Regulating Indoor Comfortable Temperature Limits for Sustainable Architectural Design in Mediterranean Climates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Thermal Comfort Evaluation in Residential Buildings Through PMV-PPD Index
2.2. The Relationship Between Topography and Air Temperature in Shaping Building Sustainability
2.2.1. The Relationship Between Accepted Thermal Temperature Limits and Energy Efficiency
2.2.2. Mediterranean Climatic Characteristics of the Study Area
2.3. Methodology
2.3.1. Criteria for Applied Method and Case Studies
2.3.2. Tools for Data Collection and Evaluation
- GT: It stands for globe temperature (with a globe diameter of 40 mm); ASHRAE-55 states that the measurement must be taken at least one meter from the walls.
- ATi and RHi: The building’s interior air temperature and relative humidity, respectively, as measured by the CBE Thermal Comfort Tool’s Psychrometric (air temperature) method.
- Airspeed (As): The airspeed in the buildings was measured in meters per second using an anemometer.
- Clothing insulation was taken into consideration as 0.5 to 1.0 (clo) for summer and winter, respectively. These values reflect the typical indoor clothing insulation level in the summer and winter, according to ASHRAE Standards-55.
- Metabolic rate (Met) or the rate of activity: It is determined based on the observation area, and according to the site observation and ASHRAE-55, it was considered (1 Met) as a seated and quiet activity level. See Table 1.
3. Findings
3.1. Findings from the Summer Data Collection
- Coastal area
- Hinterland area
- Mountainous area
3.2. Findings from the Winter Observations
- Coastal area
- Hinterland area
- Mountainous area
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lombard, L.P.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- ISO 7730-2005; Ergonomics of the Thermal Environment-Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. International Organization for Standardization: Geneva, Switzerland, 2005. Available online: https://www.iso.org/obp/ui/en/#!iso:std:39155:en (accessed on 30 November 2024).
- Ormandy, D.; Ezratty, V. Thermal discomfort and health: Protecting the susceptible from excess cold and excess heat in housing. Adv. Build. Energy Res. 2015, 10, 84–98. [Google Scholar] [CrossRef]
- Elshater, A.; Abusaada, H.; Alfiky, A.; El-Bardisy, N.; Elmarakby, E.; Grant, S. Workers’ Satisfaction Vis-à-vis Environmental and Socio-Morphological Aspects for Sustainability and Decent Work. Sustainability 2022, 14, 1699. [Google Scholar] [CrossRef]
- Muhy Al-Din, S.S.; Ahmad Nia, H.; Rahbarianyazd, R. Enhancing Sustainability in Building Design: Hybrid Approaches for Evaluating the Impact of Building Orientation on Thermal Comfort in Semi-Arid Climates. Sustainability 2023, 15, 15180. [Google Scholar] [CrossRef]
- ASHRAE Standard 55-2020; Thermal Environmental Conditions for Human Occupancy. American Society of Heating, Refrigerating and Air-Conditioning Engineers [ASHRAE]: Atlanta, GA, USA, 2020.
- Jeong, B. Assessing indoor air temperature settings in residential buildings during the COVID-19 era. Build. Environ. 2024, 265, 112034. [Google Scholar] [CrossRef]
- Homod, R.Z.; Almusaed, A.; Almssad, A.; Jaafar, M.K.; Goodarzi, M.; Sahari, K.S. Effect of different building envelope materials on thermal comfort and air-conditioning energy savings: A case study in Basra city, Iraq. J. Energy Storage 2021, 34, 101975. [Google Scholar] [CrossRef]
- Muhy Al-Din, S.S.; Nia, H.A.; Rahbarianyazd, R. Towards Sustainable Living through Thermoneutral Temperature Management in Subtropical Steppe Climates. Sustainability 2024, 16, 5699. [Google Scholar] [CrossRef]
- Szokolay, S.V. Introduction to Architectural Science: The Basis of Sustainable Design; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar] [CrossRef]
- Brawm, G.Z.; Dekay, M. Sun, Wind & Light—Architectural Design Strategies, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Busch, J.F. Thermal responses to the Thai office environment. ASHRAE Trans. 1990, 96, 859–872. [Google Scholar]
- Singh, S. Seasonal evaluation of adaptive use of controls in multi-storied apartments: A field study in composite climate of north India. Int. J. Sustain. Built Environ. 2016, 5, 83–98. [Google Scholar] [CrossRef]
- Korsavi, S.S.; Montazami, A. Children’s thermal comfort and adaptive behaviours; UK primary schools during non-heating and heating seasons. Energy Build. 2020, 214, 109857. [Google Scholar] [CrossRef]
- Al-Hafith, O.; Satish, B.K.; Wilde, P.D.; Korsavi, S.S. Impact of Energy-consuming Air Conditioning Systems on People’s Thermal Comfort and Preferences: Comparative Study of Iraq and Gulf Cooperation Council Countries. J. Archit. Environ. Struct. Eng. Res. 2024, 7, 1–19. [Google Scholar] [CrossRef]
- Haddad, S.; Osmond, P.; King, S. Revisiting thermal comfort models in Iranian classrooms during the warm season. Build. Res. Inf. 2016, 45, 457–473. [Google Scholar] [CrossRef]
- Safakli, O.V. An overview of the construction sector in Northern Cyprus. Afr. J. Bus. Manag. 2011, 5, 13383–13387. [Google Scholar] [CrossRef]
- Adunola, A.O.; Ajibola, K. Factors significant to thermal comfort within residential neighborhoods of Ibadan metropolis and preferences in adult residents’ use of spaces. SAGE Open 2016, 6, 2158244015624949. [Google Scholar] [CrossRef]
- Han, J.; Zhang, G.; Zhang, Q.; Zhang, J.; Liu, J.; Tian, L.; Zheng, C.; Hao, J.; Lin, J.; Liu, Y.; et al. Field study on occupants’ thermal comfort and residential thermal environment in a hot-humid climate of China. Build. Environ. 2007, 42, 4043–4050. [Google Scholar] [CrossRef]
