Generative AI and Prompt Engineering: Transforming Rockburst Prediction in Underground Construction
Abstract
:1. Introduction
1.1. Generative AI (GenAI)
1.2. Prompt Engineering
1.3. Google Gemini
2. Recent Developments in Rockburst Assessment: Contemporary Methods and Related Challenges
3. Methodology
- Rockburst intensity levels were categorized into four distinct classes;
- Data visualization methods were employed to analyze the impact of input variables on rockburst intensity levels;
- Factor analysis (FA) was conducted to identify the most critical variables influencing rockburst;
- K-means clustering was utilized to segment the dataset into four clusters, enabling the identification of patterns within the data;
- The gradient boosting classifier was applied to predict rockburst intensity levels;
- Several performance criteria—including the confusion matrix, precision, recall, F1-score, and accuracy—were used to assess the gradient boosting classifier’s performance. Figure 3 provides a detailed flowchart, outlining the sequential steps and methodology employed throughout the study.
3.1. Data Acquisition
3.2. Factor Analysis
3.3. K-Means Clustering
3.4. Gradient Boosting Classifier
4. Results and Discussion
4.1. Problem-Solving Strategy Leveraging GenAI for Automated Code Creation
4.2. User Prompts, Responses by Google Gemini, and Generated Results
4.3. Obstacles in the Strategic Execution of GenAI and Prompt Engineering
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldman Sachs. Generative AI Could Raise Global GDP by 7%. 2023. Available online: https://www.goldmansachs.com/insights/pages/generative-ai-could-raise-global-gdp-by-7-percent.html (accessed on 30 March 2025).
- Lv, Z. Generative artificial intelligence in the metaverse era. Cogn. Robot. 2023, 3, 208–217. [Google Scholar] [CrossRef]
- Imran, M.; Almusharraf, N. Google Gemini as a next generation AI educational tool: A review of emerging educational technology. Smart Learn. Environ. 2024, 11, 22. [Google Scholar] [CrossRef]
- Hu, K. ChatGPT Sets Record for Fastest-Growing User Base—Analyst Note Reuters. 2023. Available online: https://www.reuters.com/technology/chatgpt-sets-record-fastest-growing-user-base-analyst-note-2023-02-01/ (accessed on 30 March 2025).
- Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv 2023, arXiv:2303.12712. [Google Scholar] [CrossRef]
- The Washington Post. The Google Engineer Who Thinks the Company’s AI has Come to Life. 2022. Available online: https://www.washingtonpost.com/technology/2022/06/11/google-ai-lamda-blake-lemoine/ (accessed on 30 March 2025).
- Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; W.W. Norton Company: New York, NY, USA, 2016. [Google Scholar]
- Burström, T.; Parida, V.; Lahti, T.; Wincent, J. AI-enabled business-model innovation and transformation in industrial eco-systems: A framework, model and outline for further research. J. Bus. Res. 2021, 127, 85–95. [Google Scholar] [CrossRef]
- Brynjolfsson, E.; Li, D.; Raymond, L.R. Generative AI at Work (No. w31161); National Bureau of Economic Research: Boston, MA, USA, 2023. [Google Scholar]
- Microsoft. Microsoft and OpenAI Extend Partnership. 2023. Available online: https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/ (accessed on 30 March 2025).
