Optimizing Energy Efficiency: Louver Systems for Sustainable Building Design
Abstract
:1. Introduction
Energy Saving in Buildings
2. Louvers in Buildings
2.1. Illumination
2.1.1. Daylighting
2.1.2. Hybrid Lighting
2.2. Heating and Cooling
2.3. Ventilation
2.4. PV Integrated Louvers
3. Louver Designs
3.1. Vertical Louver
3.2. Horizontal Louver
3.3. Innovative Louvers
4. Louver System Control
4.1. Fixed Control
4.2. Moveable Control
4.3. Automated Control
5. Materials
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
ACH | Air Changes per Hour |
AEE | Air Exchange Efficiency |
BIPV | Building-integrated photovoltaic |
CFD | Computational fluid dynamics |
CPV | Concentrator photovoltaic |
DF | Daylight factor |
DA | Daylight autonomy |
EJ | Exajoule |
HVAC | Heating, ventilation, and air conditioning |
h/yr | Hours per year |
IEA | International Energy Agency |
IoT | Internet of Things |
IAQ | Indoor air quality |
Tair | Indoor air temperature |
KWh | Kilowatt-hour |
MWh | Megawatt-hour |
MJ | Multi-junction |
MOO | multi-objective optimization |
POE | Primary optical element |
PV | Photovoltaic |
RER | Renewable energy resource |
PMV | Predicted Mean Vote |
PIV | Particle Image Velocimetry |
PPM | Parts Per Million |
TWh | Terawatt-hour |
UDI | Useful daylight illuminance |
E | East |
W | West |
N | North |
S | South |
E-W | East-West |
S-E | SouthEast |
N-E | NorthEast |
N-W | NorthWest |
S-W | SouthWest |
Stated Policies Scenario | STEPS |
References
- Xu, T.; Zhang, Y.; Shi, L.; Feng, Y.; Zhang, C. A comprehensive evaluation framework of energy and resources consumption of public buildings: Case study, People’s Bank of China. Appl. Energy 2023, 351, 121869. [Google Scholar]
- Schweizer, M.; Stöckl, M.; Tutunaru, R.; Holzhammer, U. Influence of heating, air conditioning and vehicle automation on the energy and power demand of electromobility. Energy Convers. Manag. X 2023, 20, 100443. [Google Scholar] [CrossRef]
- Xu, C.; Gao, Y.; Qin, Z.; Li, Z.; Pan, S.; Qi, L. Historical characteristics and projection of global renewable energy consumption. Renew. Energy 2024, 121222, 234. [Google Scholar]
- IEA. World Energy Outlook 2024; International Energy Agency (IEA): Paris, France, 2024. [Google Scholar]
- IEA. World Energy Outlook 2022; International Energy Agency (IEA): Paris, France, 2022. [Google Scholar]
- UNEP. 2022 Global Status Report for Buildings and Construction: Towards a Zero Emission, Efficient and Resilient Buildings and Construction Sector; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2022. [Google Scholar]
- Ahmad, J.; Imran, M.; Khalid, A.; Iqbal, W.; Ashraf, S.R.; Adnan, M.; Ali, S.F.; Khokhar, K.S. Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar. Energy 2018, 148, 208–234. [Google Scholar]
- Yolcan, O.O. World energy outlook and state of renewable energy: 10-Year evaluation. Innov. Green Dev. 2023, 2, 100070. [Google Scholar]
- Erdogan, S.; Pata, U.K.; Solarin, S.A. Towards carbon-neutral world: The effect of renewable energy investments and technologies in G7 countries. Renew. Sustain. Energy Rev. 2023, 186, 113683. [Google Scholar]
- Chen, Y.; Ren, Z.; Peng, Z.; Yang, J.; Chen, Z.; Deng, Z. Impacts of climate change and building energy efficiency improvement on city-scale building energy consumption. J. Build. Eng. 2023, 78, 107646. [Google Scholar]
- Elmalky, A.M.; Araji, M.T. Computational procedure of solar irradiation: A new approach for high performance façades with experimental validation. Energy Build. 2023, 298, 113491. [Google Scholar]
- Pilechiha, P.; Mahdavinejad, M.; Rahimian, F.P.; Carnemolla, P.; Seyedzadeh, S. Multi-objective optimisation framework for designing office windows: Quality of view, daylight and energy efficiency. Appl. Energy 2020, 261, 114356. [Google Scholar]
- IPCC. AR6 Climate Change 2022: Mitigation of Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2022. [Google Scholar]
- He, Q.; Tapia, F.; Reith, A. Quantifying the influence of nature-based solutions on building cooling and heating energy demand: A climate specific review. Renew. Sustain. Energy Rev. 2023, 186, 113660. [Google Scholar]
- Restrepo, S.A.; Morcillo, J.; Castaneda, M.; Zapata, S.; Aristizábal, A.J. Experimental research on the performance of a BIPV system operating in Girardot, Colombia. Energy Rep. 2023, 9, 194–204. [Google Scholar]
- Yue, Y.; Yan, Z.; Lei, F.; Qin, G. Promoting solar energy utilization: Prediction, analysis and evaluation of solar radiation on building surfaces at city scale. Energy Build. 2024, 319, 114561. [Google Scholar] [CrossRef]
- Li, C.; Zhang, W.; Tan, J.; Liu, W.; Lyu, Y.; Tang, H. Energy performance of an innovative bifacial photovoltaic sunshade (BiPVS) under hot summer and warm winter climate. Heliyon 2023, 9, e18700. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Wu, J.; Chen, W.; Li, C. Building energy saving of a rotatable radiative cooling-photovoltaic system by alternate utilization of solar energy and radiative cooling. Energy Build. 2024, 316, 114350. [Google Scholar] [CrossRef]
- Tian, J.; Ooka, R. Evaluation of solar energy potential for residential buildings in urban environments based on a parametric approach. Sustain. Cities Soc. 2024, 106, 105350. [Google Scholar] [CrossRef]
- Abdelmaksoud, W.A. Solar energy utilization for underfloor heating system in residential buildings. Energy Rep. 2024, 12, 979–987. [Google Scholar] [CrossRef]