- Yu, W.; Li, B.; Yao, R.; Wang, D.; Li, K. A study of thermal comfort in residential buildings on the Tibetan Plateau, China. Build. Environ. 2017, 119, 71–86. [Google Scholar] [CrossRef]
- Rijal, H.B.; Yoshida, K.; Humphreys, M.A.; Nicol, J.F. Development of an adaptive thermal comfort model for energy-saving building design in Japan. Archit. Sci. Rev. 2020, 64, 109–122. [Google Scholar] [CrossRef]
- Nicol, J.; Raja, I.A.; Allaudin, A.; Jamy, G.N. Climatic variations in comfortable temperatures: The Pakistan projects. Energy Build. 1999, 30, 261–279. [Google Scholar] [CrossRef]
- Nicol, F.; Humphreys, M. Maximum temperatures in European office buildings to avoid heat discomfort. Sol. Energy 2007, 81, 295–304. [Google Scholar] [CrossRef]
- Jindal, A. Thermal comfort study in naturally ventilated school classrooms in composite climate of India. Build. Environ. 2018, 142, 34–46. [Google Scholar] [CrossRef]
- Shrestha, M.; Rijal, H.B.; Kayo, G.; Shukuya, M. A field investigation on adaptive thermal comfort in school buildings in the temperate climatic region of Nepal. Build. Environ. 2021, 190, 107523. [Google Scholar] [CrossRef]
- Nematchoua, M.K.; Ricciardi, P.; Reiter, S.; Asadi, S.; Demers, C.M. Thermal comfort and comparison of some parameters coming from hospitals and shopping centers under natural ventilation: The case of Madagascar Island. J. Build. Eng. 2017, 13, 196–206. [Google Scholar] [CrossRef]
- Azizpour, F.; Moghimi, S.; Lim, C.H.; Mat, S.; Salleh, E.; Sopian, K. A thermal comfort investigation of a facility department of a hospital in hot-humid climate: Correlation between objective and subjective measurements. Indoor Built Environ. 2013, 22, 836–845. [Google Scholar] [CrossRef]
- Peeters, L.; de Dear, R.; Hensen, J.; D’haeseleer, W. Thermal comfort in residential buildings: Comfort values and scales for building energy simulation. Appl. Energy 2009, 86, 772–780. [Google Scholar] [CrossRef]
- Nikolopoulou, M. Outdoor Thermal Comfort. Front. Biosci. 2011, 3, 1552–1568. [Google Scholar] [CrossRef]
- Parsons, K. Human Thermal Environment: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance; Taylor & Francis: New York, NY, USA, 2022; ISBN 0-415-23793-9. [Google Scholar]
- Cui, W.; Cao, G.; Park, J.H.; Ouyang, Q.; Zhu, Y. Influence of indoor air temperature on human thermal comfort, motivation and performance. Build. Environ. 2013, 68, 114–122. [Google Scholar] [CrossRef]
- Reiter, S.; De Herde, A. Quantitative and qualitative criteria for comfortable urban public spaces. In Research in Building Physics; Carmeliet, J., Hens, H., Vermeir, G., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1001–1011. [Google Scholar] [CrossRef]
- Setaih, K.; Hamza, N.; Townshend, T. Assessment of outdoor thermal comfort in urban microclimate in hot arid areas. In Proceedings of the 13th International Conference of International Building Performance Simulation Association, Chambery, France, 25–28 August 2013. [Google Scholar] [CrossRef]
- Zheng, P.; Yao, R.; Toftum, J.; Liu, S.; Kalmár, F.; Li, B. Evaluation methods and factors influencing the thermal comfort of children—A comprehensive literature review. J. Build. Eng. 2024, 95, 110063. [Google Scholar] [CrossRef]
- Gilani, S.I.u.H.; Khan, M.H.; Pao, W. Thermal Comfort Analysis of PMV Model Prediction in Air Conditioned and Naturally Ventilated Buildings. Energy Procedia 2015, 75, 1373–1379. [Google Scholar] [CrossRef]
- Fanger, P.O. Thermal Comfort: Analysis and Applications in Environmental Engineering; Danish Technical Press: Copenhagen, Denmark, 1970; ISBN 978-87-571-0341-0. [Google Scholar]
- Peng, X.; Wu, W.; Zheng, Y.; Sun, J.; Hu, T.; Wang, P. Correlation analysis of land surface temperature and topographic elements in Hangzhou, China. Sci. Rep. 2020, 10, 10451. [Google Scholar] [CrossRef]
- Whiteman, C.D.; Haiden, T.; Pospichal, B.; Eisenbach, S.; Steinacker, R. Minimum Temperatures, Diurnal Temperature Ranges, and Temperature Inversions in Limestone Sinkholes of Different Sizes and Shapes. J. Appl. Meteorol. 2004, 43, 1224–1236. [Google Scholar] [CrossRef]
- Givoni, B.; Reinhold, V.N. Passive and Low Energy Cooling of Building; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1994. [Google Scholar]
- Muhy Al-Din, S.; Iranfare, M.; Surchi, Z. Building Thermal Comfort Basedon Envelope Development: Criteria for selecting right case study in Kyrenia-North Cyprus. Energy Procedia 2017, 115, 80–91. [Google Scholar] [CrossRef]
- Thapa, S. Thermal comfort in high altitude Himalayan residential houses in Darjeeling, India-An adaptive approach. Indoor Built Environ. 2020, 29, 84–100. [Google Scholar] [CrossRef]
- Katafygiotou, M.C.; Serghides, D.K. Bioclimatic chart analysis in three climate zones in Cyprus. Indoor Built Environ. 2014, 24, 746–760. [Google Scholar] [CrossRef]
- Yilmaz, S.; Akif Irmak, M.; And Matzarakis, A. The Importance of Thermal Comfort in Different Elevation for City Planning. Glob. NEST J. 2013, 15, 408–420. [Google Scholar] [CrossRef]
- Seppanen, O.; Fisk, W.J.; Faulkner, D. Cost benefit analysis of the night-time ventilative cooling in office building. In Proceedings of the Healthy Buildings 2003 Conference (Vol. 3). Indoor Environment Group, Sustainable Energy Department, Energy Analysis and Environmental Impacts Division, Singapore, 7–11 December 2003; Available online: https://escholarship.org/uc/item/3j82f642 (accessed on 18 January 2025).
