---|---|
RSB | ||
Attribute: Accessibility for the elderly (The research into this attribute was the first to be carried out when the case study was simple, consisting of a single unit of analysis—the RSB) | 2.76 | |
Indicators | A—Type of enclosure used in the environments. | 4 |
B—Existence of shared enclosures between residences and the presence of sound insulation. | 3 | |
C—Width of access openings to each environment. | 3.42 | |
D—Quality of the external view from each environment (except bathrooms, circulation, and service areas). | 2.36 | |
E—Entry of sunlight into each environment. | 2.35 | |
F—The elderly, being inside the environment, can view the uncovered exterior environment through the door or window. | 2.2 | |
G—The elderly can handle the window opening and locking mechanisms. | 2.58 | |
H—Existence of an area or compartment designated for the installation of an elevator if there is more than one floor. | (There was no more than one floor in the case study) | |
I—Evaluate the characteristics of the ramp, if one exists. | 1 | |
J—Approach and use area of bathroom furniture. | 2.21 | |
K—Width between enclosures in circulation environments. | 3.27 | |
L—Existence of an isolated step. | 3.95 |
Summary of the RR Results—All Attributes | Level of Resilience | |
---|---|---|
R2A4 | RSB | |
Attribute: Flexibility | 1.42 | 1.32 |
Attribute: Thermal comfort | 2.06 | 2.22 |
Attribute: Energy efficiency | 3.22 | 3.37 |
Attribute: Accessibility for the elderly | It was not evaluated. | 2.76 |
Average of attributes per unit of analysis | 2.23 | 2.42 |
Final average of attributes | 2.32 |
Attributes | Calls for Guidance |
Flexibility | Sockets and switches |
Shoe furniture | |
Study and work in a double room | |
Study and work in a room for one person | |
Study and work in a room for two people or more | |
Study and work in a small room | |
Prepare the room for a healthy person | |
Enlarge the room or build new room | |
Choose the color of external walls | |
Stop infiltration | |
Fix leaks | |
Create internal courtyards with gardens | |
Define suitable openings | |
Thermal comfort | Choose materials and construction techniques |
Implement an electricity generation system | |
Position and shade openings | |
Adapt to temperature and humidity | |
Create conditions for ventilation and lighting | |
Energy efficiency | Choose paint color for external walls |
Choose paint color for external walls | |
Clean and maintain solar panels | |
Plant a kitchen garden | |
Build a new room with solar orientation in mind | |
Apply thermal waterproofing to the roof | |
Shade openings | |
Suit walls to the local climate | |
Use solar water heating in all bathrooms | |
Accessibility for the elderly | Fences capable of supporting support bars and handrails |
Location of rooms | |
Room access openings | |
Quality of the external view | |
Direct sunlight entering each room | |
Viewing capacity through windows | |
Height of lighting and ventilation openings | |
Compartment for elevator installation | |
Ramps | |
Area for approaching and using toilets | |
Width between fences in circulation areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa, S.B.; Bortoli, K.C.R.d.; Oliveira, L.V. Resilient House Evaluation Matrix: Attributes and Quality Indicators for Social Housing. Buildings 2025, 15, 793. https://doi.org/10.3390/buildings15050793
Villa SB, Bortoli KCRd, Oliveira LV. Resilient House Evaluation Matrix: Attributes and Quality Indicators for Social Housing. Buildings. 2025; 15(5):793. https://doi.org/10.3390/buildings15050793
Chicago/Turabian StyleVilla, Simone Barbosa, Karen Carrer Ruman de Bortoli, and Lamonise Vasconcelos Oliveira. 2025. "Resilient House Evaluation Matrix: Attributes and Quality Indicators for Social Housing" Buildings 15, no. 5: 793. https://doi.org/10.3390/buildings15050793
APA StyleVilla, S. B., Bortoli, K. C. R. d., & Oliveira, L. V. (2025). Resilient House Evaluation Matrix: Attributes and Quality Indicators for Social Housing. Buildings, 15(5), 793. https://doi.org/10.3390/buildings15050793