- Strobel, G.; Banh, L.; Möller, F.; Schoormann, T. Exploring generative artificial intelligence: A taxonomy and types. In Proceedings of the Hawaii International Conference on System Sciences 2024 (HICSS 2024), Honolulu, HI, USA, 3–6 January 2024. [Google Scholar]
- Susarla, A.; Gopal, R.; Thatcher, J.B.; Sarker, S. The Janus effect of generative AI: Charting the path for responsible conduct of scholarly activities in information systems. Inf. Syst. Res. 2023, 34, 399–408. [Google Scholar] [CrossRef]
- Schramowski, P.; Turan, C.; Andersen, N.; Rothkopf, C.A.; Kersting, K. Large pre-trained language models contain human-like biases of what is right and wrong to do. Nat. Mach. Intell. 2022, 4, 258–268. [Google Scholar] [CrossRef]
- van Slyke, C.; Johnson, R.; Sarabadani, J. Generative artificial intelligence in information systems education: Challenges, consequences, and responses. Commun. Assoc. Inf. Syst. 2023, 53, 1–21. [Google Scholar] [CrossRef]
- Khakzad, N.; Khan, F.; Amyotte, P. Safety analysis in process facilities: Comparison of fault tree and Bayesian network approaches. Reliab. Eng. Syst. Saf. 2011, 96, 925–932. [Google Scholar] [CrossRef]
- Khan, F.; Rathnayaka, S.; Ahmed, S. Methods and models in process safety and risk management: Past, present and future. Process Saf. Environ. Prot. 2015, 98, 116–147. [Google Scholar] [CrossRef]
- Khan, F.I.; Haddara, M.M. Risk-based maintenance (RBM): A quantitative approach for maintenance/inspection scheduling and planning. J. Loss Prev. Process Ind. 2003, 16, 561–573. [Google Scholar] [CrossRef]
- Oppenlaender, J.; Linder, R.; Silvennoinen, J. Prompting AI art: An investigation into the creative skill of prompt engineering. arXiv 2023, arXiv:2303.13534. [Google Scholar] [CrossRef]
- White, J.; Fu, Q.; Hays, S.; Sandborn, M.; Olea, C.; Gilbert, H.; Elnashar, A.; Spencer-Smith, J.; Schmidt, D.C. A prompt pattern catalog to enhance prompt engineering with ChatGPT. arXiv 2023, arXiv:2302.11382. [Google Scholar]
- Piller, C. Meta-prompt Engineering in ChatGPT-4 for AI-Generated BPM Reference Models. In Proceedings of the International Conference on Subject-Oriented Business Process Management, Weiden, Germany, 21–22 May 2024; Springer Nature: Cham, Switzerland, 2024; pp. 315–331. [Google Scholar]
- Strobelt, H.; Webson, A.; Sanh, V.; Hoover, B.; Beyer, J.; Pfister, H.; Rush, A.M. Interactive and visual prompt engineering for ad-hoc task adaptation with large language models. IEEE Trans. Vis. Comput. Graph. 2023, 29, 1146–1156. [Google Scholar] [CrossRef] [PubMed]
- Abukhalaf, S.; Hamdaqa, M.; Khomh, F. On Codex prompt engineering for OCL generation: An empirical study. In Proceedings of the 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR), Melbourne, Australia, 15–16 May 2023; pp. 148–157. [Google Scholar]
- Oppenlaender, J. A taxonomy of prompt modifiers for text-to-image generation. Behav. Inf. Technol. 2023, 43, 3763–3776. [Google Scholar] [CrossRef]
- Akhtar, Z.B. From bard to Gemini: An investigative exploration journey through Google’s evolution in conversational AI and generative AI. Comput. Artif. Intell. 2024, 2, 1378. [Google Scholar] [CrossRef]
- McIntosh, T.R.; Susnjak, T.; Liu, T.; Watters, P.; Halgamuge, M.N. From google gemini to openai q*(q-star): A survey of reshaping the generative artificial intelligence (ai) research landscape. arXiv 2023, arXiv:2312.10868. [Google Scholar]
- Rane, N.; Choudhary, S.; Rane, J. Gemini versus ChatGPT: Applications, performance, architecture, capabilities, and implementation. J. Appl. Artif. Intell. 2024, 5, 69–93. [Google Scholar] [CrossRef]
- Zohaib, S.M.; Sajjad, S.M.; Iqbal, Z.; Yousaf, M.; Haseeb, M.; Muhammad, Z. Zero Trust VPN (ZT-VPN): A Systematic Literature Review and Cybersecurity Framework for Hybrid and Remote Work. Information 2024, 15, 734. [Google Scholar] [CrossRef]
- Wang, M. Generative AI: A New Challenge for Cybersecurity. J. Comput. Sci. Technol. Stud. 2024, 6, 13–18. [Google Scholar] [CrossRef]
