Comparative Life Cycle Assessment of Warehouse Construction Systems Under Distinct End-of-Life Scenarios
Abstract
:1. Introduction
2. Life Cycle Assessment
3. Materials and Methods
- Steel Walls (SW): galvanized steel walls;
- Steel Clay Brick Walls (SClaW): walls made of clay brick (3 m) and galvanised steel (2 m);
- Steel Concrete Block Walls (SConW): concrete block masonry walls (3 m) and galvanized steel (2 m).
Conducting the Life Cycle Assessment
4. Results
4.1. Midpoint Impacts
4.1.1. Pre-Operational and Operational Stage
4.1.2. Post-Operational Stage
4.1.3. Whole Life Cycle
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Silva, E.N.D.; De Brito Mello, L.C.B.; Pinto, G.O. Challenges for Lean Construction Adoption in the Brazilian Industry: A Study in Construction Companies, Universities and Class Organizations. Constr. Innov. 2022, 23, 1130–1150. [Google Scholar] [CrossRef]
- Habiba, U.; Xinbang, C. The Impact of Financial Development on CO2 Emissions: New Evidence from Developed and Emerging Countries. Environ. Sci. Pollut. Res. 2022, 29, 31453–31466. [Google Scholar] [CrossRef] [PubMed]
- Cabeza, L.F.; Rincón, L.; Vilariño, V.; Pérez, G.; Castell, A. Life Cycle Assessment (LCA) and Life Cycle Energy Analysis (LCEA) of Buildings and the Building Sector: A Review. Renew. Sustain. Energy Rev. 2014, 29, 394–416. [Google Scholar] [CrossRef]
- Asif, M.; Muneer, T.; Kelley, R. Life Cycle Assessment: A Case Study of a Dwelling Home in Scotland. Build. Environ. 2007, 42, 1391–1394. [Google Scholar] [CrossRef]
- Abd Rashid, A.; Idris, J.; Yusoff, S. Environmental Impact Analysis on Residential Building in Malaysia Using Life Cycle Assessment. Sustainability 2017, 9, 329. [Google Scholar] [CrossRef]
- Peuportier, B. Life Cycle Assessment Applications in the Building Sector. Int. J. Environ. Technol. Manag. 2008, 9, 334. [Google Scholar] [CrossRef]
- Gervasio, H.; Dimova, S.; Pinto, A. Benchmarking the Life-Cycle Environmental Performance of Buildings. Sustainability 2018, 10, 1454. [Google Scholar] [CrossRef]
- Cuéllar-Franca, R.M.; Azapagic, A. Environmental Impacts of the UK Residential Sector: Life Cycle Assessment of Houses. Build. Environ. 2012, 54, 86–99. [Google Scholar] [CrossRef]
- Gong, Y.; Tae, S.; Suk, S.; Chae, C.; Ford, G.; Smith, M.E.; Steffen, R. Life Cycle Assessment Applied to Green Building Certification in South Korea. Procedia Eng. 2015, 118, 1309–1313. [Google Scholar] [CrossRef]
- Vieira Neto, J.; Farias Filho, J.R.D. Sustainability in the Civil Construction Industry: An Exploratory Study of Life Cycle Analysis Methods. Int. J. Environ. Technol. Manag. 2013, 16, 420. [Google Scholar] [CrossRef]
- Cabeza, L.F.; Bai, Q.; Bertoldi, P.; Kihila, J.M.; Lucena, A.F.P.; Mata, É.; Mirasgedis, S.; Novikova, A.; Saheb, Y. Buildings. In Climate Change 2022—Mitigation of Climate Change; Intergovernmental Panel on Climate Change (IPCC), Ed.; Cambridge University Press: Cambridge, UK, 2023; pp. 953–1048. ISBN 978-1-00-915792-6. [Google Scholar]
- Bilec, M.M.; Ries, R.J.; Matthews, H.S. Life-Cycle Assessment Modeling of Construction Processes for Buildings. J. Infrastruct. Syst. 2010, 16, 199–205. [Google Scholar] [CrossRef]
- de Lassio, J.; França, J.; Espirito Santo, K.; Haddad, A. Case Study: LCA Methodology Applied to Materials Management in a Brazilian Residential Construction Site. J. Eng. 2016, 2016, 8513293. [Google Scholar] [CrossRef]
- Gonçalves de Lassio, J.G.; Naked Haddad, A. Life Cycle Assessment of Building Construction Materials: Case Study for a Housing Complex. Rev. Constr. 2016, 15, 69–77. [Google Scholar] [CrossRef]
