The Effect of Cementitious Capillary Crystalline Waterproof Materials on the Hydration, Microstructure, and Mechanical Properties of Cement Pastes
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Sample Preparation
2.3. Characterization Methods
3. Results and Discussion
3.1. Physical Properties of Cement with and Without PNC
3.1.1. Flowability
3.1.2. Setting Time
3.1.3. Compressive Strength
3.2. Composition Changes in Cement Pastes
3.2.1. XRD Patterns
3.2.2. FTIR Spectroscopy
3.2.3. TG Analysis
3.3. Microstructures of Cement Paste with CCCW
3.3.1. SEM Results
3.3.2. Pore Structure
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Xie, J.; Wang, Y.; Liu, Y.; Ding, Y. Rheological properties, compressive strength, hydration products and microstructure of seawater-mixed cement pastes. Cem. Concr. Compos. 2020, 114, 103770. [Google Scholar] [CrossRef]
- Luo, J.; Wu, G.; Zhao, G.; Ma, Y.; Fang, Z.; Fang, S. Experimental and numerical analysis on shear performance of single embedded nut bolted shear connectors in prefabricated steel-UHPC composite structures under cyclic loading. Structures 2025, 73, 108446. [Google Scholar] [CrossRef]
- Lv, H.; Xiong, Z.; Li, H.; Liu, J.; Xu, G.; Chen, H. Investigating the Mechanical Properties and Water Permeability of Recycled Pervious Concrete Using Three Typical Gradation Schemes. Buildings 2025, 15, 358. [Google Scholar] [CrossRef]
- Kim, G.M.; Adem, J.K.; Park, S. Reaction and microstructural characteristics of OPC pastes with low-lime calcium silicate cements under carbonation curing. Constr. Build. Mater. 2024, 415, 134993. [Google Scholar] [CrossRef]
- Anil Kumar Reddy, N.; Ramujee, K. Comparative study on mechanical properties of fly ash & GGBFS based geopolymer concrete and OPC concrete using nano-alumina. Mater. Today Proc. 2022, 60, 399–404. [Google Scholar]
- Li, P.; Wang, Q.; Li, J.; Pei, Y.; He, P. Mechanism and impact of water seepage during shield tunnelling in sandy cobble strata: A case study. Tunn. Undergr. Space Technol. 2024, 149, 105784. [Google Scholar] [CrossRef]
- Zheng, K.; Yang, X.; Chen, R.; Xu, L. Application of a capillary crystalline material to enhance cement grout for sealing tunnel leakage. Constr. Build. Mater. 2019, 214, 497–505. [Google Scholar] [CrossRef]
- Mai, G.; Xiong, Z.; Zhu, H.; Zhou, L.; Zhou, H.; Li, L. Durability of GFRP bars embedded in seawater sea sand concrete in marine environments. Constr. Build. Mater. 2025, 458, 139488. [Google Scholar] [CrossRef]
- Rebiai, F.; Guettala, A. Analysis of building failure associated with water seepage into gypsiferous soils in an arid area located in the northwestern town of Ouled Djellal (Algeria). Eng. Fail. Anal. 2023, 154, 107730. [Google Scholar] [CrossRef]
- Li, C.; Bai, J.; Jiang, Y.; Xiao, H.; Wang, W.; Xu, F. Investigating the seepage control and plugging capabilities of polyurethane-cement composites: A comprehensive study on material properties. Constr. Build. Mater. 2024, 416, 135191. [Google Scholar] [CrossRef]
- Muhammad, N.Z.; Keyvanfar, A.; Majid, M.Z.A.; Shafaghat, A.; Mirza, J. Waterproof performance of concrete: A critical review on implemented approaches. Constr. Build. Mater. 2015, 101, 80–90. [Google Scholar] [CrossRef]
- Zhang, M.; Hao, P.; Men, G.; Liu, N.; Yuan, G. Research on the compatibility of waterproof layer materials and asphalt mixture for steel bridge deck. Constr. Build. Mater. 2021, 269, 121346. [Google Scholar] [CrossRef]
- Zhang, C.; Guan, X.; Li, J.; Li, Y.; Lu, R. Coupling effect of cementitious capillary crystalline waterproof material and exposure environments on self-healing properties of engineered cementitious composites (ECC). J. Build. Eng. 2023, 63, 105471. [Google Scholar] [CrossRef]