- Tanabe, S.I.; Nishihara, N.; Haneda, M. Performance evaluation measures for workplace productivity. In Proceedings of the 6th International Conference on Indoor Air Quality, Ventilation and Energy Conservation in Buildings: Sustainable Built Environment, Sendai, Japan, 28–31 October 2007; pp. 663–670. Available online: https://www.researchgate.net/publication/267934542_Performance_evaluation_measures_for_workplace_productivity (accessed on 10 December 2024).
- Berglund, L.G.; Gonzalez, R.R.; Gagge, A.P. Predicting human performance decrement from thermal discomfort and ET. In Proceedings of the 5th International Conference on Indoor Air Quality and Climate, Toronto, ON, Canada, 29 July–3 August 1990; Volume 1, pp. 215–220, “Human Health, Comfort and Performance”. Available online: https://www.aivc.org/resource/predicting-human-performance-decrement-thermal-discomfort-and-et (accessed on 13 November 2024).
- Niemela, R.; Hannula, M.; Rautio, S.; Reijula, K.; Railio, J. The effect of air temperature on labour productivity in call centres-a case study. Energy Build. 2022, 34, 759–764. [Google Scholar] [CrossRef]
- Johansson, C.R. Mental and Perceptual Performance in Heat; Svensk Byggtjänst: Stockholm, Sweden, 1975. [Google Scholar]
- Pepler, R.D. Temperature and learning, an experiment study. ASHRAE Trans. 1968, 74, 211–219. [Google Scholar] [CrossRef]
- Fang, L.; Wyon, D.P.; Clausen, G.; Fanger, P.O. Impact of indoor air temperature and humidity in an office on perceived air quality, SBS symptoms and performance. Indoor Air 2004, 14, 74–81. [Google Scholar] [CrossRef]
- Seppänen, O.A.; Fisk, W.J.; Mendell, M.J. Association of ventilation rates and CO2 concentrations with health andother responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef]
- De Dear, R.J.; Brager, G.S. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Wu, Z.; Li, N.; Wargocki, P.; Peng, J.; Li, J.; Cui, H. Field study on thermal comfort and energy saving potential in 11 split air-conditioned office buildings in Changsha, China. Energy 2019, 182, 471–482. [Google Scholar] [CrossRef]
- Barreca, A.; Clay, K.; Deschenes, O.; Greenstone, M.; Shapiro, J.S. Adapting to climate change: The remarkable decline in the US temperature-mortality relationship over the twentieth century. J. Political Econ. 2016, 124, 105–159. [Google Scholar] [CrossRef]
- World Economic Forum Annual Meeting|World Economic Forum. Available online: https://www.weforum.org/events/world-economic-forum-annual-meeting-2019/sessions/strategic-outlook-on-the-future-of-energy/ (accessed on 16 December 2024).
- Chang, C.; Zhu, N.; Yang, K.; Yang, F. Data and analytics for heating energy consumption of residential buildings: The case of a severe cold climate region of China. Energy Build. 2018, 172, 104–115. [Google Scholar] [CrossRef]
- Almasri, R.A.; Alshitawi, M.S. Electricity consumption indicators and energy efficiency in residential buildings in GCC countries: Extensive review. Energy Build. 2022, 255, 111664. [Google Scholar] [CrossRef]
- Dincer, I.; Rosen, M.A. Energy, environment and sustainable development. Appl. Energy 1999, 64, 427–440. [Google Scholar] [CrossRef]
- Lamsal, P.; Bajracharya, S.B.; Rijal, H.B. A Review on Adaptive Thermal Comfort of Office Building for Energy-Saving Building Design. Energies 2023, 16, 1524. [Google Scholar] [CrossRef]
- Nicol, J.F.; Humphreys, M.A.; Roaf, S. Adaptive Thermal Comfort: Principles and Practice; Routledge, Taylor & Francis Group: London, UK; New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Wang, Z. A field study of the thermal comfort in residential buildings in Harbin. Build. Environ. 2006, 41, 1034–1039. [Google Scholar] [CrossRef]
- Donnini, G.; Molina, J.; Martello, C.; Lai, D.H.C.; Lai, H.K.; Chang, C.; Laflamme, M.; Van Nguyen, H.P.E.; Haghighat, F. Field study of occupant comfort and office thermal environments in a cold climate. ASHRAE Trans. 1996, 102, 795–802. [Google Scholar]
- Zhang, H.; Arens, E.; Kim, D.E.; Buchberger, E.; Bauman, F.; Huizenga, C. Comfort, perceived air quality, and work performance in a low power task- ambient conditioning system. Build. Environ. 2009, 45, 29–39. [Google Scholar] [CrossRef]
- Humphreys, M.A.; Nicol, J.F. Understanding the adaptive approach to thermal comfort. ASHRAE Trans. 1998, 104, 991–1004. [Google Scholar]
- Hawila, A.W. Integrating Occupants’ Thermal Comfort in the Design of Energy-Efficient Buildings. Ph.D. Thesis, University of Technology-ICD-UTT, Troyes, France, 2019. Available online: https://www.researchgate.net/publication/359440615_L%E2%80%99integration_du_confort_thermique_des_occupants_dans_la_conception_des_batiments_performants (accessed on 8 January 2025).