- Zhang, X.; Lau, S.-K.; Lau, S.S.Y.; Zhao, Y. Photovoltaic integrated shading devices (PVSDs): A review. Sol. Energy 2018, 170, 947–968. [Google Scholar] [CrossRef]
- Gunay, H.B.; O’Brien, W.; Beausoleil-Morrison, I.; Gilani, S. Development and implementation of an adaptive lighting and blinds control algorithm. Build. Environ. 2017, 113, 185–199. [Google Scholar]
- Albatayneh, A. Optimising the Parameters of a Building Envelope in the East Mediterranean Saharan, Cool Climate Zone. Buildings 2021, 11, 43. [Google Scholar] [CrossRef]
- Konis, K.; Lee, E.S. Measured daylighting potential of a static optical louver system under real sun and sky conditions. Build. Environ. 2015, 92, 347–359. [Google Scholar]
- Eltaweel, A.; Su, Y.; Mandour, M.A.; Elrawy, O.O. A novel automated louver with parametrically-angled reflective slats; design evaluation for better practicality and daylighting uniformity. J. Build. Eng. 2021, 42, 102438. [Google Scholar] [CrossRef]
- Rossi, F.; Cardinali, M.; Giuseppe, A.D.; Castellani, B.; Nicolini, A. Outdoor thermal comfort improvement with advanced solar awnings: Subjective and objective survey. Build. Environ. 2022, 215, 108967. [Google Scholar]
- Lee, H.; Han, S.; Seo, J. Light Shelf Development Using Folding Technology and Photovoltaic Modules to Increase Energy Efficiency in Building. Buildings 2022, 12, 81. [Google Scholar] [CrossRef]
- Jung, S.-Y.; Han, S.; Lee, M.-G.; Lee, H. Development of a Solar Tracking-Based Movable Louver System to Save Lighting Energy and Create a Comfortable Light Environment. Buildings 2022, 12, 2017. [Google Scholar] [CrossRef]
- Kieu, N.-M.; Ullah, I.; Park, J.; Bae, H.; Cho, M.; Lee, K.; Shin, S. The Energy Saving Potential in an Office Building Using Louvers in Mid-Latitude Climate Conditions. Buildings 2024, 14, 512. [Google Scholar] [CrossRef]
- Ma, Q.; Ma, H.; Wan, Z.; Wang, Z.; Wei, X. Effect of Ventilation Strategies of Center-Mounted Louver Ventilation Window on Building Energy Consumption and Daylighting. Sustainability 2025, 17, 670. [Google Scholar] [CrossRef]
- Konis, K.; Selkowitz, S. Effective Daylighting with High-Performance Facades: Emerging Design Practices; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Matin, N.H.; Eydgahi, A.; Gharipour, A. Sustainable Design: Minimizing Discomfort Glare Through Data-Driven Methods for Responsive Facades. Sustainability 2025, 17, 783. [Google Scholar] [CrossRef]
- Lee, K.S.; Han, K.J.; Lee, J.W. Feasibility Study on Parametric Optimization of Daylighting in Building Shading Design. Sustainability 2016, 8, 1220. [Google Scholar] [CrossRef]
- Nabil, A.; Mardaljevic, J. Useful daylight illuminances: A replacement for daylight factors. Energy Build. 2006, 38, 905–913. [Google Scholar]
- Bournas, I. Daylight compliance of residential spaces: Comparison of different performance criteria and association with room geometry and urban density. Build. Environ. 2020, 185, 107276. [Google Scholar]
- Khidmat, R.P.; Fukuda, H.; Paramita, B.; Koerniawan, M.D. The optimization of louvers shading devices and room orientation under three different sky conditions. J. Daylight. 2022, 9, 137–149. [Google Scholar] [CrossRef]
- Hernández, F.F.; López, J.M.C.; Suárez, J.M.P.; Muriano, M.C.G.; Rueda, S.C. Effects of louvers shading devices on visual comfort and energy demand of an office building. A case of study. Energy Procedia 2017, 140, 207–216. [Google Scholar]
- Alsukkar, M.; Hu, M.; Gadi, M.; Su, Y. A Study on Daylighting Performance of Split Louver with Simplified Parametric Control. Buildings 2022, 12, 594. [Google Scholar] [CrossRef]
- Lim, T.; Yim, W.S.; Kim, D.D. Evaluation of Daylight and Cooling Performance of Shading Devices in Residential Buildings in South Korea. Energies 2020, 13, 4749. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Heiranipour, M.; Wang, J.; Hinkle, L.E.; Triantafyllidis, G.; Attia, S. Enhancing Visual Comfort and Energy Efficiency in Office Lighting Using Parametric-Generative Design Approach for Interactive Kinetic Louvers. J. Daylight. 2024, 11, 69–96. [Google Scholar]
- Kim, J.-H.; Han, S.-H. Indoor Daylight Performances of Optimized Transmittances with Electrochromic-Applied Kinetic Louvers. Buildings 2022, 12, 263. [Google Scholar] [CrossRef]
- Rafati, N.; Hazbei, M.; Eicker, U. Louver configuration comparison in three Canadian cities utilizing NSGA-II. Build. Environ. 2023, 229, 109939. [Google Scholar]
- Eltaweel, A.; Mandour, M.A.; Lv, Q.; Sua, Y. Daylight Distribution Improvement Using Automated Prismatic Louvre. J. Daylight. 2020, 7, 84–92. [Google Scholar] [CrossRef]
- Moon, P.; Spencer, D.E. Optical transmittance of louver systems. J. Frankl. Inst. 1962, 273, 1–24. [Google Scholar]
- Konstantzos, I.; Tzempelikos, A.; Chan, Y.-C. Experimental and simulation analysis of daylight glare probability in offices with dynamic window shades. Build. Environ. 2015, 87, 244–254. [Google Scholar] [CrossRef]
- Eltaweel, A.; Su, Y. Evaluation of Suitability of a Parametrically Controlled Louvers for Various Orientations throughout a Year Comparing to an Existing Case. Buildings 2017, 7, 109. [Google Scholar] [CrossRef]
- McNeil, A.; Lee, E.S.; Jonsson, J.C. Daylight performance of a microstructured prismatic window film in deep open plan offices. Build. Environ. 2017, 113, 280–297. [Google Scholar]
