Indirect Acoustic Characterisation of Membranes for the Control of Sound Absorption †
Abstract
1. Introduction
2. Theory
2.1. Airflow Resistance Measurement Method
2.2. Specific Acoustic Impedance Measurement Method
3. Results
3.1. Airflow Resistivity Measurements
3.2. Measurements in Accordance with ISO 10534-2:2023
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chevillotte, F. Controlling Sound Absorption by an Upstream Resistive Layer. Appl. Acoust. 2012, 73, 56–60. [Google Scholar] [CrossRef]
- Segura-Alcaraz, P.; Segura-Alcaraz, J.; Montava, I.; Bonet-Aracil, M. The Use of Fabrics to Improve the Acoustic Absorption: Influence of the Woven Fabric Thread Density over a Nonwoven. Autex Res. J. 2018, 18, 269–279. [Google Scholar] [CrossRef]
- Shao, X.; Yan, X. Sound Absorption Properties of Nanofiber Membrane-Based Multi-Layer Composites. Appl. Acoust. 2022, 200, 109029. [Google Scholar] [CrossRef]
- Özkal, A.; Cengiz Çallıoğlu, F. Effect of Nanofiber Spinning Duration on the Sound Absorption Capacity of Nonwovens Produced from Recycled Polyethylene Terephthalate Fibers. Appl. Acoust. 2020, 169, 107468. [Google Scholar] [CrossRef]
- Hajimohammadi, M.; Soltani, P.; Semnani, D.; Taban, E.; Fashandi, H. Nonwoven Fabric Coated with Core-Shell and Hollow Nanofiber Membranes for Efficient Sound Absorption in Buildings. Build. Environ. 2022, 213, 108887. [Google Scholar] [CrossRef]
- Zhang, C.; Li, H.; Gong, J.; Chen, J.; Li, Z.; Li, Q.; Cheng, M.; Li, X.; Zhang, J. The Review of Fiber-Based Sound-Absorbing Structures. Text. Res. J. 2023, 93, 434–449. [Google Scholar] [CrossRef]
- Atiénzar-Navarro, R.; del Rey, R.; Alba, J.; Sánchez-Morcillo, V.J.; Picó, R. Sound Absorption Properties of Perforated Recycled Polyurethane Foams Reinforced with Woven Fabric. Polymers 2020, 12, 401. [Google Scholar] [CrossRef] [PubMed]
- Ciaburro, G.; Romero, V.P.; Iannace, G.; Bravo Moncayo, L. Improving Acoustic Properties of Sandwich Structures Using Recycled Membrane and HoneyComb Composite (RMHCC). Buildings 2024, 14, 2878. [Google Scholar] [CrossRef]
- Huang, C.; Liu, Y.; Yang, S.; Xiang, H.; Jin, Y.; Cao, S.; Chen, K. Fabrication and Acoustic Absorption Properties of Electrospun Polyacrylonitrile Nanofiber Membranes. Phys. Scr. 2025, 100, 25902. [Google Scholar] [CrossRef]
- Jaouen, L.; Bécot, F.-X. Acoustical Characterization of Perforated Facings. J. Acoust. Soc. Am. 2011, 129, 1400–1406. [Google Scholar] [CrossRef]
- Patil, C.; Ghorpade, R.; Askhedkar, R. Investigation into the Sound Absorptivity of Perforated Panels with Tapered Hole Geometries Coupled with Polyurethane Foam. Int. J. Interact. Des. Manuf. (IJIDeM) 2025, 19, 1849–1868. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, Y.; Deng, Z.; Zhou, J.; Dong, L.; Guo, Z. The Normal Incidence Sound Absorption of the Thin Band Yarn Woven Fabric with Kapok Fiber. Appl. Acoust. 2022, 194, 108805. [Google Scholar] [CrossRef]
- Wu, L.; Xing, X.; Gong, J.; Zhong, Z.; Lin, J.-H.; Jiang, Q. Experimental and Finite Element Analysis on the Sound Absorption Performance of Wedge-like Knitted Composite. Thin-Walled Struct. 2023, 182, 110289. [Google Scholar] [CrossRef]
- Cai, Z.; Li, X.; Gai, X.; Zhang, B.; Xing, T. An Empirical Model to Predict Sound Absorption Ability of Woven Fabrics. Appl. Acoust. 2020, 170, 107483. [Google Scholar] [CrossRef]
- Del Rey, R.; Alba, J.; Blanes, M.; Marco, B. The Acoustic Absorption of Textile Curtains on the Function of the Fullness. Mater. Constr. 2013, 63, 569–580. [Google Scholar] [CrossRef]
- Samuel, B.T.; Barburski, M.; Witczak, E.; Jasińska, I. The Influence of Physical Properties and Increasing Woven Fabric Layers on the Noise Absorption Capacity. Materials 2021, 14, 6220. [Google Scholar] [CrossRef]
- Gunawan; Prasetiyo, I.; Yuliarto, B.; Putra, A. Irianto Investigation on Minute Holes of Woven Fabrics for Wide-Band Micro-Perforated Sound Absorbers. Buildings 2023, 13, 663. [Google Scholar] [CrossRef]
- Allard, J.F.; Atalla, N. Propagation of Sound in Porous Media; Wiley: Hoboken, NJ, USA, 2009; ISBN 9780470746615. [Google Scholar]
- Bies, D.A.; Hansen, C.H. Flow Resistance Information for Acoustical Design. Appl. Acoust. 1980, 13, 357–391. [Google Scholar] [CrossRef]
- ISO 9053-1:2018; Acoustics. Determination of Airflow Resistance. Part 1: Static Airflow Method. ISO: Geneva, Switzerland, 2018.
