Exploring Research Fields in Green Buildings and Urban Green Spaces for Carbon-Neutral City Development
Abstract
:1. Introduction
2. Literature Review
2.1. Green Buidlings
2.2. Urban Green Space
2.3. Towards Carbon Neutrality: The Role of Green Buildings and Urban Green Spaces
3. Materials and Methods
3.1. Data Collection
3.2. Methods
4. Results
4.1. Keyword Analysis
4.2. Cluster Analysis
4.3. Research Fields of Both Green Building and Urban Green Space
5. Discussion
5.1. Research Trends of Both Green Buildings and Urban Green Space
5.2. Possible Shortcut Towards a Carbon-Neutral Transition: Existing Building Stock
5.3. Discovering a New Type of Urban Green Space: The Evolving Green Building
6. Conclusions and Limitations
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Ren, Z.; Peng, Z.; Yang, J.; Chen, Z.; Deng, Z. Impacts of climate change and building energy efficiency improvement on city-scale building energy consumption. J. Build. Eng. 2023, 78, 107646. [Google Scholar] [CrossRef]
- Barnett, J.; Adger, W.N. Climate Dangers and Atoll Countries. Clim. Chang. 2023, 61, 321–337. [Google Scholar] [CrossRef]
- Evro, S.; Oni, B.A.; Tomomewo, O.S. Global strategies for a low-carbon future: Lessons from the US, China, and EU’s pursuit of carbon neutrality. J. Clean. Prod. 2024, 461, 142635. [Google Scholar] [CrossRef]
- Bian, Q. Waste heat: The dominating root cause of current global warming. Environ. Syst. Res. 2020, 9, 8. [Google Scholar] [CrossRef]
- Bian, Q. The Nature of Climate Change- equivalent Climate Change Model’s Application in Decoding the Root Cause of Global Warming. Int. J. Environ. Clim. 2019, 9, 801–822. [Google Scholar] [CrossRef]
- Oke, T.R.; Mills, G.; Cristen, A.; Voogt, J.A. Urban Climate; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Geletič, J.; Lehnert, M.; Resler, J.; Krč, P.; Bureš, M.; Urban, A.; Krayenhoff, E.S. Heat exposure variations and mitigation in a densely populated neighborhood during a hot day: Towards a people-oriented approach to urban climate management. Build. Environ. 2023, 242, 110564. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- United Nations. World Urbanization Prospects: The 2018 Revision, Key Facts; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Bastin, J.F.; Clark, E.; Elliott, T.; Hart, S.; Van den Hoogen, J.; Hordijk, I.; Ma, H.; Majumder, S.; Manoli, G.; Maschler, J.; et al. Understanding climate change from a global analysis of city analogues. PLoS ONE 2019, 14, e0224120. [Google Scholar]
- Short, J.R.; Farmer, A. Cities and Climate Change. Earth 2021, 2, 1038–1045. [Google Scholar] [CrossRef]
- European Union. EU Missons: 100 Climate Neutral and Smart Cities; Publications Office of the European Union: Luxembourg; European Union: Luxembourg, 2024. [Google Scholar]
- Pan, H.; Page, J.; Shi, R.; Cong, C.; Cai, Z.; Barthel, S.; Thollander, P.; Colding, J.; Kalantari, Z. Contribution of prioritized urban nature-based solutions allocation to carbon neutrality. Nat. Clim. Chang. 2023, 13, 862–870. [Google Scholar] [CrossRef]
- Dahal, K.; Juhola, S.; Niemelä, J. The role of renewable energy policies for carbon neutrality in Helsinki Metropolitan area. Sustain. Cities Soc. 2018, 40, 222–232. [Google Scholar] [CrossRef]
- Tattini, J.; Gargiulo, M.; Karlsson, K. Reaching carbon neutral transport sector in Denmark—Evidence from the incorporation of modal shift into the TIMES energy system modeling framework. Energ. Policy 2018, 113, 571–583. [Google Scholar] [CrossRef]
- Energy Transitions Commission. Achieving Zero-Carbon Buildings: Electric, Efficient and Flexible; Energy Transitions Commission: London, UK, 2025. [Google Scholar]
- Architecture 2030. Available online: https://www.architecture2030.org (accessed on 31 March 2025).