- Fu, B.; Zhou, H.; Ye, F.; Wang, B.; Liu, S.; Qian, W. Experimental investigation on calcium dissolution performance of shotcrete with different waterproofing agents. Case Stud. Constr. Mater. 2024, 20, e03009. [Google Scholar] [CrossRef]
- Al-Mansour, A.; Dai, Y.; Xu, C.; Yang, R.; Lu, J.; Peng, Y.; Wang, J.; Lv, Q.; Zeng, Q. Upcycling waste plastics to fabricate lightweight, waterproof, and carbonation resistant cementitious materials with polymer-nano silica hybrids. Mater. Today Sustain. 2023, 21, 100325. [Google Scholar] [CrossRef]
- Hu, X.; Xiao, J.; Zhang, Z.; Wang, C.; Long, C.; Dai, L. Effects of CCCW on properties of cement-based materials: A review. J. Build. Eng. 2022, 50, 104184. [Google Scholar] [CrossRef]
- Liu, M.; Liu, P.; Wu, J.; Yu, Z.; Chen, Y.; Cheng, X. Study on improvement of waterproofing performance of CCCW with silicone waterproof material and waterbased capillary inorganic waterproofer. Constr. Build. Mater. 2023, 400, 132842. [Google Scholar]
- Zhang, Y.; Zuo, L.; Yang, J.; Cai, X.; Zhao, Y.; Zeng, X. Effect of cementitious capillary crystalline waterproofing coating on the gas permeability of mortar. Struct. Concr. 2019, 20, 1763–1770. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Chen, J.; Tang, J.; Zhou, H.; Zhou, W.; Chang, X.; Cheng, Y. Preparation and performance study of active chemicals in cementitious capillary crystalline waterproofing materials. Case Stud. Constr. Mater. 2024, 20, e02874. [Google Scholar] [CrossRef]
- Liu, J.B.; Qin, H.; Geng, F.; Guo, W.; Pang, C. Effect of Cement-Based Permeable Crystallization Material on the Performance of Deterioration Concrete. Appl. Mech. Mater. 2013, 368–370, 905–910. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Effect of exposure conditions on self healing behavior of strain hardening cementitious composites incorporating various cementitious materials. Constr. Build. Mater. 2013, 42, 217–224. [Google Scholar] [CrossRef]
- Sisomphon, K.; Copuroglu, O.; Koenders, E.A.B. Self-healing of surface cracks in mortars with expansive additive and crystalline additive. Cem. Concr. Compos. 2012, 34, 566–574. [Google Scholar]
- Elsalamawy, M.; Mohamed, A.R.; Abosen, A.-l.E. Performance of crystalline forming additive materials in concrete. Constr. Build. Mater. 2020, 230, 117056. [Google Scholar]
- Li, F.; Yan, D.; Xiao, S.; Li, Z.; Chen, Z.; Leng, B.; Li, J. Effect of nanocomposite cementitious capillary crystalline waterproofing material on self-healing properties of cementitious composites. Case Stud. Constr. Mater. 2024, 21, e03579. [Google Scholar]
- Ding, F.; Fan, X.; Xie, Y.; Jiang, S.; Qiu, C.; Sun, D.; Wu, R. Combined effect of rice husk ash and cementitious capillary crystalline waterproofing materials on the performance of mortar. J. Build. Eng. 2024, 84, 108479. [Google Scholar]
- Hodul, J.; Žižková, N.; Drochytka, R.; Borg, R.P. Influence of Crystallization Admixture on Mechanical Parameters and Microstructure of Polymer-Cement Mortars with Waste Limestone. Solid State Phenom. 2019, 296, 27–34. [Google Scholar]
- Zhang, C.; Guan, X.; Lu, R.; Li, J.; Li, Y. Effect of cementitious capillary crystalline waterproof material on the various transport properties of cracked cementitious composites. Constr. Build. Mater. 2023, 365, 130138. [Google Scholar] [CrossRef]
- Zhang, L.V.; Suleiman, A.R.; Nehdi, M.L. Self-healing in fiber-reinforced alkali-activated slag composites incorporating different additives. Constr. Build. Mater. 2020, 262, 120059. [Google Scholar] [CrossRef]