- ISO 9053-2:2020; Acoustics. Determination of Airflow Resistance. Part 2: Alternating Airflow Method. ISO: Geneva, Switzerland, 2020.
- ASTM C522-03; Standard Test Method for Airflow Resistance of Acoustical Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- Ingard, K.U.; Dear, T.A. Measurement of Acoustic Flow Resistance. J. Sound Vib. 1985, 103, 567–572. [Google Scholar] [CrossRef]
- Dragonetti, R.; Ianniello, C.; Romano, R.A. Measurement of the Resistivity of Porous Materials with an Alternating Air-Flow Method. J. Acoust. Soc. Am. 2011, 129, 753–764. [Google Scholar] [CrossRef]
- Alba, J.; Arenas, J.P.; del Rey, R.; Rodríguez, J.C. An Electroacoustic Method for Measuring Airflow Resistivity of Porous Sound-Absorbing Materials. Appl. Acoust. 2019, 150, 132–137. [Google Scholar] [CrossRef]
- Tang, X.; Yan, X. Airflow Resistance of Acoustical Fibrous Materials: Measurements, Calculations and Applications. J. Ind. Text. 2020, 49, 981–1010. [Google Scholar] [CrossRef]
- Urdanpilleta, M.; del Rey, R.; Leceta, I.; Rodríguez, J.C.; Alba, J.; Guerrero, P. Empirical Modelling of the Acoustic Behavior of Sheep Wool/Soy Protein Biocomposites. J. Build. Eng. 2024, 89, 109290. [Google Scholar] [CrossRef]
- Arenas, J.P.; Parra, C.C.; Rebolledo, J.; Venegas, R. Granular Pumice Stone: A Natural Double-Porosity Sound-Absorbing Material. Buildings 2025, 15, 557. [Google Scholar] [CrossRef]
- Pompoli, F. Acoustical Characterization and Modeling of Sustainable Posidonia Fibers. Appl. Sci. 2023, 13, 4562. [Google Scholar] [CrossRef]
- Periyasamy, A.P. Nonwoven Fabrics from Agricultural and Industrial Waste for Acoustic and Thermal Insulation Applications. Textiles 2023, 3, 182–200. [Google Scholar] [CrossRef]
- Del Rey, R.; Alba, J.; Arenas, J.P.; Ramis, J. Evaluation of Two Alternative Procedures for Measuring Airflow Resistance of Sound Absorbing Materials. Arch. Acoust. 2013, 38, 547–554. [Google Scholar] [CrossRef]
- Rodríguez Vercher, J.C.; del Rey, R.; Alba, J. Indirect Determination of Airflow Resistance of Textiles with Reference Samples. Inter-Noise Noise-Con Congr. Conf. Proc. 2021, 263, 3708–3713. [Google Scholar] [CrossRef]
- Allard, J.F.; Champoux, Y.; Depollier, C. Modelization of Layered Sound Absorbing Materials with Transfer Matrices. J. Acoust. Soc. Am. 1987, 82, 1792–1796. [Google Scholar] [CrossRef]
- Lauriks, W.; Mees, P.; Allard, J.F. The Acoustic Transmission through Layered Systems. J. Sound Vib. 1992, 155, 125–132. [Google Scholar] [CrossRef]
- ISO 10534-2:2023; Acoustics—Determination of Sound Absorption Coefficient and Impedance in Impedance Tubes—Part 2: Transfer-Function Method. ISO: Geneva, Switzerland, 2023.