- Uribe, D.; Bustamante, W.; Vera, S. Potential of perforated exterior louvers to improve the comfort and energy performance of an office space in different climates. Build. Simul. 2018, 11, 695–708. [Google Scholar]
- Grobman, Y.J.; Austern, G.; Hatiel, Y.; Capeluto, I.G. Evaluating the Influence of Varied External Shading Elements on Internal Daylight Illuminances. Buildings 2020, 10, 22. [Google Scholar] [CrossRef]
- Brzezicki, M.; Regucki, P. Optimization of useful daylight illuminance vs. drag force for vertical shading fins/panels. Sci. Technol. Built Environ. 2020, 27, 367–376. [Google Scholar]
- Do, C.T.; Chan, Y.-C. Evaluation of the effectiveness of a multi-sectional facade with Venetian blinds and roller shades with automated shading control strategies. Sol. Energy 2020, 212, 241–257. [Google Scholar]
- Kim, H.; Clayton, M.J. A multi-objective optimization approach for climate-adaptive building envelope design using parametric behavior maps. Build. Environ. 2020, 185, 107292. [Google Scholar]
- Khidmat, R.P.; Ulum, M.S.; Lestari, A.D.E. Façade Components Optimization of Naturally Ventilated Building in Tropical Climates through Generative Processes. Case study: Sumatera Institute of Technology (ITERA), Lampung, Indonesia. In Proceedings of the IOP Conference Series: Earth and Environmental Science (EES), Lampung, Indonesia, 1 July 2020. [Google Scholar]
- Eltaweel, A.; Su, Y.; Lv, Q.; Lv, H. Advanced parametric louver systems with bi-axis and two-layer designs for an extensive daylighting coverage in a deep-plan office room. Sol. Energy 2020, 206, 596–613. [Google Scholar]
- Eltaweel, A.; Su, Y.; Hafez, M.; Eltaweel, W. An automated louver with innovative parametrically-angled reflective slats: Prototyping and validation via using parametric control in Grasshopper along with Arduino board. Energy Build. 2021, 231, 110614. [Google Scholar]
- Suryandono, A.R.; Hariyadi, A.; Fukuda, H. Economic Assessment of L-Shaped Minilouvers for Reducing Cooling Energy and Improving Daylight Condition in Offices: A Simulation Study in Jakarta. Sustainability 2021, 13, 4021. [Google Scholar] [CrossRef]
- Alsukkar, M.; Hu, M.; Eltaweel, A.; Su, Y. Daylighting performance improvements using of split louver with parametrically incremental slat angle control. Energy Build. 2022, 274, 112444. [Google Scholar]
- Fang, J.; Zhao, Y.; Tian, Z.; Lin, P. Analysis of dynamic louver control with prism redirecting fenestrations for office daylighting optimization. Energy Build. 2022, 262, 112019. [Google Scholar]
- Liu, Y.; Wang, W.; Li, Z.; Song, J.; Fang, Z.; Pang, D.; Chen, Y. Daylighting Performance and Thermal Comfort Performance Analysis of West-Facing External Shading for School Office Buildings in Cold and Severe Cold Regions of China. Sustainability 2023, 15, 14458. [Google Scholar] [CrossRef]
- Chen, T.-C.; Dwijendra, N.K.A.; Parwata, I.W.; Candra, A.I.; Din, E.M.T.E. Multi-Objective Optimization of External Louvers in Buildings. Comput. Mater. Contin. 2023, 75, 1305–1316. [Google Scholar]
- Alsukkar, M.; Hu, M.; Alkhater, M.; Su, Y. Daylighting performance assessment of a split louver with parametrically incremental slat angles: Effect of slat shapes and PV glass transmittance. Sol. Energy 2023, 264, 112069. [Google Scholar]
- Jahanara, A.; Suk, J.Y. Parametric Design and Analysis of Dynamic Louver for Optimized Daylighting in High-Rise Office Buildings. In Proceedings of the 28th Conference on Computer Aided Architectural Design Research in Asia (CAADRIA), Ahmedabad, India, January 2023. [Google Scholar]
- Ibrahim, A.; Alsukkar, M.; Dong, Y.; Hu, P. Improvements in energy savings and daylighting using trapezoid profile louver shading devices. Energy Build. 2024, 321, 114649. [Google Scholar]
- Hossei, H.; Kim, K.H. Comprehensive analysis of energy and visual performance of building-integrated photovoltaics in all ASHRAE climate zones. Energy Build. 2024, 317, 114369. [Google Scholar]
- Togashi, E.; Muramatsu, H.; Nakagawa, J.; Yamada, K. Modeling a solar shading system that controls heat gain by using solar energy to change louver slat angles. Energy Build. 2024, 319, 114518. [Google Scholar]
- Haghani, M.; Place, W.; Buckner, G.D. Daylighting Performance of Innovative Sun-Tracking Prismatic Vertical Louvers (Pvl) System: A Comparative Study. SSRN 2024. [Google Scholar] [CrossRef]
- Jun, Y.-J.; Han, T.-G.; Song, Y.-H.; Park, K.-S. A study on the enhancement of energy efficiency and indoor environment through the integration of solar photovoltaic modules in daylighting louver systems. Sol. Energy 2024, 282, 112931. [Google Scholar]
- Lee, J.H.; Kang, J.-S. Study on Lighting Energy Savings by Applying a Daylight-Concentrating Indoor Louver System with LED Dimming Control. Energies 2024, 17, 3425. [Google Scholar] [CrossRef]
- Brzezicki, M. An Evaluation of Annual Luminous Exposure from Daylight in a Museum Room with a Translucent Ceiling. Buildings 2021, 11, 193. [Google Scholar] [CrossRef]
- Zhao, J.; Du, Y. Multi-objective optimization design for windows and shading configuration considering energy consumption and thermal comfort: A case study for office building in different climatic regions of China. Sol. Energy 2020, 206, 997–1017. [Google Scholar] [CrossRef]
- Ma, R.; Tao, S.; Li, Z.; Yuan, Y.; Jiang, F. Investigation on Forced Convective Heat Transfer at the Building Façade with Louver Blinds under Different Wind Directions. Buildings 2022, 12, 1096. [Google Scholar] [CrossRef]