- Singh, A.; Berghorn, G.; Joshi, S.; Syal, M. Review of Life-Cycle Assessment Applications in Building Construction. J. Archit. Eng. 2011, 17, 15–23. [Google Scholar] [CrossRef]
- Al-Ghamdi, S.G.; Bilec, M.M. Green Building Rating Systems and Whole-Building Life Cycle Assessment: Comparative Study of the Existing Assessment Tools. J. Archit. Eng. 2017, 23, 04016015. [Google Scholar] [CrossRef]
- de Barba, D.J.; Gomes, J.d.O.; de Lacerda, J.F.S.B. Sustainability Assessment in Conventional and Industrialized Systems Built in Brazil. Procedia CIRP 2015, 29, 144–149. [Google Scholar] [CrossRef]
- du Plessis, C. Agenda 21 for Sustainable Construction in Developing Countries: A Discussion Document; CIB&UNEP-IETC, CSIR Building and Construction Technology: Pretoria, South Africa, 2002; ISBN 0-7988-5540-1. [Google Scholar]
- Martínez, F.J.; González-Vidosa, F.; Hospitaler, A.; Yepes, V. Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Comput. Struct. 2010, 88, 375–386. [Google Scholar] [CrossRef]
- Yepes, V.; Torres-Machí, C.; Chamorro, A.; Pellicer, E. Optimal Pavement Maintenance Programs Based on a Hybrid Greedy Randomized Adaptive Search Procedure Algorithm. J. Civ. Eng. Manag. 2016, 22, 540–550. [Google Scholar] [CrossRef]
- Salas, J.; Yepes, V. Urban Vulnerability Assessment: Advances from the Strategic Planning Outlook. J. Clean. Prod. 2018, 179, 544–558. [Google Scholar] [CrossRef]
- Navarro, I.J.; Yepes, V.; Martí, J.V. A Review of Multicriteria Assessment Techniques Applied to Sustainable Infrastructure Design. Adv. Civ. Eng. 2019, 2019, 6134803. [Google Scholar] [CrossRef]
- ISO 14040; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 14044; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization: Geneva, Switzerland, 2006.
- Andrews, E.S.; Barthel, L.-P.; Tabea, B.; Benoît, C.; Ciroth, A.; Cucuzzella, C.; Gensch, C.-O.; Hébert, J.; Lesage, P.; Manhart, A.; et al. Guidelines for Social Life Cycle Assessment of Products; Benoît, C., Mazijn, B., Eds.; UNEP/SETAC Life Cycle Initiative: Paris, France, 2009; ISBN 978-92-807-3021-0. [Google Scholar]
- Evangelista, P.P.A.; Kiperstok, A.; Torres, E.A.; Goncalves, J.P. Environmental Performance Analysis of Residential Buildings in Brazil Using Life Cycle Assessment (LCA). Constr. Build. Mater. 2018, 169, 748–761. [Google Scholar] [CrossRef]
- Morales, M.; Moraga, G.; Kirchheim, A.P.; Passuello, A. Regionalized Inventory Data in LCA of Public Housing: A Comparison between Two Conventional Typologies in Southern Brazil. J. Clean. Prod. 2019, 238, 117869. [Google Scholar] [CrossRef]
- Muneron, L.M.; Hammad, A.W.; Najjar, M.K.; Haddad, A.; Vazquez, E.G. Comparison of the Environmental Performance of Ceramic Brick and Concrete Blocks in the Vertical Seals’ Subsystem in Residential Buildings Using Life Cycle Assessment. Clean. Eng. Technol. 2021, 5, 100243. [Google Scholar] [CrossRef]
- Paulsen, J.S.; Sposto, R.M. A Life Cycle Energy Analysis of Social Housing in Brazil: Case Study for the Program “MY HOUSE MY LIFE”. Energy Build. 2013, 57, 95–102. [Google Scholar] [CrossRef]
- Vitorio Junior, P.C.; Yepes, V.; Kripka, M. Comparison of Brazilian Social Interest Housing Projects Considering Sustainability. Int. J. Environ. Res. Public Health 2022, 19, 6213. [Google Scholar] [CrossRef] [PubMed]
- Boysen, N.; De Koster, R.; Weidinger, F. Warehousing in the E-Commerce Era: A Survey. Eur. J. Oper. Res. 2019, 277, 396–411. [Google Scholar] [CrossRef]
- Dubey, S.; Singh, A.; Kushwah, S.S. Utilization of Iron and Steel Slag in Building Construction. AIP Conf. Proc. 2019, 2158, 020032. [Google Scholar]