- World Green Building Council. WorldGBC Advancing Net Zero Status Report; World Green Building Council: London, UK, 2022. [Google Scholar]
- Myint, N.N.; Shafique, M.; Zhou, X.; Zheng, Z. Net zero carbon buildings: A review on recent advances, knowledge gaps and research directions. Case Stud. Constr. Mater. 2025, 22, e04200. [Google Scholar] [CrossRef]
- Griscom, B.W.; Adams, J.; Ellis, P.W.; Fargione, J. Natural climate solutions. Nat. Clim. Chang. 2017, 114, 11645–11650. [Google Scholar] [CrossRef]
- Keith, H.; Vardon, M.; Obst, C.; Young, V.; Houghton, R.A.; Mackey, B. Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Sci. Total Environ. 2021, 769, 144341. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilizing green and bluespace to mitigate urban heat island intensity. Sci. Total. Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Lee, K.; Hong, J.W.; Kim, J.; Jo, S.; Hong, J. Traces of urban forest in temperature and CO2 signals in monsoon East Asia. Atmos. Chem. Phys. 2021, 21, 17833–17853. [Google Scholar] [CrossRef]
- Peng, L.L.; Jiang, Z.; Yang, X.; He, Y.; Xu, T.; Chen, S.S. Cooling effects of block-scale facade greening and their relationship with urban form. Build Environ. 2020, 169, 106552. [Google Scholar] [CrossRef]
- O’Malley, C.; Kikumoto, H. An investigation into heat storage by adopting local climate zones and nocturnal-diurnal urban heat island differences in the Tokyo prefecture. Sustain. Cities Soc. 2022, 83, 103959. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Aghamohammadi, N. The Application of Nature-Based Solutions for Urban Heat Island Mitigation in Asia: Progress, Challenges, and Recommendations. Curr. Environ. Health Rpt. 2024, 11, 4–17. [Google Scholar] [CrossRef]
- Augusto, B.; Roebeling, P.; Rafael, S.; Ferreira, J.; Ascenso, A.; Bodilis, C. Short and medium-to long-term impacts of nature-based solutions on urban heat. Sustain. Cities Soc. 2020, 57, 102122. [Google Scholar] [CrossRef]
- Girardin, C.A.; Jenkins, S.; Seddon, N.; Allen, M.; Lewis, S.L.; Wheeler, C.E.; Griscom, B.W.; Malhi, Y. Nature-based solutions can help cool the planet—If we act now. Nature 2021, 593, 191–194. [Google Scholar] [CrossRef]
- Hayes, A.T.; Jandaghian, Z.; Lacasse, M.A.; Gaur, A.; Lu, H.; Laouadi, A.; Ge, H.; Wang, L. Nature-Based Solutions (NBSs) to Mitigate Urban Heat Island (UHI) Effects in Canadian Cities. Buildings 2022, 12, 925. [Google Scholar] [CrossRef]
- Xing, Y.; Jones, P.; Donnison, I. Characterisation of Nature-Based Solutions for the Built Environment. Sustainability 2017, 9, 149. [Google Scholar] [CrossRef]
- Besir, A.B.; Cuce, E. Green roofs and facades: A comprehensive review. Renew. Sustain. Energy. Rev. 2018, 82, 915–939. [Google Scholar] [CrossRef]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Evaluation of green infrastructure effects on tropical Sri Lankan urban context as an urban heat island adaptation strategy. Urban. For. Urban. Gree 2018, 29, 212–222. [Google Scholar] [CrossRef]
- Fan, C.; Tian, L.; Zhou, L.; Hou, D.; Song, Y.; Qiao, X.; Li, J. Examining the impacts of urban form on air pollutant emissions: Evidence from China. J. Environ. Manag. 2018, 212, 405–414. [Google Scholar] [CrossRef]
- Mahtta, R.; Mahendra, A.; Seto, K.C. Building up or spreading out? typologies of urban growth across 478 cities of 1 million+. Environ. Res. Lett. 2019, 14, 124077. [Google Scholar] [CrossRef]
- She, Q.; Peng, X.; Xu, Q.; Long, L.; Wei, N.; Liu, M.; Xiang, W. Air quality and its response to satellite-derived urban form in the Yangtze River Delta, China. Ecol. Indic. 2017, 75, 297–306. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Li, Y.; Schubert, S.; Kropp, J.P.; Rybski, D. On the influence of density and morphology on the Urban Heat Island intensity. Nat. Commun. 2020, 11, 2647. [Google Scholar] [CrossRef]