- Mishra, A.K.; Ramgopal, M. Thermal comfort in undergraduate laboratories-A field study in Kharagpur, India. Build. Environ. 2014, 71, 223–232. [Google Scholar] [CrossRef]
- Indraganti, M. Using the adaptive model of thermal comfort for obtaining indoor neutral temperature: Findings from a field study in Hyderabad, India. Build. Environ. 2010, 45, 519–536. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- Sundseth, K. Natura 2000 in the Mediterranean Region. European Communities. 2009. Available online: https://kykpee.org/wp-content/uploads/2015/08/natura_2000_in_the_mediterranean_region_en.pdf (accessed on 8 January 2025).
- Causone, F.; Pietrobon, M.; Pagliano, L.; Erba, S. A high-performance home in the Mediterranean climate: From the design principle to actual measurements. Energy Procedia 2017, 140, 67–79. [Google Scholar] [CrossRef]
- Bey, E.; Turkes, M.; Hamed, M.M. Long-term air temperature trends in North Cyprus. Theor. Appl. Climatol. 2024, 155, 1113–1122. [Google Scholar] [CrossRef]
- Lingis, P.; Michaelides, S.C. Teleconnection patterns of the Siberian Anticyclone and precipitation over Cyprus. Atmos Res. 2009, 94, 663–674. [Google Scholar] [CrossRef]
- Cyprus Meteorological Department. Department of Meteorology. Retrieved from The Climate of Cyprus. 2014. Available online: http://www.moa.gov.cy/moa/ms/ms.nsf/Dmlcyclimate_en/DMLcyclimate_en (accessed on 12 January 2025).
- Elkiran, G.; Nourani, V.; Elvis, O.; Abdullahi, J. Impact of climate change on hydro-climatological parameters in North Cyprus:Application of artificial intelligence-based statistical downscaling models. J. Hydroinformatics 2021, 23, 1395–1415. [Google Scholar] [CrossRef]
- Tartarini, F.; Schiavon, S.; Cheung, T.; Hoyt, T. CBE Thermal Comfort Tool: Online tool for thermal comfort calculations and visualizations. SoftwareX 2020, 12, 100563. [Google Scholar] [CrossRef]
- Makwana, D.; Engineer, P.; Dabhi, A.; Chudasama, H. Sampling Methods in Research: A Review. Int. J. Trend Sci. Res. Dev. 2023, 7, 762–768. Available online: https://archive.org/details/httpswww.ijtsrd.com.commedicineayurvedic57470sampling-methods-in-research-a-reviewdhaval-makwana (accessed on 18 February 2025).
- Amen, M.Z.; Afara, A.; Muhy-Al-Din, S.S. The Persuasibility of Globe Thermometer in Predicting Indoor Thermal Comfort Using Non-standard Globe Diameter: Row Houses of Semi-Arid Climates as case studies. Civ. Eng. Arch. 2024, 12, 425–435. [Google Scholar] [CrossRef]
- Turgut, E.T.; Usanmaz, O. An Analysis of Vertical Profiles of Wind and Humidity Based On Long-Term Radiosonde Data in Turkey. Anadolu Univ. J. Sci. Technol. Appl. Sci. Eng. 2016, 17, 830–844. [Google Scholar] [CrossRef]
- Ozarisoy, B.; Altan, H. Regression forecasting of “neutral” adaptive thermal comfort: A field study investigation in the south-eastern Mediterranean climate of Cyprus. Build. Environ. 2021, 202, 108013. [Google Scholar] [CrossRef]
- Labdaoui, K.; Mazouz, S.; Reiter, S.; Teller, J. Thermal perception in outdoor urban spaces under the Mediterranean climate of Annaba, Algeria. Urban Clim. 2021, 39, 100970. [Google Scholar] [CrossRef]
- Turhan, C.; Akkurt, G. Assessment of Thermal Comfort Preferences in Mediterranean Climate: A University Office Building Case. Therm. Sci. 2018, 22, 2177–2187. [Google Scholar] [CrossRef]