- Rai, D.; Sodagar, B.; Fieldson, R.; Hu, X. Assessment of CO2 Emissions Reduction in a Distribution Warehouse. Energy 2011, 36, 2271–2277. [Google Scholar] [CrossRef]
- Burek, J.; Nutter, D. Life Cycle Assessment of Grocery, Perishable, and General Merchandise Multi-Facility Distribution Center Networks. Energy Build. 2018, 174, 388–401. [Google Scholar] [CrossRef]
- Burek, J.; Nutter, D.W. A Life Cycle Assessment-Based Multi-Objective Optimization of the Purchased, Solar, and Wind Energy for the Grocery, Perishables, and General Merchandise Multi-Facility Distribution Center Network. Appl. Energy 2019, 235, 1427–1446. [Google Scholar] [CrossRef]
- Burek, J.; Nutter, D.W. Environmental Implications of Perishables Storage and Retailing☆. Renew. Sustain. Energy Rev. 2020, 133, 110070. [Google Scholar] [CrossRef]
- Mutlu Ozturk, H.; Dombayci, O.A.; Caliskan, H. Life-Cycle Cost, Cooling Degree Day, and Carbon Dioxide Emission Assessments of Insulation of Refrigerated Warehouses Industry in Turkey. J. Environ. Eng. 2019, 145, 04019062. [Google Scholar] [CrossRef]
- Iancu, I.E.; Moga, L.M. Life Cycle Analysis of Warehouse-Type Constructions. In Proceedings of the 2022: CLIMA 2022 The 14th REHVA HVAC World Congress, Rotterdam, The Netherlands, 22–25 May 2022. [Google Scholar]
- Kyaw, K.S.; Fufa, S.M.; Kraniotis, D. Adaptive Reuse of Industrial Heritage Building—Comparative Life Cycle Assessment Using a Case Study in Norway. IOP Conf. Ser. Earth Environ. Sci. 2023, 1196, 012107. [Google Scholar] [CrossRef]
- Luo, Y.; Tang, X.; Geng, L.; Yao, X.; Li, F.; Li, X.; Wang, Q. A Comprehensive Life Cycle Carbon Footprint Assessment Model for Electric Power Material Warehouses. Energies 2024, 17, 6352. [Google Scholar] [CrossRef]
- Vitorio Junior, P.C.; Costa, M.S. Environmental Assessment of Steel Warehouse: A Case Study in Pato Branco, Brazil. CLCS 2024, 17, e13990. [Google Scholar] [CrossRef]
- Remmen, A.; Jensen, A.A.; Frydendal, J. Life Cycle Management—A Business Guide to Sustainability; UNEP DTIE: Paris, France, 2007; ISBN 978-92-807-2772-2. [Google Scholar]
- Hossain, M.U.; Poon, C.S.; Dong, Y.H.; Lo, I.M.C.; Cheng, J.C.P. Development of Social Sustainability Assessment Method and a Comparative Case Study on Assessing Recycled Construction Materials. Int. J. Life Cycle Assess. 2018, 23, 1654–1674. [Google Scholar] [CrossRef]
- Allacker, K.; de Souza, D.M.; Sala, S. Land Use Impact Assessment in the Construction Sector: An Analysis of LCIA Models and Case Study Application. Int. J. Life Cycle Assess. 2014, 19, 1799–1809. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldassarri, C.; Fthenakis, V. Life Cycle Analysis in the Construction Sector: Guiding the Optimisation of Conventional Italian Buildings. Energy Build. 2013, 64, 73–89. [Google Scholar] [CrossRef]
- Dossche, C.; Boel, V.; De Corte, W. Use of Life Cycle Assessments in the Construction Sector: Critical Review. Procedia Eng. 2017, 171, 302–311. [Google Scholar] [CrossRef]
- Vasishta, T.; Hashem Mehany, M.; Killingsworth, J. Comparative Life Cycle Assesment (LCA) and Life Cycle Cost Analysis (LCCA) of Precast and Cast-in-Place Buildings in United States. J. Build. Eng. 2023, 67, 105921. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. A Social Life Cycle Assessment Model for Building Construction in Hong Kong. Int. J. Life Cycle Assess. 2015, 20, 1166–1180. [Google Scholar] [CrossRef]
- Zampori, L.; Saouter, E.; Castellani, V.; Schau, E.; Cristobal, J.; Sala, S. Guide for Interpreting Life Cycle Assessment Result. Available online: https://op.europa.eu/en/publication-detail/-/publication/6447e6c6-c8dd-11e6-a6db-01aa75ed71a1/language-en (accessed on 19 February 2020).