- Sarker, T.; Fan, P.; Messina, J.P.; Mujahid, N.; Aldrian, E.; Chen, J. Impact of Urban built-up volume on Urban environment: A Case of Jakarta. Sustain. Cities Soc. 2024, 105, 105346. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Kremer, P.; Larondelle, N.; McPhearson, T.; Haase, D. Classification of the heterogeneous structure of urban landscapes (STURLA) as an indicator of landscape function applied to surface temperature in New York City. Ecol. Indic. 2016, 70, 574–585. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, Y.; Ren, Y. Green space-building integration for Urban Heat Island mitigation: Insights from Beijing’s fifth ring road district. Sustain. Cities Soc. 2024, 116, 105917. [Google Scholar] [CrossRef]
- He, Y.; Yu, H.; Ozaki, A.; Dong, N.; Zheng, S. A detailed investigation of thermal behavior of green envelope under urban canopy scale in summer: A case study in Shanghai area. Energy Build. 2017, 148, 142–154. [Google Scholar] [CrossRef]
- Li, J.; Zheng, B. Does Vertical Greening Really Play Such a Big Role in an Indoor Thermal Environment? Forests 2022, 13, 358. [Google Scholar] [CrossRef]
- Wong, N.H.; Cheong, D.K.W.; Yan, H.; Soh, J.; Ong, C.L.; Sia, A. The effects of rooftop garden on energy consumption of a commercial building in Singapore, Energy and Buildings. Energy Build. 2003, 35, 353–364. [Google Scholar] [CrossRef]
- Meier, A.K. Strategic landscaping and air-conditioning savings: A literature review. Energy Build. 1990, 15, 479–486. [Google Scholar] [CrossRef]
- Kokogiannakis, G.; Darkwa, J.; Yuan, K. A combined experimental and simulation method for appraising the energy performance of green roofs in Ningbo’s Chinese climate. Build. Simul. 2014, 7, 13–20. [Google Scholar] [CrossRef]
- Berardi, U. The outdoor microclimate benefits and energy saving resulting from green roofs retrofits. Energy Build. 2016, 121, 217–229. [Google Scholar] [CrossRef]
- Bevilacqua, P. The effectiveness of green roofs in reducing building energy consumptions across different climates. A summary of literature results. Renew. Sustain. Energy Rev. 2021, 151, 111523. [Google Scholar] [CrossRef]
- Wang, Y.; Akbari, H. Analysis of urban heat island phenomenon and mitigation solutions evaluation for Montreal. Sustain. Cities Soc. 2016, 26, 438–446. [Google Scholar] [CrossRef]
- Gülten, A.; Aksoy, U.T.; Öztop, H.F. Influence of trees on heat island potential in an urban canyon. Sustain. Cities Soc. 2016, 26, 407–418. [Google Scholar] [CrossRef]
- Detommaso, M.; Gagliano, A.; Marletta, L.; Nocera, F. Sustainable Urban Greening and Cooling Strategies for Thermal Comfort at Pedestrian Level. Sustainability 2021, 13, 3138. [Google Scholar] [CrossRef]
- Berardi, U.; Ghaffarian Hoseini, A. State-of-the-art analysis of the environmental benefits of green roofs. Appl. Energy 2014, 115, 411–428. [Google Scholar] [CrossRef]
- Gago, E.J.; Roldan, J.; Pacheco-Torres, R.; Ordóñez, J. The city and urban heat islands: A review of strategies to mitigate adverse effects. Renew. Sustain. Energy Rev. 2013, 25, 749–758. [Google Scholar] [CrossRef]
- Govindarajulu, D. Urban green space planning for climate adaptation in Indian cities. Urban Clim. 2014, 10 Pt 1, 35–41. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Alberti, M. Terrestrial carbon stocks across a gradient of urbanization: A study of the Seattle, WA region. Glob. Change Biol. 2011, 17, 783–797. [Google Scholar] [CrossRef]
- Lal, R.; Augustine, B. Carbon Sequestration in Urban Ecosystems; Springer: New York, NY, USA, 2012; p. 385. [Google Scholar]
- Wang, H.; Feng, Y.; Ai, L. Progress of carbon sequestration in urban green space based on bibliometric analysis. Front. Environ. Sci. 2023, 11, 1196803. [Google Scholar] [CrossRef]
- Zhu, K.; Song, Y.; Qin, C. Forest age improves understanding of the global carbon sink. Proc. Natl. Acad. Sci. USA 2019, 116, 3962–3964. [Google Scholar] [CrossRef]
- World Green Building Council. Through Learderhsip, Green Building Improving the Lives of Billions by Helping to Achieve the UN Sustainable Development Goals. Available online: https://worldgbc.org/article/green-building-improving-the-lives-of-billions-by-helping-to-achieve-the-un-sustainable-development-goals/ (accessed on 1 April 2025).