- Feng, H.; Su, Y.; Guo, A.; Zhou, Z.; Yu, Z.; Guo, Z.; Sun, Z. Capillary water transport performance of cellulose nanocrystal modified cement/fly ash pastes with various water/binder ratios. Constr. Build. Mater. 2024, 450, 138694. [Google Scholar]
- Feng, H.; Su, Y.; Guo, A.; Yu, Z.; Guo, Z. Mechanical properties of cellulose nanocrystal modified cement/fly ash pastes under various water/binder ratios. Constr. Build. Mater. 2024, 447, 138213. [Google Scholar]
- Oliveira, T.V.; Cordeiro, L.d.N.P.; Bessa, S.A.L. Experimental study of self-leveling mortars produced with recycled concrete aggregates. Case Stud. Constr. Mater. 2022, 17, e01294. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, B.; Yuan, P.; Guo, H.; Liu, D.; Chen, J.; Liu, H.; Belaroui, L.S. Optimization of mechanical performance of limestone calcined clay cement: Effects of calcination temperature of nanosized tubular halloysite, gypsum content, and water/binder ratio. Constr. Build. Mater. 2023, 389, 131709. [Google Scholar] [CrossRef]
- Jose, A.; Nivitha, M.; Krishnan, J.M.; Robinson, R. Characterization of cement stabilized pond ash using FTIR spectroscopy. Constr. Build. Mater. 2020, 263, 120136. [Google Scholar] [CrossRef]
- Jain, B.; Sancheti, G.; Jain, V. FTIR analysis of silica fume and iron dust added concrete. Mater. Today Proc. 2022, 60, 777–781. [Google Scholar] [CrossRef]
- Yu, T.; Zhang, B.; Guo, H.; Wang, Q.; Liu, D.; Chen, J.; Yuan, P. Calcined nanosized tubular halloysite for the preparation of limestone calcined clay cement (LC3). Appl. Clay Sci. 2023, 232, 106795. [Google Scholar] [CrossRef]
- Li, H.; Wang, Z.; Zhang, Y.; Zhang, G.; Zhu, H. Composite application of naphthalene and melamine-based superplasticizers in alkali activated fly ash (AAFA). Constr. Build. Mater. 2021, 297, 123651. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, B.; Deng, L.; Yuan, P.; Li, M.; Wang, Q. Preparation of high-performance silico-aluminophosphate geopolymers using fly ash and metakaolin as raw materials. Appl. Clay Sci. 2021, 204, 106019. [Google Scholar] [CrossRef]
- Cong, P.; Mei, L. Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr. Build. Mater. 2021, 275, 122171. [Google Scholar] [CrossRef]
- Mahmoud, A.A.M.; Shehab, M.S.H.; El-Dieb, A.S. Concrete mixtures incorporating synthesized sulfonated acetophenone–formaldehyde resin as superplasticizer. Cem. Concr. Compos. 2010, 32, 392–397. [Google Scholar] [CrossRef]
- Zhan, P.; Wang, J.; Yu, W.; Deng, Z.; She, A.; Zuo, J.; Li, W.; Xu, J. Insights into the hydration kinetics, microstructure and early strength of Portland cement containing synthetic C-S-H/PCE nanocomposites. Cem. Concr. Compos. 2025, 157, 105886. [Google Scholar] [CrossRef]
- Kaya, Y.; Kobya, V.; Kaya, Y.; Mardani, A. Impact of PCE-based grinding aids on hydration kinetics in fly ash substituted systems: Influence of pH and dosage. Constr. Build. Mater. 2025, 458, 139531. [Google Scholar] [CrossRef]
- GB 18445-2012; Cementitious Capillary Crystalline Waterproofing Material. Standardization Administration of China: Beijing, China; China Standards Press: Beijing, China, 2012.
- GB/T 17671-2021; Test Method of Cement Mortar Strength (ISO Method). Standardization Administration of China: Beijing, China; China Standards Press: Beijing, China, 2021.
- GB/T 8077-2012; Test Method for Fluidity of Cement Paste. Standardization Administration of China: Beijing, China; China Standards Press: Beijing, China, 2012.
- ASTM C191-19; Standard Test Methods for Time of Setting of Hydraulic Cement by Vicat Needle. ASTM International: West Conshohocken, PA, USA, 2019.