- Russell-Smith, S.V.; Lepech, M.D. Cradle-to-Gate Sustainable Target Value Design: Integrating Life Cycle Assessment and Construction Management for Buildings. J. Clean. Prod. 2015, 100, 107–115. [Google Scholar] [CrossRef]
- Olinzock, M.A.; Landis, A.E.; Saunders, C.L.; Collinge, W.O.; Jones, A.K.; Schaefer, L.A.; Bilec, M.M. Life Cycle Assessment Use in the North American Building Community: Summary of Findings from a 2011/2012 Survey. Int. J. Life Cycle Assess. 2015, 20, 318–331. [Google Scholar] [CrossRef]
- Dong, Y.H.; Ng, S.T. Comparing the Midpoint and Endpoint Approaches Based on ReCiPe—A Study of Commercial Buildings in Hong Kong. Int. J. Life Cycle Assess. 2014, 19, 1409–1423. [Google Scholar] [CrossRef]
- Lee, K.; Tae, S.; Shin, S. Development of a Life Cycle Assessment Program for Building (SUSB-LCA) in South Korea. Renew. Sustain. Energy Rev. 2009, 13, 1994–2002. [Google Scholar] [CrossRef]
- Brookes, A.; Meijs, M. Cladding of Buildings, 4th ed.; Taylor & Francis: London, UK, 2008; ISBN 978-0-203-09978-0. [Google Scholar]
- ASTM A36/A36-19; Specification for Carbon Structural Steel. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM A572/A572-21e1; Specification for High-Strength Low-Alloy Columbium-Vanadium Structural Steel. ASTM International: West Conshohocken, PA, USA, 2017.
- ABNT NBR 14513; Corrugated and Trapezoidal Steel Roof Tiles—Requirements. Brazilian Association of Technical Standards: Rio de Janeiro, RJ, Brazil, 2022.
- ABNT NBR 8800; Design of Steel Structures and Mixed Steel and Concrete Building Struct. Brazilian Association of Technical Standards: Rio de Janeiro, RJ, Brazil, 2008.
- ABNT NBR 14762; Cold-Formed Steel Sections—Design. Brazilian Association of Technical Standards: Rio de Janeiro, RJ, Brazil, 2010.
- ABNT NBR 6120; Loads for Calculating Building Structures. Brazilian Association of Technical Standards: Rio de Janeiro, RJ, Brazil, 2019.
- ABNT NBR 6123; Wind Forces on Buildings. Brazilian Association of Technical Standards: Rio de Janeiro, RJ, Brazil, 2023.
- ABNT NBR 15575-1; Residential Buildings—Performance. Brazilian Association of Technical Standards: Rio de Janeiro, RJ, Brazil, 2024.
- CONAMA Number 307; Establishes Directives. Criteria and Procedures of Wastes from Building Construction. Brazilian National Environment Council: Federal District, DF, Brazil, 2002.