- Dong, Q.; Li, S.; Han, C. Numerical and experimental study of the effect of solar radiation on thermal comfort in a radiant heating system. J. Build. Eng. 2020, 32, 101497. [Google Scholar]
- Xue, Y.; Liu, W. A Study on the Optimization of Atrium Daylight and Energy Performance through Skylight and Shading Design in Commercial Buildings in Cold Zones. Buildings 2023, 13, 228. [Google Scholar] [CrossRef]
- Zomorodian, Z.S.; Tahsildoost, M. Assessing the effectiveness of dynamic metrics in predicting daylight availability and visual comfort in classrooms. Renew. Energy 2019, 134, 669–680. [Google Scholar]
- Rababa, W.; Asfour, O.S. Façade Retrofit Strategies for Energy Efficiency Improvement Considering the Hot Climatic Conditions of Saudi Arabia. Appl. Sci. 2024, 14, 10003. [Google Scholar] [CrossRef]
- Li, X.; Shi, W.; Liu, Y.; Zhang, N. Optimization Strategy for Thermal Comfort in Railway Stations above Ground Level in Beijing. Buildings 2024, 14, 2843. [Google Scholar] [CrossRef]
- Choe, S.-J.; Han, S.-H. Energy Balance Data-Based Optimization of Louver Installation Angles for Different Regions in Korea. Energies 2022, 15, 9214. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Wongpanyathaworn, K. Optimising Louver Location to Improve Indoor Thermal Comfort based on Natural Ventilation. Procedia Eng. 2012, 49, 169–178. [Google Scholar] [CrossRef]
- Saleem, A.; Kim, M.-H. Airside Thermal Performance of Louvered Fin Flat-Tube Heat Exchangers with Different Redirection Louvers. Energies 2022, 15, 5904. [Google Scholar] [CrossRef]
- Bai, M.; Wang, F.; Liu, J.; Wang, Z. Thermal effects validation on solar louver module applying to active solar house in winter. Energy Build. 2023, 291, 113093. [Google Scholar]
- Kitsopoulou, A.; Bellos, E.; Tzivanidis, C. An Up-to-Date Review of Passive Building Envelope Technologies for Sustainable Design. Energies 2024, 17, 4039. [Google Scholar] [CrossRef]
- Bahdad, A.A.; Taib, N.; Allahaim, F.S.; Ajlan, A.M. Parametric Optimization Approach to Evaluate Dynamic Shading Within Double-Skin Insulated Glazed Units for Multi-Criteria Daylighting Performance in Tropics. J. Daylight. 2024, 11, 349–371. [Google Scholar]
- Pourshab, N.; Tehrani, M.D.; Toghraie, D.; Rostami, S. Application of double glazed façades with horizontal and vertical louvers to increase natural air flow in office buildings. Energy 2020, 200, 117486. [Google Scholar]
- Datta, G. Effect of fixed horizontal louver shading devices on thermal perfomance of building by TRNSYS simulation. Renew. Energy 2001, 23, 497–507. [Google Scholar]
- Hammad, F.; Abu-Hijleh, B. The energy savings potential of using dynamic external louvers in an office building. Energy Build. 2010, 42, 1888–1895. [Google Scholar]
- Rio, M.A.D.; Asawa, T.; Hirayama, Y. Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space. Sustainability 2020, 12, 5360. [Google Scholar] [CrossRef]
- Tao, S.; Yu, N.; Jiang, F.; Su, X.; Zhao, K. Correlations for forced convective heat transfer coefficients at the windward building façade with vertical louvers. Build. Environ. 2023, 242, 110611. [Google Scholar]
- Deng, W.; Sun, F.; Wang, R.; He, K. Influence mechanism of the louver on the thermal performance of the mechanical draft wet cooling tower. Appl. Therm. Eng. 2023, 230, 120640. [Google Scholar]
- Iqbal, M.; Ozaki, A.; Choi, Y.; Arima, Y. Performance Improvement Plan towards Energy-Efficient Naturally Ventilated Houses in Tropical Climate Regions. Sustainability 2023, 15, 12173. [Google Scholar] [CrossRef]
- Tao, Y.; Yan, Y.; Chew, M.Y.L.; Tu, J.; Shi, L. A theoretical model of natural ventilation enhanced by solar thermal energy in double-skin façade. Energy 2023, 276, 127534. [Google Scholar]
- Liang, X.; Zhang, H.; Sun, B. Parametric design of photovoltaic louver integrated shading devices for west facade windows of office buildings in central China. J. Asian Archit. Build. Eng. 2024, 24, 924–938. [Google Scholar]
- Raimundo, A.M.; Oliveira, A.V.M. Assessing the Impact of Climate Changes, Building Characteristics, and HVAC Control on Energy Requirements under a Mediterranean Climate. Energies 2024, 17, 2362. [Google Scholar] [CrossRef]
- Ito, R.; Lee, S. Development of adjustable solar photovoltaic system for integration with solar shading louvers on building façades. Appl. Energy 2024, 359, 122711. [Google Scholar]
- Wu, J.; Wang, L.; Hong, T.; Hu, Q.; Wang, W. Revealing and optimizing the design of cover installation for outdoor units of air conditioners through CFD simulations and thermodynamic modeling. J. Build. Eng. 2024, 87, 109014. [Google Scholar]
- Kang, J.-H.; Lee, S.-J. Improvement of natural ventilation in a large factory building using a louver ventilator. Build. Environ. 2008, 43, 2132–2141. [Google Scholar]
- Arch, G.; Hajra, B.; Moravej, M.; Zisis, I.; Irwin, P.; Chowdhury, A.G.; Suaris, W. An experimental study to assess the effect of soffit louvered vents on wind loads and wind driven rain intrusion on low rise buildings. Sustain. Cities Soc. 2017, 34, 43–55. [Google Scholar]
- Kosutova, K.; Hooff, T.V.; Vanderwel, C.; Blocken, B.; Hensen, J. Cross-ventilation in a generic isolated building equipped with louvers: Wind-tunnel experiments and CFD simulations. Build. Environ. 2019, 154, 263–280. [Google Scholar]