- Zhao, M.; Zhang, X.; Zhang, Y. Effect of free water on the flowability of cement paste with chemical or mineral admixtures. Constr. Build. Mater. 2016, 111, 571–579. [Google Scholar] [CrossRef]
- Guo, Z.; Qiu, J.; Jiang, H.; Xing, J.; Sun, X.; Ma, Z. Flowability of ultrafine-tailings cemented paste backfill incorporating superplasticizer: Insight from water film thickness theory. Powder Technol. 2021, 381, 509–517. [Google Scholar] [CrossRef]
- Mbasha, W.; Haldenwang, R.; Masalova, I. The influence of sulfate availability on rheology of fresh cement paste. Appl. Rheol. 2020, 30, 54–63. [Google Scholar] [CrossRef]
- Deng, Y.; Zhang, C.; Wei, X. Influence of lithium sulfate addition on the properties of Portland cement paste. Constr. Build. Mater. 2014, 50, 457–462. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Zhou, P.; Song, Z.; Jia, Y.; Ouyang, W.; Luque, R.; Sun, Y. Effects of Using Aluminum Sulfate as an Accelerator and Acrylic Acid, Aluminum Fluoride, or Alkanolamine as a Regulator in Early Cement Setting. Materials 2023, 16, 1620. [Google Scholar] [CrossRef]
- O’Beirne, J.; Shelton, R.; Lumley, P.; Hofmann, M. Accelerating the setting of Portland cement based dental materials using calcium sulphates. In Proceedings of the 20th International Symposium on Ceramics in Medicine, Nantes, France, 24–26 October 2007. [Google Scholar]
- Wang, C.; Wang, L.; Yao, X.; Du, J.; Zhou, A. The promoting effect of quercetin on oil well cement setting. Constr. Build. Mater. 2022, 317, 125689. [Google Scholar] [CrossRef]
- Wang, C.; Xiao, J.; Long, C.; Zhang, Q.; Shi, J.; Zhang, Z. Influences of the joint action of sulfate erosion and cementitious capillary crystalline waterproofing materials on the hydration products and properties of cement-based materials: A review. J. Build. Eng. 2023, 68, 106061. [Google Scholar] [CrossRef]
- Zheng, Y.; Yuan, B.; Li, Z.; Zhang, B.; Liu, F.; Li, L. Effect of cementitious capillary crystalline waterproof material on the mechanical behavior of concrete. J. Build. Eng. 2024, 98, 111287. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, Y.; Xie, J.; He, J.; Yu, T.; Cai, C.; Huang, D. Compressive behaviours, splitting properties, and workability of lightweight cement concrete: The role of fibres. Constr. Build. Mater. 2022, 320, 126237. [Google Scholar] [CrossRef]
- Zhang, B.; Muhammad, F.; Yu, T.; Fahimizadeh, M.; Hassan, M.A.S.; Liang, J.; Ning, X.; Yuan, P. Harnessing iron tailings as supplementary cementitious materials in Limestone Calcined Clay Cement (LC3): An innovative approach towards sustainable construction. Constr. Build. Mater. 2024, 453, 139111. [Google Scholar] [CrossRef]
- Vagenas, N.V.; Gatsouli, A.; Kontoyannis, C.G. Quantitative analysis of synthetic calcium carbonate polymorphs using FT-IR spectroscopy. Talanta 2003, 59, 831–836. [Google Scholar] [CrossRef]
- Lin, R.-S.; Han, Y.; Wang, X.-Y. Macro–meso–micro experimental studies of calcined clay limestone cement (LC3) paste subjected to elevated temperature. Cem. Concr. Compos. 2021, 116, 103871. [Google Scholar] [CrossRef]
- Santos, V.H.J.M.d.; Pontin, D.; Ponzi, G.G.D.; e Stepanha, A.S.D.G.; Martel, R.B.; Schütz, M.K.; Einloft, S.M.O.; Dalla Vecchia, F. Application of Fourier Transform infrared spectroscopy (FTIR) coupled with multivariate regression for calcium carbonate (CaCO3) quantification in cement. Constr. Build. Mater. 2021, 313, 125413. [Google Scholar] [CrossRef]