- Vilčeková, S.; Mésároš, P.; Burdová, E.K.; Budajová, J. End-of-Life Stage Analysis of Building Materials in Relation to Circular Construction. Eng. Proc. 2023, 57, 43. [Google Scholar] [CrossRef]
- Broadbent, C. Steel’s Recyclability: Demonstrating the Benefits of Recycling Steel to Achieve a Circular Economy. Int. J. Life Cycle Assess. 2016, 21, 1658–1665. [Google Scholar] [CrossRef]
- Zanelli, C.; Marrocchino, E.; Guarini, G.; Toffano, A.; Vaccaro, C.; Dondi, M. Recycling Construction and Demolition Residues in Clay Bricks. Appl. Sci. 2021, 11, 8918. [Google Scholar] [CrossRef]
- Marsh, A.T.M.; Velenturf, A.P.M.; Bernal, S.A. Circular Economy Strategies for Concrete: Implementation and Integration. J. Clean. Prod. 2022, 362, 132486. [Google Scholar] [CrossRef]
- Bahramian, M.; Yetilmezsoy, K. Life Cycle Assessment of the Building Industry: An Overview of Two Decades of Research (1995–2018). Energy Build. 2020, 219, 109917. [Google Scholar] [CrossRef]
- Duan, Z.; Huang, Q.; Zhang, Q. Life Cycle Assessment of Mass Timber Construction: A Review. Build. Environ. 2022, 221, 109320. [Google Scholar] [CrossRef]
- Scolaro, T.P.; Ghisi, E. Life Cycle Assessment of Green Roofs: A Literature Review of Layers Materials and Purposes. Sci. Total Environ. 2022, 829, 154650. [Google Scholar] [CrossRef] [PubMed]
- Aryan, Y.; Dikshit, A.K.; Shinde, A.M. A Critical Review of the Life Cycle Assessment Studies on Road Pavements and Road Infrastructures. J. Environ. Manag. 2023, 336, 117697. [Google Scholar] [CrossRef] [PubMed]
- Milić, I.; Bleiziffer, J. Life Cycle Assessment of the Sustainability of Bridges: Methodology, Literature Review and Knowledge Gaps. Front. Built Environ. 2024, 10, 1410798. [Google Scholar] [CrossRef]
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Industry and Environment Office; United Nations Environment Programme. Environmental Aspects of Iron and Steel Production: An Overview, 1st ed.; UNEP Industry and Environment Overview Series; UNEP Industry and Environment Office, Ed.; United Nations Environment Programme: Paris, France, 1984; ISBN 978-92-807-1078-6. [Google Scholar]
- International Iron and Steel Institute; United Nations Environment Programme. Steel Industry and the Environment: Technical and Management Issues; Technical Report Series/United Nations Environment Programme; UNEP, Ed.; IISI: Brussels, Belgium, 1997; ISBN 978-92-807-1651-1. [Google Scholar]
- McMichael, A.J.; Woodruff, R.E.; Hales, S. Climate Change and Human Health: Present and Future Risks. Lancet 2006, 367, 859–869. [Google Scholar] [CrossRef]
Project | Material | Weight (kg) |
---|---|---|
Steel Walls (SW) | Steel Tile | 2500.78 |
Steel Clay Brick Walls (SClaW) | Steel Tile | 1190.85 |
Clay Brick | 17,503.33 | |
Cement Mortar | 10,860.95 | |
Steel Concrete Block (SconW) | Steel Tile | 1190.85 |
Concrete Block | 51,102.57 | |
Cement Mortar | 11,235.08 |
Project | Post-Operational Scenarios | ||
---|---|---|---|
Material | Scenario 1 | Scenario 2 | |
Steel Walls (SW) | Steel Tile | Sanitary landfill | Recycling |
Steel Clay Brick Walls (SClaW) | Steel Tile | Sanitary landfill | Recycling |
Clay Brick | Inert landfill | Recycling | |
Cement Mortar | Inert landfill | Recycling | |
Steel Concrete Block (SconW) | Steel Tile | Sanitary landfill | Recycling |
Concrete Block | Inert landfill | Recycling | |
Cement Mortar | Inert landfill | Recycling |
Material | SimaPro Process |
---|---|