- Yang, Y.K.; Kim, M.Y.; Song, Y.W.; Choi, S.H.; Park, J.C. Windcatcher Louvers to Improve Ventilation Efficiency. Energies 2020, 13, 4459. [Google Scholar] [CrossRef]
- Tao, Y.; Fang, X.; Setunge, S.; Tu, J.; Liu, J.; Shi, L. Naturally ventilated double-skin façade with adjustable louvers. Sol. Energy 2021, 225, 33–43. [Google Scholar] [CrossRef]
- Zheng, J.; Tao, Q.; Chen, Y. Airborne infection risk of inter-unit dispersion through semi-shaded openings: A case study of a multi-storey building with external louvers. Build. Environ. 2022, 225, 109586. [Google Scholar] [CrossRef] [PubMed]
- Ballestini, G.; Carli, M.D.; Masiero, N.; Tombola, G. Possibilities and limitations of natural ventilation in restored industrial archaeology buildings with a double-skin façade in Mediterranean climates. Build. Environ. 2005, 40, 983–995. [Google Scholar] [CrossRef]
- Al-Waked, R.; Yassin, A.; Adwan, A.; Mostafa, D.B. Effects of Cross Level Air Interaction within Multilevel Underground Carparks on Indoor Air Quality. Fluids 2020, 5, 177. [Google Scholar] [CrossRef]
- Jiang, F.; Tao, S.; Tao, Q.; Li, Z.; Yuan, Y.; Zheng, J. The effect of louver blinds on the wind-driven cross ventilation of multi-storey buildings. J. Build. Eng. 2022, 54, 104614. [Google Scholar]
- Tai, V.C.; Kai-Seun, J.W.; Mathew, P.R.; Moey, L.K.; Cheng, X.; Baglee, D. Investigation of varying louver angles and positions on cross ventilation in a generic isolated building using CFD simulation. J. Wind. Eng. Ind. Aerodyn. 2022, 229, 105172. [Google Scholar] [CrossRef]
- Rahimi, R.; Hassanzadeh, R. Impacts of horizontal and vertical louvers on the natural cross-ventilation performance of a generic building. Int. J. Vent. 2023, 23, 51–74. [Google Scholar]
- Stein-Montalvo, L.; Ding, L.; Hultmark, M.; Adriaenssens, S.; Bou-Zeid, E. Kirigami-inspired wind steering for natural ventilation. J. Wind. Eng. Ind. Aerodyn. 2024, 246, 105667. [Google Scholar] [CrossRef]
- Cui, W.; Peng, X.; Yang, J.; Yuan, H.; Lai, L.L. Evaluation of Rooftop Photovoltaic Power Generation Potential Based on Deep Learning and High-Definition Map Image. Energies 2023, 16, 6563. [Google Scholar] [CrossRef]
- Nguyen, N.-H.; Le, B.-C.; Bui, T.-T. Benefit Analysis of Grid-Connected Floating Photovoltaic System on the Hydropower Reservoir. Appl. Sci. 2023, 13, 2948. [Google Scholar] [CrossRef]
- Iqbal, W.; Ullah, I.; Shin, S. Nonimaging High Concentrating Photovoltaic System Using Trough. Energies 2023, 16, 1336. [Google Scholar] [CrossRef]
- Iqbal, W.; Ullah, I.; Shin, S. Optical Developments in Concentrator Photovoltaic Systems—A Review. Sustainability 2023, 15, 10554. [Google Scholar] [CrossRef]
- Mutume, B. A feasibility assessment of utilizing concentrated solar power (CSP) in the Zimbabwean regions of Hwange and Lupane. Heliyon 2023, 9, e18210. [Google Scholar] [CrossRef]
- Mandalaki, M.; Tsoutsos, T. Solar Shading Systems: Design, Performance, and Integrated Photovoltaics; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Baghdadi, A.; Abuhussain, M. In-Depth Analysis of Photovoltaic-Integrated Shading Systems’ Performance in Residential Buildings: A Prospective of Numerical Techniques Toward Net-Zero Energy Buildings. Buildings 2025, 15, 222. [Google Scholar] [CrossRef]
- Jung, S.K.; Kim, Y.; Moon, J.W. Performance Evaluation of Control Methods for PV-Integrated Shading Devices. Energies 2020, 13, 3171. [Google Scholar] [CrossRef]
- Hasan, H.S.; Hwang, H. Economic Feasibility Assessment of Motorized PV Louver System Considering the Near Shading Parameter, Array Incidence Losses and Other Environmental Factors. World J. Eng. Technol. 2024, 12, 540–551. [Google Scholar] [CrossRef]
- Guo, W.; Kong, L.; Chow, T.; Li, C.; Zhu, Q.; Qiu, Z.; Li, L.; Wang, Y.; Riffat, S.B. Energy performance of photovoltaic (PV) windows under typical climates of China in terms of transmittance and orientation. Energy 2020, 213, 118794. [Google Scholar] [CrossRef]
- Svetozarevic, B.; Begle, M.; Jayathissa, P.; Caranovic, S.; Shepherd, R.F.; Nagy, Z.; Hischier, I.; Hofer, J.; Schlueter, A. Dynamic photovoltaic building envelopes for adaptive energy and comfort management. Nat. Energy 2019, 4, 671–682. [Google Scholar] [CrossRef]
- Chen, H.; Cai, B.; Yang, H.; Wang, Y.; Yang, J. Study on natural lighting and electrical performance of louvered photovoltaic windows in hot summer and cold winter areas. Energy Build. 2022, 271, 112313. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, L.; Wang, X.; Xie, L.; Liu, Z.; Wu, J.; Zhang, Y.; He, X. A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds. Appl. Energy 2017, 199, 281–293. [Google Scholar]
- Reffat, R.; Ezzat, R. Maximizing solar energy generation: Guidelines for optimizing photovoltaic panel placement on building facades. Archnet-IJAR Int. J. Archit. Res. 2024. [Google Scholar] [CrossRef]
- Tan, Y.; Peng, J.; Wang, M.; Luo, Y.; Song, A.; Li, N. Comfort assessment and energy performance analysis of a novel adjustable semi-transparent photovoltaic window under different rule-based controls. Build. Simul. 2023, 16, 2343–2361. [Google Scholar]
- Hofer, J.; Groenewolt, A.; Jayathissa, P.; Nagy, Z.; Schlueter, A. Parametric analysis and systems design of dynamic photovoltaic shading modules. Energy Sci. Eng. 2016, 4, 134–152. [Google Scholar]
- Riviere, G.; Malet-Damour, B. Developing a new decision support tool for sizing louvers in hot and humid climates concerning light efficiency and building energy gain. In Proceedings of the Building Simulation 2023: 18th Conference of IBPSA 2023, Shanghai, China, 4 September 2023. [Google Scholar]