- Kamran, M.; Shahani, N.M. Decision support system for the prediction of mine fire levels in underground coal mining using machine learning approaches. Min. Metall. Explor. 2022, 39, 591–601. [Google Scholar] [CrossRef]
- Kidega, R.; Ondiaka, M.N.; Maina, D.; Jonah, K.A.T.; Kamran, M. Decision based uncertainty model to predict rockburst in underground engineering structures using gradient boosting algorithms. Geomech. Eng. 2022, 30, 259–272. [Google Scholar]
- Sarmadi, H.; Entezami, A.; De Michele, C. Probabilistic data self-clustering based on semi-parametric extreme value theory for structural health monitoring. Mech. Syst. Signal Process. 2023, 187, 109976. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Ghazouani, N.; Mohammed, A.H.; Ibrahim, H.H.; Alghamdi, A.; Albaijan, I.; El Ouni, M.H. Predicting rockbursts in deep tunnels based on ejection velocity and kinetic energy measurements using advanced machine learning. Autom. Constr. 2024, 166, 105671. [Google Scholar] [CrossRef]
- Askaripour, M.; Saeidi, A.; Rouleau, A.; Mercier-Langevin, P. Rockburst in underground excavations: A review of mechanisms, classification, and prediction methods. Undergr. Space 2022, 7, 577–607. [Google Scholar] [CrossRef]
- Dong, F.; Wang, S.; Yang, R.; Yang, S. Time-series traction prediction of surrounding rock deformation in tunnel construction based on mechanical parameter inversion. Tunn. Undergr. Space Technol. 2024, 152, 105933. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Nejati, H.R.; Mohammadi, M. Optimized machine learning modeling for predicting the construction cost and duration of tunneling projects. Autom. Constr. 2022, 139, 104305. [Google Scholar] [CrossRef]
- Wang, S.; Dong, F.; Zhang, Z.; Yang, B.; Hou, Q. Multi-index dominant grouping of rock mass discontinuities based on the combined weighting method: A case study for the Huayang tunnel. Tunn. Undergr. Space Technol. 2023, 139, 105211. [Google Scholar] [CrossRef]
- Manouchehrian, A.; Cai, M. Numerical modeling of rockburst near fault zones in deep tunnels. Tunneling Undergr. Space Technol. 2018, 80, 164–180. [Google Scholar] [CrossRef]
- Kaiser, P.K.; Cai, M. Design of rock support system under rockburst condition. J. Rock Mech. Geotech. Eng. 2012, 4, 215–227. [Google Scholar] [CrossRef]
- Ullah, B.; Kamran, M.; Rui, Y. Predictive modeling of short-term rockburst for the stability of subsurface structures using machine learning approaches: T-SNE, K-Means clustering and XGBoost. Mathematics 2022, 10, 449. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Yang, P.; He, X.; Pradhan, B.; Zhou, J.; Sheng, D. Toward Precise Long-Term Rockburst Forecasting: A Fusion of SVM and Cutting-Edge Meta-heuristic Algorithms. Nat. Resour. Res. 2024, 33, 2037–2062. [Google Scholar] [CrossRef]
- Hosseini, S.; Armaghani, D.J.; He, X.; Pradhan, B.; Zhou, J.; Sheng, D. Fuzzy Cognitive Map for Evaluating Critical Factors Causing Rockbursts in Underground Construction: A Fundamental Study. Rock Mech. Rock Eng. 2024, 57, 9713–9738. [Google Scholar] [CrossRef]
- Li, D.; Liu, Z.; Xiao, P.; Zhou, J.; Armaghani, D.J. Intelligent rockburst prediction model with sample category balance using feedforward neural network and Bayesian optimization. Undergr. Space 2022, 7, 833–846. [Google Scholar] [CrossRef]
- Wang, S.M.; Zhou, J.; Li, C.Q.; Armaghani, D.J.; Li, X.B.; Mitri, H.S. Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques. J. Cent. South Univ. 2021, 28, 527–542. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, Y.; Li, C.; He, H.; Li, X. Rockburst prediction and prevention in underground space excavation. Undergr. Space 2024, 14, 70–98. [Google Scholar] [CrossRef]
- Li, C.C.; Mikula, P.; Simser, B.; Hebblewhite, B.; Joughin, W.; Feng, X.; Xu, N. Discussions on rockburst and dynamic ground support in deep mines. J. Rock Mech. Geotech. Eng. 2019, 11, 1110–1118. [Google Scholar] [CrossRef]
- Cai, M. Rockburst risk control and mitigation in deep mining. Deep Resour. Eng. 2024, 1, 100019. [Google Scholar] [CrossRef]