- Pérez-Carramiñana, C.; González-Avilés, Á.B.; Castilla, N.; Galiano-Garrigós, A. Influence of Sun Shading Devices on Energy Efficiency, Thermal Comfort and Lighting Comfort in a Warm Semi-Arid Dry Mediterranean Climate. Buildings 2024, 14, 556. [Google Scholar] [CrossRef]
- Jega, A.I.; Muhy Al-Din, S.S. Implication of Shading Passive Strategies in Buildings of Hot and Humid Climates for Energy Optimization: Lessons from Vernacular Dwellings in Nigeria. J. Salut. Archit. 2023, 2, 50–69. [Google Scholar] [CrossRef]
No. | The Variables | Observation Tool | Location of the Observation | Metabolic Rate (Met) (Seated and Quiet) | Clo Summer | Clo Winter |
---|---|---|---|---|---|---|
Environmental | ||||||
1 | Indoor Globe Temperature (GT) | Glob thermometer EXTECH-H30 (globe diameter: 40 mm) | Family Lounge | |||
2 | Indoor Air Temperature (ATi) | The weather station “HAMA” electronic set | Family Lounge | |||
3 | Indoor Relative Humidity (RHi) | The weather station “HAMA” electronic set | Family Lounge | |||
4 | Airspeed (Vs) | Anemometer model DA02 | Family Lounge | |||
Personal | ||||||
5 | The activity level and Insulation level of clothing | Family Lounge | 1.0 | 0.5 | 1.0 |
No. | GT | ATi | Av | MRT | RHi | PMV | PPD | Sensation |
---|---|---|---|---|---|---|---|---|
1 | 26.4 | 27 | 0.1 | 25.8 | 63% | 0.25 | 6% | Neutral |
2 | 24.9 | 26.5 | 0.16 | 23.0 | 65% | −0.4 | 8% | Neutral |
3 | 25.2 | 25 | 0.11 | 25.4 | 62% | −0.27 | 7% | Neutral |
4 | 25.9 | 26.8 | 0.1 | 25.0 | 70% | 0.13 | 5% | Neutral |
5 | 26 | 27 | 0.17 | 24.6 | 60% | −0.12 | 5% | Neutral |
6 | 25.6 | 26 | 0.08 | 25.3 | 63% | 0.02 | 5% | Neutral |
7 | 25.8 | 25.6 | 0.1 | 26.0 | 65% | 0.02 | 5% | Neutral |
8 | 27.1 | 26.7 | 0.08 | 27.4 | 58% | 0.5 | 10% | Neutral |
9 | 27.4 | 27.2 | 0.14 | 25.3 | 52% | 0.49 | 10% | Neutral |
10 | 27 | 28.7 | 0.14 | 24.9 | 64% | 0.43 | 9% | Neutral |
11 | 26.9 | 28 | 0.1 | 25.8 | 64% | 0.46 | 9% | Neutral |
12 | 26.6 | 26.3 | 0.11 | 26.9 | 58% | 0.22 | 6% | Neutral |
13 | 27.2 | 27 | 0.08 | 27.4 | 51% | 0.49 | 10% | Neutral |
14 | 24.9 | 24.4 | 0.04 | 25.2 | 50% | −0.45 | 9% | Neutral |
15 | 25 | 25.8 | 0.08 | 24.3 | 59% | −0.23 | 6% | Neutral |
16 | 26 | 27.5 | 0.1 | 24.5 | 63% | 0.12 | 5% | Neutral |
17 | 26.3 | 25.9 | 0.05 | 26.6 | 59% | 0.19 | 6% | Neutral |
18 | 25.5 | 24.7 | 0.06 | 23.0 | 53% | −0.21 | 6% | Neutral |
19 | 26.3 | 28.8 | 0.18 | 22.7 | 68% | 0.01 | 5% | Neutral |
20 | 25.6 | 26.2 | 0.15 | 22.3 | 67% | −0.12 | 5% | Neutral |
21 | 26.6 | 26 | 0.09 | 27.2 | 60% | 0.32 | 7% | Neutral |
22 | 27.3 | 26.9 | 0.06 | 22.1 | 50% | 0.5 | 5% | Neutral |
23 | 25.8 | 25.1 | 0.1 | 26.5 | 60% | −0.03 | 5% | Neutral |
24 | 26.2 | 25.7 | 0.1 | 26.5 | 75% | 0.25 | 6% | Neutral |
25 | 25.4 | 24.8 | 0.07 | 25.9 | 57% | −0.19 | 6% | Neutral |
26 | 26.7 | 26.1 | 0.06 | 27.1 | 61% | 0.34 | 7% | Neutral |
27 | 25.6 | 26.9 | 0.09 | 24.4 | 66% | 0.04 | 5% | Neutral |
No. | GT | ATi | Av | MRT | RHi | PMV | PPD | Sensation |
---|---|---|---|---|---|---|---|---|
1 | 26.2 | 27.5 | 0.16 | 24.5 | 60% | 0.00 | 5% | Neutral |
2 | 24.7 | 26.1 | 0.08 | 23.5 | 55% | −0.34 | 7% | Neutral |
3 | 25.5 | 26.2 | 0.1 | 24.8 | 57% | −0.14 | 5% | Neutral |
4 | 26.6 | 28.3 | 0.11 | 24.8 | 56% | 0.24 | 6% | Neutral |
5 | 26.5 | 28 | 0.13 | 24.8 | 64% | 0.22 | 6% | Neutral |