- Alzoubi, H.H.; Al-Zoubi, A.H. Assessment of building façade performance in terms of daylighting and the associated energy consumption in architectural spaces: Vertical and horizontal shading devices for southern exposure facades. Energy Convers. Manag. 2010, 51, 1592–1599. [Google Scholar]
- Palmero-Marrero, A.I.; Oliveira, A.C. Effect of louver shading devices on building energy requirements. Appl. Energy 2010, 87, 2040–2049. [Google Scholar]
- Freewan, A.A.; Shao, L.; Riffat, S. Interactions between louvers and ceiling geometry for maximum daylighting performance. Renew. Energy 2009, 34, 223–232. [Google Scholar]
- Uribe, D.; Vera, S.; Bustamante, W.; McNeil, A.; Flamant, G. Impact of different control strategies of perforated curved louvers on the visual comfort and energy consumption of office buildings in different climates. Sol. Energy 2019, 190, 495–510. [Google Scholar]
- Bao, S.; Zou, S.; Zhao, M.; Chen, Q.; Li, B. Experimental Study on the Modular Vertical Greening Shading in Summer. Int. J. Environ. Res. Public Health 2022, 10, 11648. [Google Scholar]
- Zheng, Y.; Wu, J.; Zhang, H.; Lin, C.; Li, Y.; Cui, X.; Shen, P. A novel sun-shading design for indoor visual comfort and energy saving in typical office space in Shenzhen. Energy Build. 2025, 328, 115083. [Google Scholar]
- Ma, Q.; Ran, S.; Chen, X.; Li, L.; Gao, W.; Wei, X. Study on the effect of photovoltaic louver shading and lighting control system on building energy consumption and daylighting. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 10873–10889. [Google Scholar] [CrossRef]
Year | Country | Simulation Tools | Experiment | Improvements (%) | Key Findings |
---|---|---|---|---|---|
1962 [44] | USA | Mathematical model | ✕ | - |
|
2015 [45] | USA | Hybrid ray tracing | ✓ | - |
|
2016 [33] | Korea | Grasshopper, Rhinoceros, DIVA, NURBS | ✕ | 5 (DF) |
|
2017 [46] | UK | Grasshopper, Radiance, DAYSIM, EnergyPlus, | ✕ | 80 (Daylighting) |
|
2017 [37] | Spain | SketchUp, DAYSIM, TRNSYS | ✕ | 40 (UDI) |
|
2017 [47] | USA | Radiance, EnergyPlus | ✕ | 43 (Daylighting) |
|
2018 [48] | Chile, Canada, China, USA | Radiance, EnergyPlus SketchUp, Groundhog, WINDOW | ✕ | 63 (Daylighting) |
|
2020 [49] | Israel | Radiance, DAYSIM, Rhinoceros, Grasshopper, | ✕ | 51 (UDI) |
|
2020 [50] | Poland | De Luminae, SketchUp | ✕ | - |
|
2020 [51] | Taiwan | EnergyPlus | ✕ | - |
|
2020 [52] | USA | EnergyPlus | ✕ | - |
|
2020 [53] | Indonesia | Radiance, DAYSIM, Rhinoceros, Grasshopper | ✕ | - |
|
2020 [54] | Egypt | Radiance, DAYSIM, Rhinoceros, Grasshopper | ✕ | 90 (Daylighting) |
|
2021 [55] | UK | Radiance, Rhinoceros, Grasshopper, Ladybug, Honeybee | ✓ | - |
|
2021 [56] | Indonesia | EnergyPlus, Rhinoceros, Grasshopper, LadyBug, Honeybee | ✕ | 16.78 (UDI) |
|
2022 [36] | Australia, the UK, and Indonesia | EnergyPlus, Radiance | ✕ | 79, 80, 146 |
|
2022 [38] | Jordan | Grasshopper, Radiance, DAYSIM, EnergyPlus, Ladybug, Honeybee | ✕ | - |
|
2022 [57] | Jordan | Grasshopper, Ladybug, and Honeybee | ✕ | 50 |
|
2022 [41] | Korea | Rhino 6′s, Grasshopper, Radiance | ✕ | 75 (UDI) |
|
2022 [58] | China | Radiance, EnergyPlus | ✕ | 23 (UDI) |
|
2023 [59] | China | Ladybug and Honeybee | ✕ | 2.5 (UDI) |
|
2023 [60] | Indonesia | Ant Colony Optimization (ACO) algorithm | ✕ | - |
|
2023 [61] | Jordan | Grasshopper, Rhino, Radiance, Daysim, EnergyPlus | ✕ | 90 (UDI) |
|
2023 [62] | USA | DIVA, Grasshopper | ✕ | 14 (Daylight) |
|
2024 [29] | South Korea | DIALUX evo, Rhinoceros | ✕ | 80 (Daylight) |
|
2024 [63] | China | EnergyPlus, Radiance, Grasshopper, Rhinoceros | ✕ | 97 (UDI) |
|
2024 [64] | USA | EnergyPlus, Rhino | ✕ | - |
|
2024 [65] | Japan | - | ✓ | - |
|
2024 [40] | Denmark | Rhinoceros, Honeybee, Grasshopper, and Ladybug | ✕ | 99 (Daylighting) |
|
2024 [66] | USA | Rhinoceros, Honeybee, Grasshopper, and Ladybug | ✕ | 75 (daylighting) |
|
2024 [67] | South Korea | Designbuilder, Revit and Twinmotion | ✓ | 64 |
|
Year | Country | Simulation Tools | Experiment | Energy Savings | Key Findings |
---|---|---|---|---|---|
2001 [84] | Italy | TRNSYS | ✕ | - |
|
2010 [85] | UAE | IES-VR | ✕ | 28.57, 30.31, and 34.02, respectively |
|
2017 [46] | UK | RADIANC, DAYSIM | ✕ | 80 |
|
2017 [37] | Spain | SketchUp, DAYSIM, and TRNSYS | ✕ | 68 |
|
2018 [48] | Chile, Canada, China, USA | Radiance, EnergyPlus SketchUp, Groundhog, WINDOW | ✕ | 63 |
|
2020 [86] | Japan | CFD | ✓ | - |
|
2020 [52] | USA | EnergyPlus | ✕ | - |
|
2021 [56] | Indonesia | EnergyPlus, Rhino, Grasshopper, LadyBug, | ✕ | 18 |
|
2023 [80] | China | TRNSYS, MATLAB | ✕ | 33.8 |
|
2023 [59] | China | Ladybug | ✕ | 2.5 |
|
2023 [87] | China | CFD | ✕ | - |
|
2023 [88] | China | Numerical Analysis | ✕ | - |
|
2023 [89] | Indonesia | THERB | ✕ | 23 |
|
2023 [60] | Indonesia | Ant Colony Optimization (ACO) algorithm | ✕ | - |
|
2023 [90] | China | CFD | ✕ | - |
|
2023 [91] | China | Rhino, Grasshopper, Ladybug, and Honeybee plug-ins | ✕ | 35 |
|
2024 [29] | South Korea | DIALUX evo and Rhino | ✕ | 27 |
|
2024 [92] | Portugal | SEnergEd | ✕ | - |
|
2024 [93] | Japan | - | ✓ | 9.3 |
|
2024 [94] | China | CFD, COMSOL | ✕ | - |
|
2024 [64] | USA | Rhino | ✕ | - |
|
2024 [82] | Malaysia | Rhino, Grasshopper, Ladybug, Honeybee, and genetic algorithm | ✕ | 26.2 |