- de Oliveira, A.M.; Oliveira, A.P.; Vieira, J.D.; Junior, A.N.; Cascudo, O. Study of the development of hydration of ternary cement pastes using X-ray computed microtomography, XRD-Rietveld method, TG/DTG, DSC, calorimetry and FTIR techniques. J. Build. Eng. 2023, 64, 105616. [Google Scholar] [CrossRef]
- Soin, A.V.; Catalan, L.J.J.; Kinrade, S.D. A combined QXRD/TG method to quantify the phase composition of hydrated Portland cements. Cem. Concr. Res. 2013, 48, 17–24. [Google Scholar] [CrossRef]
- Li, P.; Li, W.; Wang, K.; Zhao, H.; Shah, S.P. Hydration and microstructure of cement paste mixed with seawater—An advanced investigation by SEM-EDS method. Constr. Build. Mater. 2023, 392, 131925. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, G.; Qi, Y.; Zeng, Q. In-situ assessment of the water-penetration resistance of polymer modified cement mortars by μ-XCT, SEM and EDS. Cem. Concr. Compos. 2020, 114, 103821. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Yao, X.; Du, J.; Zhai, W.; Guo, S.; Zhou, A. The effect of rutin on the early-age hydration of oil well cement at varying temperatures. Cem. Concr. Compos. 2022, 128, 104438. [Google Scholar] [CrossRef]
- Wang, C.; Xiang, W.; Du, J.; Yao, X. Heat flow inhibitor suitable for oil well cement at low temperature. Constr. Build. Mater. 2022, 329, 127105. [Google Scholar] [CrossRef]
- Zhong, J.; Zhang, H.; Mao, J.; Zhang, Y.; Lian, S.; Wang, J.; Zhou, H.; Song, Y.; Hu, J.; Wu, H.; et al. Influences of cementitious capillary crystalline waterproofing on the hydration products and properties of cement-based materials. J. Build. Eng. 2024, 98, 111451. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | Fe2O3 | K2O | MgO | CaO | Na2O | TiO2 | SO3 | L.O.I | |
---|---|---|---|---|---|---|---|---|---|---|
Cement | 22.33 | 6.70 | 3.08 | 0.70 | 3.30 | 58.06 | 0.21 | 0.27 | 3.24 | 1.78 |
PNC | 14.92 | 4.16 | 1.90 | 0.67 | 2.23 | 51.43 | 8.45 | 0.16 | 2.84 | 12.62 |
Samples | Total Pore Area (m2/g) | Average Pore Diameter (nm) | Porosity (%) |
---|---|---|---|
C0.45P0 | 29.71 | 23.03 | 26.14 |
C0.45P1.5 | 28.66 | 25.59 | 27.32 |
C0.45P2.5 | 28.67 | 25.07 | 27.01 |
C0.50P1.5 | 45.78 | 15.78 | 29.74 |
C0.55P0 | 50.72 | 16.91 | 35.58 |
C0.55P1.5 | 51.68 | 16.80 | 36.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Li, L.; Guo, H.; Yang, Z.; Zhang, B. The Effect of Cementitious Capillary Crystalline Waterproof Materials on the Hydration, Microstructure, and Mechanical Properties of Cement Pastes. Buildings 2025, 15, 955. https://doi.org/10.3390/buildings15060955
Li Z, Li L, Guo H, Yang Z, Zhang B. The Effect of Cementitious Capillary Crystalline Waterproof Materials on the Hydration, Microstructure, and Mechanical Properties of Cement Pastes. Buildings. 2025; 15(6):955. https://doi.org/10.3390/buildings15060955
Chicago/Turabian StyleLi, Zhonglin, Lijuan Li, Hailong Guo, Zhu Yang, and Baifa Zhang. 2025. "The Effect of Cementitious Capillary Crystalline Waterproof Materials on the Hydration, Microstructure, and Mechanical Properties of Cement Pastes" Buildings 15, no. 6: 955. https://doi.org/10.3390/buildings15060955
APA StyleLi, Z., Li, L., Guo, H., Yang, Z., & Zhang, B. (2025). The Effect of Cementitious Capillary Crystalline Waterproof Materials on the Hydration, Microstructure, and Mechanical Properties of Cement Pastes. Buildings, 15(6), 955. https://doi.org/10.3390/buildings15060955