6 | 26.4 | 28.8 | 0.12 | 25.3 | 70% | 0.29 | 7% | Neutral |
7 | 26.6 | 28 | 0.07 | 25.5 | 55% | 0.4 | 8% | Neutral |
8 | 25.5 | 27.4 | 0.03 | 24.6 | 54% | 0.12 | 5% | Neutral |
9 | 24.8 | 25.9 | 0.04 | 24.2 | 56% | −0.25 | 6% | Neutral |
10 | 25.5 | 25.4 | 0.05 | 25.6 | 58% | −0.1 | 5% | Neutral |
11 | 25 | 24.6 | 0.09 | 25.4 | 64% | −0.26 | 6% | Neutral |
12 | 26.1 | 25.4 | 0.04 | 26.5 | 62% | 0.09 | 5% | Neutral |
13 | 25.5 | 26 | 0.1 | 25.0 | 60% | −0.12 | 5% | Neutral |
14 | 25.8 | 26.2 | 0.15 | 25.3 | 59% | −0.09 | 5% | Neutral |
15 | 26 | 26.3 | 0.12 | 25.7 | 54% | 0.06 | 5% | Neutral |
16 | 25.2 | 25.7 | 0.06 | 24.8 | 66% | −0.1 | 5% | Neutral |
17 | 25.3 | 24.9 | 0.09 | 25.7 | 60% | −0.18 | 6% | Neutral |
18 | 26.3 | 26.2 | 0.08 | 26.4 | 58% | 0.21 | 6% | Neutral |
19 | 25.9 | 25.8 | 0.04 | 26.0 | 64% | 0.11 | 5% | Neutral |
20 | 25.6 | 25.2 | 0.06 | 25.9 | 56% | −0.11 | 5% | Neutral |
21 | 26.9 | 26.5 | 0.07 | 27.2 | 61% | 0.45 | 9% | Neutral |
22 | 25.9 | 26.7 | 0.1 | 25.1 | 62% | 0.06 | 5% | Neutral |
No. | GT | ATi | Av | MRT | RHi | PMV | PPD | Sensation |
---|---|---|---|---|---|---|---|---|
1 | 27.4 | 27 | 0.12 | 27.8 | 50% | 0.42 | 9% | Neutral |
2 | 26.2 | 26 | 0.1 | 26.4 | 57% | 0.1 | 5% | Neutral |
3 | 26.3 | 28 | 0.16 | 25.7 | 52% | −0.04 | 5% | Neutral |
4 | 25.9 | 26.2 | 0.06 | 25.7 | 46% | −0.02 | 5% | Neutral |
5 | 26.4 | 26.5 | 0.05 | 26.3 | 50% | 0.13 | 6% | Neutral |
6 | 25.8 | 26.7 | 0.15 | 24.7 | 53% | −0.15 | 5% | Neutral |
7 | 26.9 | 26.5 | 0.07 | 27.2 | 46% | 0.31 | 7% | Neutral |
8 | 26.1 | 26.4 | 0.09 | 25.8 | 51% | 0.06 | 5% | Neutral |
9 | 25.4 | 27 | 0.14 | 23.4 | 52% | −0.29 | 7% | Neutral |
10 | 26.6 | 26.3 | 0.12 | 26.9 | 50% | 0.12 | 5% | Neutral |
11 | 25.6 | 25.2 | 0.08 | 25.9 | 51% | −0.15 | 5% | Neutral |
12 | 27.2 | 27 | 0.1 | 27.4 | 44% | 0.36 | 8% | Neutral |
13 | 27 | 26.5 | 0.13 | 27.6 | 49% | 0.24 | 6% | Neutral |
14 | 24.4 | 25.8 | 0.09 | 23.1 | 56% | −0.49 | 10% | Neutral |
15 | 26.3 | 25.5 | 0.11 | 27.1 | 45% | −0.01 | 5% | Neutral |
16 | 24.9 | 24.8 | 0.07 | 25 | 43% | −0.46 | 9% | Neutral |
17 | 26.8 | 26.8 | 0.06 | 26.8 | 55% | 0.38 | 8% | Neutral |
18 | 26.2 | 26.8 | 0.11 | 25.6 | 52% | 0.04 | 5% | Neutral |
19 | 26.3 | 25.9 | 0.09 | 26.7 | 40% | 0.03 | 5% | Neutral |
20 | 26 | 25.7 | 0.08 | 26.3 | 43% | −0.04 | 5% | Neutral |
21 | 26.3 | 27 | 0.05 | 25.8 | 39% | 0.1 | 5% | Neutral |
22 | 26.6 | 27.7 | 0.15 | 25.2 | 44% | 0.04 | 5% | Neutral |
23 | 26.3 | 26.5 | 0.07 | 26.1 | 48% | 0.13 | 5% | Neutral |
24 | 26.1 | 25.7 | 0.06 | 26.4 | 47% | 0.01 | 5% | Neutral |
25 | 26.4 | 25.9 | 0.11 | 26.9 | 49% | 0.06 | 5% | Neutral |
26 | 25.1 | 24.1 | 0.08 | 26 | 47% | −0.41 | 8% | Neutral |
27 | 26.8 | 28 | 0.12 | 24.7 | 45% | 0.17 | 6% | Neutral |
28 | 25.8 | 26.6 | 0.11 | 25 | 50% | −0.12 | 5% | Neutral |
29 | 26.6 | 26.1 | 0.09 | 27.1 | 52% | 0.24 | 6% | Neutral |
30 | 26.3 | 25.9 | 0.13 | 26.8 | 56% | 0.03 | 5% | Neutral |
31 | 26.1 | 25.5 | 0.1 | 27.2 | 58% | 0.16 | 6% | Neutral |
32 | 27 | 26.3 | 0.08 | 27.6 | 38% | 0.26 | 6% | Neutral |
33 | 26.4 | 25.9 | 0.1 | 26.9 | 53% | 0.14 | 5% | Neutral |
34 | 26.8 | 28.9 | 0.11 | 24.6 | 58% | 0.35 | 8% | Neutral |
35 | 25.3 | 25.2 | 0.07 | 25.4 | 48% | −0.26 | 6% | Neutral |
36 | 25.6 | 25.3 | 0.08 | 25.9 | 54% | −0.1 | 5% | Neutral |
37 | 26.1 | 25.7 | 0.12 | 26.5 | 57% | −0.02 | 5% | Neutral |