|
2024 [67] | South Korea | Designbuilder, Revit, and Twinmotion | ✓ | 64 |
|
Year | Country | Simulation Tools | Experiment | Improvements (%) | Key Findings |
---|---|---|---|---|---|
2005 [101] | Italy | TRNSYS, LOOPDA | ✕ | 8 |
|
2008 [95] | Republic of Korea | ✕ | ✓ | - |
|
2017 [96] | USA | ✕ | ✓ | - |
|
2019 [97] | England | CFD, RANS turbulence models; RNG, SST, RSM | ✓ | 45 |
|
2020 [83] | Iran | CFD, Google Assistant, Amazon Alexa, or Apple Siri | ✕ | - |
|
2020 [98] | Korea | CFD, Star-CCM+ | ✕ | - |
|
2020 [102] | Jordan | CFD | ✕ | 96.6 |
|
2021 [99] | Australia | CFD | ✕ | 14 |
|
2022 [100] | China | CFD | ✕ | - |
|
2022 [103] | China | CFD | ✓ | - |
|
2022 [104] | Malaysia | CFD | ✕ | 53.4 |
|
2023 [88] | China | Numerical Analysis | ✕ | 6.25 |
|
2023 [90] | China | CFD | ✓ | - |
|
2023 [105] | Iran | Simulation | ✕ | - |
|
2024 [106] | USA | Large Eddy | ✓ | - |
|
2024 [92] | Portugal | SEnergEd | ✕ | - |
|
Year | Country | Slat Angle | Orientation | Key Findings |
---|---|---|---|---|
1962 [44] | USA | - | N |
|
1962 [44] | USA | - | E/W |
|
2010 [124] | Jordan | 0°, 45° | S |
|
2010 [125] | Portugal | 10°−90°, with a difference of 10°. | E, W |
|
2010 [85] | UAE | −80°, −60°, −40°, −20°, 0°, 20°, 40°, 60°, 80° | E, W |
|
2017 [46] | UK | 15° | S, S-W |
|
2017 [37] | Spain | −60°, −30°, 0°, 30°, 60° | E |
|
2020 [49] | Israel | - | N-W, N-W, and S-W |
|
2020 [83] | Iran | 0° | - |
|
2020 [50] | Poland | 15°, 30°, 45°, 60° | S |
|
2023 [87] | China | - | - |
|
2023 [105] | Iran | 15°, 30°, 45° | - |
|
2024 [93] | Japan | - | - |
|
2024 [66] | USA | - | - |
|
Year | Country | Design | Slat Angle | Orientation | Key Findings |
---|---|---|---|---|---|
1962 [44] | USA | Flat | 0° | S |
|
2001 [84] | Italy | Flat/external | 0°, 30°, 45°, 60°, and 90° | S |
|
2009 [126] | UK | Flat/external | 0° | - |
|
2010 [124] | Jordan | Flat/external | 0°, 45° | S |
|
2010 [125] | Portugal | Flat/external | 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, 90° | S |
|
2010 [85] | UAE | Flat/external | −80°, −60°, −40°, −20°, 0°, 20°, 40°, 60°, 80° | S |
|
2016 [33] | Korea | External | - | S |
|
2017 [37] | Spain | Flat/external | 0° | S |
|
2019 [127] | Chile, Canada, USA | Curved/External | 30°, 45°, 60° | - |
|
2020 [49] | Israel | External | - | N-W, W, and W, respectively |
|
2020 [83] | Iran | Flat | 0° | - |
|
2021 [69] | Poland | Flat | 60° | S-W |
|
2022 [58] | China | - | 7° | - |
|
2023 [105] | Iran | Flat | 15°, 30°, 45° | - |
|
2024 [63] | China | Flat | 0° | E, S-E, S, S-W, and W-oriented |
|
2024 [68] | Korea | Flat | 0° | - |
|
2024 [92] | Portugal | External, fixed | 0° | - |
|
2024 [93] | Japan | - | - | - |
|
Year | Country | Slat Angle | Orientations | Key Findings |
---|---|---|---|---|
2001 [84] | Italy | 0°, 30°, 45°, 60°, and 90° | S |
|
2009 [126] | UK | 0° | - |
|
2010 [85] | UAE | −20°, 20° | S, E/W |
|
2020 [49] | Israel | - | S, S-E, E, N-E, N, NW, W, and SW, respectively. |
|
2020 [49] | Israel | - | S, S-E, E, N-E, N, N-W, W, and S-W, respectively. |
|
2023 [59] | China | - | W |
|
2024 [63] | China | 45° | - |
|
2024 [92] | Portugal | 0° | - |
|
Year | Country | Angle | Orientation | Key Findings |
---|---|---|---|---|
2020 [49] | Israel | - | S, S-E, E, N-E, N, N-W, W, and S-W, respectively | UDI levels of 37.33, 34.19, 36.67, 37.81, 40.23, 41.75, 41.93, and 41.30 were achieved, respectively using horizontal design. |
2020 [49] | Israel | - | S, S-E, E, N-E, N, N-W, W, and S-W, respectively. | UDI levels of 37.20, 35.87, 36.82, 37.21, 38.64, 40.54, 38.84, and 39.76 were achieved, respectively, using vertical louver design. |
Year | Country | Control method | Building | Key Findings |
---|---|---|---|---|
2010 [85] | UAE | Sensor-based | Office | A dynamic louver system was proposed and compared with sensor-based dimming light techniques |
2017 [47] | USA | Prismatic | Office | The proposed system achieved energy savings of 43% and was tested at different louvers angles |
2020 [49] | Israel | Simple control | Office | UDI increased up to 51% in N-W orientation |
2020 [43] | Egypt | Parametric | Virtual room | A case study in New Cairo to improve daylighting |
2020 [51] | Taiwan | Sensor-based | Office | Radiance-based strategy is used to optimize the daylighting and glare control |
2020 [52] | USA | Parametric | Office | Climate adaptive envelope achieved less cooling load and better daylighting in hot and humid climates |
2020 [53] | Indonesia | Parametric | Office | The proposed study enhanced daylighting performance and was tested in a south orientation |
2020 [54] | Egypt | Parametric | Office | This study was conducted in an office room in New Cairo that used an automatic louver system |
2021 [55] | UK | Parametric | Office | Illuminance of 300–500 lux was achieved. |
2021 [69] | Poland | Sensor-based | Museum | An energy savings of 118 kWh/yr was achieved |
2022 [38] | Jordan | Parametric | Office | Split louvers were used to improve daylighting |
2022 [57] | Jordan | Parametric slat angle | Office | The proposed system used a slat angle to parametrically control the louvers |
2023 [61] | Jordan | Parametric | Office | Transparent PV panels were used to enhance energy generation and improve daylighting |
2023 [121] | China | Rule-based strategy | Office | Semi-transparent PV windows were used to improve thermal comfort hours (up to 5%) and energy savings of 65% (W orientation) |