- Miao, S.J.; Cai, M.F.; Guo, Q.F.; Huang, Z.J. Rock burst prediction based on in-situ stress and energy accumulation theory. Int. J. Rock Mech. Min. Sci. 2016, 83, 86–94. [Google Scholar] [CrossRef]
- Naji, A.M.; Rehman, H.; Emad, M.Z.; Yoo, H. Impact of shear zone on rockburst in the deep Neelum-Jehlum hydropower tunnel: A numerical modeling approach. Energies 2018, 11, 1935. [Google Scholar] [CrossRef]
- Chen, X.; Yu, H. Rockburst prediction for deep tunneling near fault based on the PD-BEM method. Tunn. Undergr. Space Technol. 2024, 147, 105725. [Google Scholar] [CrossRef]
- Jiang, Q.; Feng, X.T.; Xiang, T.B.; Su, G.S. Rockburst characteristics and numerical simulation based on a new energy index: A case study of a tunnel at 2500 m depth. Bull. Eng. Geol. Environ. 2010, 69, 381–388. [Google Scholar] [CrossRef]
- Zhou, H.; Meng, F.; Zhang, C.; Hu, D.; Yang, F.; Lu, J. Analysis of rockburst mechanisms induced by structural planes in deep tunnels. Bull. Eng. Geol. Environ. 2015, 74, 1435–1451. [Google Scholar] [CrossRef]
- Feng, F.; Li, X.; Rostami, J.; Li, D. Modeling hard rock failure induced by structural planes around deep circular tunnels. Eng. Fract. Mech. 2019, 205, 152–174. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, S.; Cheng, H.; Han, L.; Chang, X.; Fu, X. Experimental Study on the Influence of Structural Planes on Rockbursts in Deep-Buried Hard-Rock Tunnels. Rock Mech. Rock Eng. 2024, 57, 8057–8080. [Google Scholar] [CrossRef]
- Su, G.; Yan, X.; Jiang, J. Influence of Weak Dynamic Disturbances on Rockburst Occurring in the Borehole Containing a Small-Scale Single Structural Plane: An Experimental Study. Rock Mech. Rock Eng. 2024, 57, 5997–6030. [Google Scholar] [CrossRef]
- Chimunhu, P.; Faradonbeh, R.S.; Topal, E.; Asad, M.W.A.; Ajak, A.D. Development of Novel Hybrid Intelligent Predictive Models for Dilution Prediction in Underground Sub-level Mining. Min. Metall. Explor. 2024, 41, 2079–2098. [Google Scholar] [CrossRef]
- Fissha, Y.; Khatti, J.; Ikeda, H.; Grover, K.S.; Owada, N.; Toriya, H.; Kawamura, Y. Predicting ground vibration during rock blasting using relevance vector machine improved with dual kernels and metaheuristic algorithms. Sci. Rep. 2024, 14, 20026. [Google Scholar] [CrossRef]
- Kamran, M.; Jiskani, I.M.; Wang, Z.; Zhou, W. Decision intelligence-driven predictive modeling of air quality index in surface mining. Eng. Appl. Artif. Intell. 2024, 133, 108399. [Google Scholar] [CrossRef]
- Kamran, M.; Wattimena, R.K.; Armaghani, D.J.; Asteris, P.G.; Jiskani, I.M.; Mohamad, E.T. Intelligent based decision-making strategy to predict fire intensity in subsurface engineering environments. Process Saf. Environ. Prot. 2023, 171, 374–384. [Google Scholar] [CrossRef]
- Mahmoodzadeh, A.; Nejati, H.R.; Mohammadi, M.; Mohammed, A.S.; Ibrahim, H.H.; Rashidi, S. Numerical and Machine learning modeling of hard rock failure induced by structural planes around deep tunnels. Eng. Fract. Mech. 2022, 271, 108648. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, F.; Gong, G.; Yang, H.; Han, D. Intelligent technologies for construction machinery using data-driven methods. Autom. Constr. 2023, 147, 104711. [Google Scholar] [CrossRef]
- Kamran, M.; Ullah, B.; Ahmad, M.; Sabri, M.M.S. Application of KNN-based isometric mapping and fuzzy c-means algorithm to predict short-term rockburst risk in deep underground projects. Front. Public Health 2022, 10, 1023890. [Google Scholar] [CrossRef]
- Feng, T.; Chen, B.R.; Zhang, C.Q.; Li, S.J.; Wu, S.Y. Mechanism, Warning and Dynamic Control of Rockburst Development Processes; Science Press: Beijing, China, 2013. (In Chinese) [Google Scholar]
- Liang, W.; Sari, A.; Zhao, G.; McKinnon, S.D.; Wu, H. Short-term rockburst risk prediction using ensemble learning methods. Nat. Hazards 2020, 104, 1923–1946. [Google Scholar] [CrossRef]
- Liu, W.; Zhao, T.; Zhou, W.; Tang, J. Safety risk factors of metro tunnel construction in China: An integrated study with EFA and SEM. Saf. Sci. 2018, 105, 98–113. [Google Scholar] [CrossRef]