No. | GT | ATi | Av | MRT | RHi | PMV | PPD | Sensation |
---|---|---|---|---|---|---|---|---|
1 | 20.6 | 21.4 | 0 | 20.6 | 75% | −0.4 | 8% | Neutral |
2 | 20.7 | 21.5 | 0.02 | 20.4 | 77% | −0.39 | 8% | Neutral |
3 | 20.9 | 20.9 | 0 | 20.9 | 69% | −0.49 | 10% | Neutral |
4 | 20.6 | 21.3 | 0 | 20.6 | 71% | −0.44 | 9% | Neutral |
5 | 20.9 | 21.8 | 0 | 20.9 | 73% | −0.31 | 7% | Neutral |
6 | 21.1 | 21.7 | 0.01 | 20.9 | 70% | −0.35 | 8% | Neutral |
7 | 22 | 23 | 0 | 21.5 | 78% | 0.06 | 5% | Neutral |
8 | 20.2 | 21.1 | 0.01 | 20 | 78% | −0.5 | 10% | Neutral |
9 | 20.6 | 20.9 | 0 | 20.6 | 73% | −0.5 | 10% | Neutral |
10 | 21 | 21.6 | 0 | 21 | 61% | −0.41 | 9% | Neutral |
11 | 21.6 | 22.3 | 0 | 21.6 | 76% | −0.12 | 5% | Neutral |
12 | 20.9 | 21.4 | 0 | 20.9 | 72% | −0.38 | 8% | Neutral |
13 | 21 | 21.9 | 0 | 21 | 70% | −0.3 | 7% | Neutral |
14 | 21 | 21.6 | 0 | 21 | 68% | −0.37 | 8% | Neutral |
15 | 21.6 | 22 | 0 | 21.6 | 67% | −0.24 | 6% | Neutral |
16 | 20.5 | 20.9 | 0 | 20.5 | 75% | −0.49 | 10% | Neutral |
17 | 21.8 | 22.3 | 0 | 21.8 | 79% | −0.08 | 5% | Neutral |
18 | 20.3 | 21 | 0 | 20.3 | 76% | −0.49 | 10% | Neutral |
19 | 20.7 | 20.9 | 0 | 20.7 | 71% | −0.5 | 10% | Neutral |
20 | 22.2 | 22.6 | 0 | 22.2 | 78% | 0.01 | 5% | Neutral |
21 | 21.1 | 21.7 | 0 | 21.1 | 74% | −0.3 | 7% | Neutral |
22 | 20.8 | 21.1 | 0 | 20.8 | 67% | −0.48 | 10% | Neutral |
23 | 21.5 | 22 | 0 | 21.5 | 74% | −0.2 | 6% | Neutral |
24 | 20.9 | 21.9 | 0 | 20.9 | 65% | −0.35 | 8% | Neutral |
25 | 20.4 | 21.6 | 0 | 20.4 | 66% | −0.45 | 9% | Neutral |
26 | 22.5 | 23.0 | 0 | 22.5 | 76% | 0.10 | 5% | Neutral |
27 | 20.4 | 21.8 | 0 | 20.4 | 69% | −0.4 | 8% | Neutral |
28 | 21.7 | 22.5 | 0 | 21.7 | 76% | −0.08 | 5% | Neutral |
29 | 21.3 | 22 | 0 | 21.3 | 70% | −0.25 | 6% | Neutral |
30 | 21 | 21.4 | 0 | 21 | 72% | −0.37 | 8% | Neutral |
No. | GT | ATi | Av | MRT | RHi | PMV | PPD | Sensation |
---|---|---|---|---|---|---|---|---|
1 | 21.9 | 22.6 | 0 | 21.9 | 73% | −0.06 | 5% | Neutral |
2 | 20.9 | 21.7 | 0 | 20.9 | 62% | −0.4 | 8% | Neutral |
3 | 20.7 | 21 | 0 | 20.7 | 68% | −0.5 | 10% | Neutral |
4 | 21.1 | 21.5 | 0 | 21.1 | 67% | −0.38 | 8% | Neutral |
5 | 21.4 | 22.1 | 0 | 21.4 | 70% | −0.22 | 6% | Neutral |
6 | 21 | 21.6 | 0 | 21 | 64% | −0.39 | 8% | Neutral |
7 | 21.3 | 21.9 | 0 | 21.3 | 68% | −0.28 | 7% | Neutral |
8 | 20.7 | 21.3 | 0 | 20.7 | 65% | −0.47 | 10% | Neutral |
9 | 21.2 | 21.7 | 0 | 21.2 | 62% | −0.37 | 8% | Neutral |
10 | 21.1 | 21.4 | 0 | 21.1 | 70% | −0.38 | 8% | Neutral |
11 | 21.5 | 22.1 | 0 | 21.5 | 71% | −0.2 | 6% | Neutral |
12 | 21 | 21.8 | 0 | 21 | 68% | −0.33 | 7% | Neutral |
13 | 20.8 | 21.5 | 0 | 20.8 | 62% | −0.45 | 9% | Neutral |
14 | 21.1 | 21.6 | 0 | 21.1 | 63% | −0.39 | 8% | Neutral |
15 | 21.2 | 21.4 | 0 | 21.2 | 69% | −0.37 | 8% | Neutral |
16 | 20.6 | 21.5 | 0 | 20.6 | 62% | −0.47 | 10% | Neutral |
17 | 21.9 | 22.5 | 0 | 21.9 | 72% | −0.08 | 5% | Neutral |
18 | 20.9 | 21.5 | 0 | 20.9 | 66% | −0.41 | 8% | Neutral |
19 | 20.5 | 21.5 | 0 | 20.5 | 64% | −0.47 | 10% | Neutral |
20 | 21 | 21.3 | 0 | 21 | 67% | −0.41 | 8% | Neutral |
21 | 21.4 | 21.8 | 0 | 21.4 | 64% | −0.31 | 7% | Neutral |
22 | 20.7 | 21.3 | 0 | 20.7 | 62% | −0.49 | 10% | Neutral |
23 | 21.6 | 22.1 | 0 | 21.6 | 71% | −0.19 | 6% | Neutral |