- Rodríguez Vercher, J.C.; Alba, J.; Rey, R. del Acoustic Characterization of Membranes Attached to Sound Absorbing Base Materials. Inter-Noise Noise-Con Congr. Conf. Proc. 2021, 263, 3699–3707. [Google Scholar] [CrossRef]
- Kim, B.-S.; Seong, Y.; Park, J. Modified Two-Thickness Method for Measurement of the Acoustic Properties of Porous Materials. Appl. Acoust. 2019, 146, 184–189. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Thickness (mm) | Airflow Resistance (Ns/m3) | Relative Error (%) | |
---|---|---|---|---|---|
Textile recycling 1 cm | 55.4 | 11.30 | 147.8 | 6.0 | |
Recycled foam 2 cm | 106.0 | 20.17 | 423.4 | 14.3 | |
Polyester fiberfill 3 cm | 19.3 | 29.23 | 53.2 | 8.3 | |
Polyurethane foam 4 cm | 9.4 | 39.07 | 717.7 | 2.7 | |
Polyurethane foam 0.5 cm | 0.1 | 4.93 | 71.6 | 4.0 | |
Polyurethane foam 1.2 cm | 6.7 | 11.60 | 145.3 | 2.2 | |
Polyurethane foam 2.5 cm | 26.4 | 25.03 | 95.3 | 0.7 | |
M1: Non-woven textile | 53.1 | 2.38 | 53.3 | 46.1 | |
M2: Woven textile | 373.2 | 1.10 | 357.4 | 20.2 | |
M3: Woven textile | 757.9 | 0.25 | 245.2 | 17.1 | |
M4: Plastic | 649.8 | 0.43 | 1139.2 | 51.0 |
Material | Thickness (mm) | Total Airflow Resistance (Ns/m3) | Relative Error (%) | Airflow Resistance Membrane (Ns/m3) |
---|---|---|---|---|
Polyurethane foam 4 cm (PF4) | 39.1 | 717.7 | 2.7 | |
Polyurethane foam 2.5 cm (PF2.5) | 25.0 | 95.3 | 0.7 | |
Polyurethane foam 1.2 cm (PF1.2) | 11.6 | 145.3 | 2.2 | |
PF4 × 2 | 78.2 | 1438.9 | 1.7 | |
PF4 + M1 + PF4 | 78.2 | 1463.1 | 0.1 | 24.2 |
PF4 + M2 + PF4 | 77.5 | 1659.5 | 3.8 | 220.6 |
PF4 + M3 + PF4 | 79.4 | 1938.6 | 2.2 | 499.7 |
PF4 + M4 + PF4 | 78.2 | 4692.0 | 10.8 | 3253.1 |
PF2.5 × 2 | 49.7 | 185.8 | 0.9 | |
PF2.5 + M1 + PF2.5 | 52.8 | 209.9 | 1.1 | 24.0 |
PF2.5 + M2 + PF2.5 | 52.4 | 440.5 | 2.4 | 254.7 |
PF2.5 + M3 + PF2.5 | 51.3 | 612.8 | 12.3 | 427.0 |
PF2.5 + M4 + PF2.5 | 51.3 | 3212.5 | 10.2 | 3026.7 |
PF1.2 × 2 | 23.6 | 281.6 | 1.4 | |
PF1.2 + M1 + PF1.2 | 25.4 | 306.2 | 0.6 | 24.6 |
PF1.2 + M2 + PF1.2 | 24.7 | 522.4 | 7.9 | 240.8 |
PF1.2 + M3 + PF1.2 | 23.9 | 695.8 | 8.7 | 414.2 |
PF1.2 + M4 + PF1.2 | 24.6 | 3630.3 | 17.4 | 3348.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alba, J.; Rey, R.d.; Rodríguez, J.C. Indirect Acoustic Characterisation of Membranes for the Control of Sound Absorption. Buildings 2025, 15, 1249. https://doi.org/10.3390/buildings15081249
Alba J, Rey Rd, Rodríguez JC. Indirect Acoustic Characterisation of Membranes for the Control of Sound Absorption. Buildings. 2025; 15(8):1249. https://doi.org/10.3390/buildings15081249
Chicago/Turabian StyleAlba, Jesús, Romina del Rey, and Juan C. Rodríguez. 2025. "Indirect Acoustic Characterisation of Membranes for the Control of Sound Absorption" Buildings 15, no. 8: 1249. https://doi.org/10.3390/buildings15081249
APA StyleAlba, J., Rey, R. d., & Rodríguez, J. C. (2025). Indirect Acoustic Characterisation of Membranes for the Control of Sound Absorption. Buildings, 15(8), 1249. https://doi.org/10.3390/buildings15081249