Steel Tile | Steel, low-alloyed, hot rolled {GLO}|market for steel, low-alloyed, hot rolled|Cut-off, U |
Clay Brick | Clay brick {RoW}|market for clay brick|Cut-off, U |
Cement Mortar | Cement mortar {RoW}|market for cement mortar|Cut-off, U |
Concrete Block | Concrete block {BR}|market for concrete block|Cut-off, U |
Sanitary Landfill | Residues, MSWI, municipal solid waste {RoW}|market for residues, MSWI, municipal solid waste|Cut-off, U |
Inert Landfill | Inert waste, for final disposal {RoW}|market for inert waste, for final disposal|Cut-off, U |
Steel Tile Recycling | Waste reinforcement steel {RoW}|market for waste reinforcement steel|Cut-off, U |
Clay Brick Recycling | Waste brick {RoW}|market for waste brick|Cut-off, U |
Concrete Block Recycling | Waste concrete, not reinforced {RoW}|market for waste concrete, not reinforced|Cut-off, U |
Cement Mortar Recycling | Waste cement in concrete and mortar {RoW}|market for waste cement in concrete and mortar|Cut-off, U |
Impact Category | Unit | Total Scenario 1 | Total Scenario 2 | ||||
---|---|---|---|---|---|---|---|
SW | SClaW | SConW | SW | SClaW | SConW | ||
GWP | kg CO2 eq | 8.67% | 101.89% | 76.50% | 7823.752 | 98.34% | 72.66% |
ODP | kg CFC11 eq | 2.60% | 78.23% | 175.75% | 0.00126 | 78.62% | 176.45% |
IRP | kBq Co-60 eq | 2.68% | 34.35% | −4.03% | 221.576 | 33.85% | −4.54% |
HOFP | kg NOx eq | 2.72% | 123.44% | 158.96% | 18.596 | 126.17% | 165.47% |
PMFP | kg PM2.5 eq | 2.77% | 38.40% | 41.80% | 12.156 | 42.58% | 51.78% |
EOFP | kg NOx eq | 2.67% | 125.07% | 157.74% | 19.250 | 127.69% | 163.97% |
TAP | kg SO2 eq | 4.53% | 66.37% | 82.49% | 20.969 | 65.95% | 83.09% |
FEP | kg P eq | 133.59% | 59.23% | 42.89% | 3.982 | −3.33% | −19.49% |
MEP | kg N eq | 4.03% | −8.75% | −1.38% | 0.483 | −10.60% | −3.65% |
TETP | kg 1,4-DCB | 0.17% | −44.03% | −45.99% | 1,332,573.737 | −44.12% | −46.24% |
FETP | kg 1,4-DCB | 81.01% | 10.74% | 1.78% | 1035.039 | −24.34% | −32.23% |
METP | kg 1,4-DCB | 38.43% | −19.79% | −25.46% | 3026.062 | −36.42% | −41.59% |
HTPc | kg 1,4-DCB | 21.79% | −37.30% | −39.61% | 35,945.097 | −47.64% | −49.95% |
HTPnc | kg 1,4-DCB | 223.82% | 125.29% | 101.50% | 8610.104 | 34.16% | 15.24% |
LOP | m2a crop eq | 19.38% | 219.50% | 366.62% | 187.200 | 215.38% | 365.03% |
SOP | kg Cu eq | 0.59% | 48.37% | −43.79% | 337.158 | 48.12% | −44.08% |
FFP | kg oil eq | 4.38% | 87.89% | 49.15% | 1802.163 | 85.24% | 44.23% |
WCP | m3 | 3.16% | 1.08% | 31.92% | 73.829 | −12.72% | 10.49% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vitorio Junior, P.C.; Yepes, V.; Onetta, F.; Kripka, M. Comparative Life Cycle Assessment of Warehouse Construction Systems Under Distinct End-of-Life Scenarios. Buildings 2025, 15, 1445. https://doi.org/10.3390/buildings15091445
Vitorio Junior PC, Yepes V, Onetta F, Kripka M. Comparative Life Cycle Assessment of Warehouse Construction Systems Under Distinct End-of-Life Scenarios. Buildings. 2025; 15(9):1445. https://doi.org/10.3390/buildings15091445
Chicago/Turabian StyleVitorio Junior, Paulo Cezar, Víctor Yepes, Fabio Onetta, and Moacir Kripka. 2025. "Comparative Life Cycle Assessment of Warehouse Construction Systems Under Distinct End-of-Life Scenarios" Buildings 15, no. 9: 1445. https://doi.org/10.3390/buildings15091445
APA StyleVitorio Junior, P. C., Yepes, V., Onetta, F., & Kripka, M. (2025). Comparative Life Cycle Assessment of Warehouse Construction Systems Under Distinct End-of-Life Scenarios. Buildings, 15(9), 1445. https://doi.org/10.3390/buildings15091445