2023 [91] | China | Parametric | Office | The proposed louver system effectively reduced the cooling load of a west-facing building |
2023 [62] | USA | Parametric | Office | Louvers were tested at different angles to achieve the optimum results |
2023 [130] | China | Parametric | Office | Photovoltaic louvers and prismatic design achieved 22.8% energy savings |
2024 [68] | Korea | Sensor-based | Office | Daylighting was improved using sensor-based LED dimming control of the louver system |
2024 [65] | Japan | Sensor-based | Office | The slat angle, opening, and closing of a louver system are managed by a solar collector, having very less error |
2024 [40] | Denmark | Parametric | Office | The proposed louver-based system improved visual comfort and electrical lighting energy utilization |
2024 [66] | USA | Sensor-based | Office | An Arduino microcontroller was used to test the performance of vertical louvers |
2024 [67] | South Korea | Sensor-based | Office | An illuminometer, thermocouple, servo motor, controller, and energy sensors were used to control the louvers |
Year | Country | Material | Reflectance | PV-Integrated | Key Findings |
---|---|---|---|---|---|
2017 [46] | UK | Mirror | 75% | ✕ |
|
2017 [119] | China | Glass | - | ✓ |
|
2020 [83] | Iran | Glass for windows and plastic for louvers | - | ✕ |
|
2020 [49] | Israel | Diffused metal | 0.175 | ✕ |
|
2022 [41] | Korea | Electrochromic (smart glass) | 20−70% | ✕ |
|
2023 [61] | Jordan | Glass | 50−70% | ✓ |
|
2024 [29] | South Korea | Aluminum | 90% | ✕ |
|
2024 [67] | South Korea | Aluminum | 90% | ✓ |
|
Year | Type | Energy Savings/Improvements | Illuminance/Heat/Ventilation | Building | Climate |
---|---|---|---|---|---|
2001 [84] | Fixed, horizontal | 70 | Cooling | Office | Hot-summer Mediterranean |
2005 [101] | External and internal | 12 | Ventilation | Factory | Mediterranean |
2008 [95] | External, Internal | 60 | Ventilation | Factory | Temperate |
2010 [124] | Vertical | 39.8 | Illuminance | Office | Subtropical arid |
2010 [85] | External, dynamic, horizontal, vertical | 34.02, 30.31, 28.57 | Illuminance | Office | Arid desert |
2016 [33] | Horizontal | 5 | Illuminance | Office | Dry-winter humid continental |
2017 [37] | External, Horizontal, Vertical | 68 | Cooling | Office | Mediterranean |
2017 [47] | Vertical | 39–43 | Daylighting | Office | Warm-summer Mediterranean |
2018 [48] | External | 63 | Illuminance and cooling | Office | Continental semiarid, tropical, humid subtropical |
2020 [49] | External, dynamic, horizontal, vertical, and diagonal | 51 | Illuminance | Office | Mediterranean |
2020 [98] | External, horizontal, vertical | 37.5 | Ventilation | Office | Temperate |
2020 [83] | Internal, external, horizontal, and vertical | - | Ventilation | Office | Hot and arid |
2021 [99] | External, movable | 14 | Ventilation | Office | Semi-arid, temperate |
2021 [56] | External | 18 | Illuminance and cooling | Office | Tropical |
2021 [69] | Horizontal, automatic | 30.2 | Illuminance | Museum | Moderate |
2022 [38] | Parametric control | 100 | Illuminance | Virtual office | Subtropical arid |
2022 [104] | - | 53.4 | Ventilation | Office | Tropical |
2023 [59] | External | 2.6 | Illuminance and thermal | School office | Severe cold and cold |
2023 [89] | External | 23 | Cooling | Residential | Tropical |
2023 [61] | PV-integrated and retro-shaped | 90 | Illuminance | Office | Arid, desert, Mediterranean |
2023 [121] | PV-integrated | 65.7 | Illuminance, heating, and cooling | Office | Humid subtropical |
2023 [91] | Parametric | 46 | Illuminance, heating, and cooling | Office | Humid subtropical |
2024 [29] | Curved | 27 | Illuminance and cooling | Office | Mid-Latitude |
2024 [63] | Trapezoid | 44 | Illuminance | Office | Subarctic and tropical |
2024 [68] | External, horizontal | 85 | Illuminance | Office | Humid continental |
2024 [92] | External, horizontal, and fixed. | - | HVAC | Residential & commercial | Temperate Mediterranean |
2024 [93] | Vertical, horizontal | 7.3, 9.3 | Heating and cooling | Office | Subarctic-subtropical |
2024 [64] | PV-integrated, external | - | Illuminance, heating, and cooling | Office | ASHRAE |
2024 [40] | Parametric, Kinetic | 99 | Illuminance | Office | Temperate |
2024 [67] | Automatic, Sensor-based | 65 | Illuminance, heating, and cooling | Office | Humid temperate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iqbal, W.; Ullah, I.; Hussain, A.; Cho, M.; Park, J.; Lee, K.; Shin, S. Optimizing Energy Efficiency: Louver Systems for Sustainable Building Design. Buildings 2025, 15, 1183. https://doi.org/10.3390/buildings15071183
Iqbal W, Ullah I, Hussain A, Cho M, Park J, Lee K, Shin S. Optimizing Energy Efficiency: Louver Systems for Sustainable Building Design. Buildings. 2025; 15(7):1183. https://doi.org/10.3390/buildings15071183
Chicago/Turabian StyleIqbal, Waseem, Irfan Ullah, Asif Hussain, Meeryoung Cho, Jongbin Park, Keonwoo Lee, and Seoyong Shin. 2025. "Optimizing Energy Efficiency: Louver Systems for Sustainable Building Design" Buildings 15, no. 7: 1183. https://doi.org/10.3390/buildings15071183
APA StyleIqbal, W., Ullah, I., Hussain, A., Cho, M., Park, J., Lee, K., & Shin, S. (2025). Optimizing Energy Efficiency: Louver Systems for Sustainable Building Design. Buildings, 15(7), 1183. https://doi.org/10.3390/buildings15071183