- Samigulina, G.A.; Samigulina, Z.I. Modified immune network algorithm based on the Random Forest approach for the complex objects control. Artif. Intell. Rev. 2019, 52, 2457–2473. [Google Scholar] [CrossRef]
- Yun, H.B.; Park, S.H.; Mehdawi, N.; Mokhtari, S.; Chopra, M.; Reddi, L.N.; Park, K.T. Monitoring for close proximity tunneling effects on an existing tunnel using principal component analysis technique with limited sensor data. Tunneling Undergr. Space Technol. 2014, 43, 398–412. [Google Scholar] [CrossRef]
- Kumari, R.; Raman, R. Regional disparities in healthcare services in Uttar Pradesh, India: A principal component analysis. GeoJournal 2022, 87, 5027–5050. [Google Scholar] [CrossRef]
- Çağlar, M.; Gürler, C. Sustainable Development Goals: A cluster analysis of worldwide countries. Environ. Dev. Sustain. 2022, 24, 8593–8624. [Google Scholar] [CrossRef]
- Kamran, M.; Chaudhry, W.; Wattimena, R.K.; Rehman, H.; Martyushev, D.A. A multi-criteria decision intelligence framework to predict fire danger ratings in underground engineering structures. Fire 2023, 6, 412. [Google Scholar] [CrossRef]
- Kamran, M.; Shahani, N.M.; Armaghani, D.J. Decision support system for underground coal pillar stability using unsupervised and supervised machine learning approaches. Geomech. Eng. 2022, 30, 107–121. [Google Scholar]
- Freund, Y.; Schapire, R.; Abe, N. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 1999, 14, 1612. [Google Scholar]
- Schapire, R.E. The strength of weak learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef]
- Shahani, N.M.; Kamran, M.; Zheng, X.; Liu, C.; Guo, X. Application of gradient boosting machine learning algorithms to predict uniaxial compressive strength of soft sedimentary rocks at Thar Coalfield. Adv. Civ. Eng. 2021, 2021, 2565488. [Google Scholar] [CrossRef]
Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Level |
---|---|---|---|---|---|---|
41 | 3.727 | 4.694 | 3.653 | 4.926 | 5.968 | 3 |
14 | 1.556 | 4.622 | 3.668 | 4.887 | 5.841 | 2 |
17 | 1.889 | 4.397 | 3.443 | 3.8 | 4.754 | 2 |
18 | 1.8 | 4.703 | 3.703 | 4.295 | 5.295 | 2 |
10 | 1.429 | 4.238 | 3.393 | 4.477 | 5.322 | 2 |
Z1 | Z2 | Z3 | Z4 | Z5 | Z6 | Level | |
---|---|---|---|---|---|---|---|
count | 93 | 93 | 93 | 93 | 93 | 93 | 93 |
mean | 13.01075 | 1.735226 | 4.150409 | 3.333484 | 3.562011 | 4.389312 | 1.182796 |
std | 13.76392 | 1.747702 | 0.663163 | 0.591343 | 1.33905 | 1.448699 | 1.082933 |
min | 1 | 0.111 | 2.511 | 1.666 | 0.178 | 0.78 | 0 |
25% | 4 | 0.75 | 3.728 | 2.964 | 2.882 | 3.882 | 0 |
50% | 8 | 1.222 | 4.251 | 3.477 | 3.744 | 4.619 | 1 |
75% | 17 | 2 | 4.681 | 3.758 | 4.602 | 5.322 | 2 |
max | 70 | 12.25 | 5.168 | 4.393 | 5.89 | 7.094 | 3 |
Precision | Recall | f1-Score | Support | |
---|---|---|---|---|
0 | 1 | 1 | 1 | 7 |
1 | 0.6 | 1 | 0.75 | 3 |
2 | 1 | 0.6 | 0.75 | 5 |
3 | 1 | 1 | 1 | 4 |
accuracy | 0.894737 | 0.894737 | 0.894737 | 0.894737 |
macro avg | 0.9 | 0.9 | 0.875 | 19 |
weighted avg | 0.936842 | 0.894737 | 0.894737 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamran, M.; Faizan, M.; Wang, S.; Han, B.; Wang, W.-Y. Generative AI and Prompt Engineering: Transforming Rockburst Prediction in Underground Construction. Buildings 2025, 15, 1281. https://doi.org/10.3390/buildings15081281
Kamran M, Faizan M, Wang S, Han B, Wang W-Y. Generative AI and Prompt Engineering: Transforming Rockburst Prediction in Underground Construction. Buildings. 2025; 15(8):1281. https://doi.org/10.3390/buildings15081281
Chicago/Turabian StyleKamran, Muhammad, Muhammad Faizan, Shuhong Wang, Bowen Han, and Wei-Yi Wang. 2025. "Generative AI and Prompt Engineering: Transforming Rockburst Prediction in Underground Construction" Buildings 15, no. 8: 1281. https://doi.org/10.3390/buildings15081281
APA StyleKamran, M., Faizan, M., Wang, S., Han, B., & Wang, W.-Y. (2025). Generative AI and Prompt Engineering: Transforming Rockburst Prediction in Underground Construction. Buildings, 15(8), 1281. https://doi.org/10.3390/buildings15081281