24 | 20.5 | 21.5 | 0 | 20.5 | 68% | −0.44 | 9% | Neutral |
25 | 21.1 | 21.8 | 0 | 21.1 | 66% | −0.33 | 7% | Neutral |
26 | 21 | 21.4 | 0 | 21 | 65% | −0.42 | 9% | Neutral |
27 | 21.3 | 22 | 0 | 21.3 | 63% | −0.3 | 7% | Neutral |
28 | 21.8 | 22.3 | 0 | 21.8 | 69% | −0.15 | 5% | Neutral |
29 | 20.8 | 21.5 | 0 | 20.8 | 66% | −0.42 | 9% | Neutral |
No. | GT | ATi | Av | MRT | RHi | PMV | PPD | Sensation |
---|---|---|---|---|---|---|---|---|
1 | 21 | 21.8 | 0 | 21 | 63% | −0.37 | 8% | Neutral |
2 | 21.3 | 22 | 0 | 21.3 | 65% | −0.28 | 7% | Neutral |
3 | 20.7 | 21.6 | 0 | 20.7 | 58% | −0.47 | 8% | Neutral |
4 | 20.9 | 21.7 | 0 | 20.9 | 62% | −0.4 | 8% | Neutral |
5 | 21.4 | 21.9 | 0 | 21.4 | 64% | −0.3 | 7% | Neutral |
6 | 20.5 | 21.4 | 0 | 20.5 | 63% | −0.49 | 10% | Neutral |
7 | 20.9 | 21.2 | 0 | 20.9 | 61% | −0.49 | 10% | Neutral |
8 | 20.8 | 21.5 | 0 | 20.8 | 62% | −0.45 | 9% | Neutral |
9 | 21.6 | 22 | 0 | 21.6 | 65% | −0.25 | 6% | Neutral |
10 | 20.8 | 21.6 | 0 | 20.8 | 64% | −0.42 | 9% | Neutral |
11 | 21.4 | 21.9 | 0 | 21.4 | 63% | −0.3 | 7% | Neutral |
12 | 21.6 | 22.2 | 0 | 21.6 | 67% | −0.2 | 6% | Neutral |
13 | 21.5 | 21.7 | 0 | 21.5 | 62% | −0.33 | 7% | Neutral |
14 | 21.8 | 22.1 | 0 | 21.8 | 66% | −0.2 | 6% | Neutral |
15 | 21.2 | 21.8 | 0 | 21.2 | 65% | −0.33 | 7% | Neutral |
16 | 20.9 | 21.5 | 0 | 20.9 | 64% | −0.42 | 9% | Neutral |
17 | 21 | 21.4 | 0 | 21 | 63% | −0.43 | 9% | Neutral |
18 | 21.9 | 22.2 | 0 | 21.9 | 66% | −0.17 | 6% | Neutral |
19 | 21.6 | 22.3 | 0 | 21.6 | 67% | −0.19 | 6% | Neutral |
20 | 20.9 | 21.8 | 0 | 20.9 | 63% | −0.38 | 8% | Neutral |
21 | 21.1 | 21.7 | 0 | 21.1 | 64% | −0.36 | 8% | Neutral |
22 | 21.1 | 21.6 | 0 | 21.1 | 61% | −0.4 | 8% | Neutral |
23 | 21.5 | 22 | 0 | 21.5 | 65% | −0.26 | 6% | Neutral |
No. | Region | Max. Neutral thermal Temperature (°C) | Min. Neutral Thermal Temperature (°C) | Percentage of Indoor Thermal Neutrality Within Total Number of Buildings | Relative Humidity Ranges Inside the Buildings | PPD |
---|---|---|---|---|---|---|
Summer | ||||||
1 | Coastal | 24.4 | 28.8 | 54% | 50% to 75% | 6.6% |
2 | Hinterland | 24.6 | 28.8 | 44% | 54% to 70% | 5.8% |
3 | Mountainous | 24.1 | 28.9 | 76% | 38% to 58% | 5.8% |
Winter | ||||||
1 | Coastal | 20.9 | 23 | 60% | 61% to 79% | 7.8% |
2 | Hinterland | 21 | 22.6 | 58% | 62% to 73% | 7.8% |
3 | Mountainous | 21.2 | 22.3 | 46% | 58% to 67% | 7.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhy Al-Din, S.S.; Saltik, B. Regulating Indoor Comfortable Temperature Limits for Sustainable Architectural Design in Mediterranean Climates. Buildings 2025, 15, 899. https://doi.org/10.3390/buildings15060899
Muhy Al-Din SS, Saltik B. Regulating Indoor Comfortable Temperature Limits for Sustainable Architectural Design in Mediterranean Climates. Buildings. 2025; 15(6):899. https://doi.org/10.3390/buildings15060899
Chicago/Turabian StyleMuhy Al-Din, Salar Salah, and Burcin Saltik. 2025. "Regulating Indoor Comfortable Temperature Limits for Sustainable Architectural Design in Mediterranean Climates" Buildings 15, no. 6: 899. https://doi.org/10.3390/buildings15060899
APA StyleMuhy Al-Din, S. S., & Saltik, B. (2025). Regulating Indoor Comfortable Temperature Limits for Sustainable Architectural Design in Mediterranean Climates. Buildings, 15(6), 899. https://doi.org/10.3390/buildings15060899