- Sun, Y. The impact of green buildings on CO2 emissions: Evidence from commercial and residential buildings. J. Clean Prod. 2024, 469, 143168. [Google Scholar] [CrossRef]
- Zuo, J.; Zhao, Z.-Y. Green Building Research–Current Status and Future Agenda: A Review. Renew. Sustain. Energy Rev. 2014, 30, 271–281. [Google Scholar] [CrossRef]
- Ye, J.; Fanyang, Y.; Wang, J.; Meng, S.; Tang, D. A Literature Review of Green Building Policies: Perspectives from Bibliometric Analysis. Buildings 2024, 14, 2607. [Google Scholar] [CrossRef]
- U.S. Green Building Council. Press Room, Benefits of Green Building. Available online: https://www.usgbc.org/press/benefits-of-green-building (accessed on 1 April 2025).
- Buyle, M.; Braet, J.; Audenaert, A. Life cycle assessment in the construction sector: A review. Renew. Sustain. Energy Rev. 2013, 26, 379–388. [Google Scholar] [CrossRef]
- Sartori, T.; Drogemuller, R.; Omrani, S.; Lamari, F. A schematic framework for Life Cycle Assessment (LCA) and Green Building Rating System (GBRS). J. Build. Eng. 2021, 38, 102180. [Google Scholar] [CrossRef]
- Adekanye, O.G.; Davis, A.; Azevedo, I.L. Federal policy, local policy, and green building certifications in the U.S. Energy Build. 2020, 209, 109700. [Google Scholar] [CrossRef]
- Li, X.; Feng, W.; Liu, X.; Yang, Y. A comparative analysis of green building rating systems in China and the United States. Sustain. Cities Soc. 2023, 92, 104520. [Google Scholar] [CrossRef]
- Florez, L. Sustainability and Green Building Rating Systems: A Critical Analysis to Advance Sustainable Performance. Encycl. Renew. Sustain. Mater. 2020, 4, 211–220. [Google Scholar]
- Shan, M.; Hwang, B.-G. Green building rating systems: Global reviews of practices and research efforts. Sustain. Cities Soc. 2018, 39, 172–180. [Google Scholar] [CrossRef]
- Xiang, X.; Ma, M.; Ma, X.; Chen, L.; Cai, W.; Feng, W.; Ma, Z. Historical decarbonization of global commercial building operations in the 21st century. Appl. Energy 2022, 322, 119401. [Google Scholar] [CrossRef]
- U.S. Energy Information Administration. International Energy Outlook 2010; U.S. EIA: Washington, DC, USA, 2010.
- Zhou, N.; Khanna, N.; Feng, W.; Ke, J.; Levine, M. Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050. Nat. Energy 2018, 3, 978–984. [Google Scholar] [CrossRef]
- Zhong, X.; Hu, M.; Deetman, S.; Steubing, D.; Lin, H.X.; Hernandez, G.A.; Harpprecht, C.; Zhang, C.; Tukker, A.; Behrens, B. Global greenhouse gas emissions from residential and commercial building materials and mitigation strategies to 2060. Nat. Commun. 2021, 12, 6126. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Ma, M.; Zhou, N.; Yan, J.; Feng, W.; Yan, R.; You, K.; Zhang, J.; Ke, J. Estimation of global building stocks by 2070: Unlocking renovation potential. Nexus 2024, 1, 100019. [Google Scholar] [CrossRef]
- Grove-Smith, J.; Aydin, V.; Feist, W.; Schnieders, J.; Thomas, S. Standards and policies for very high energy efficiency in the urban building sector towards reaching the 1.5 °C target. Curr. Opini. Environ. Sustain. 2018, 30, 103–114. [Google Scholar] [CrossRef]
- Röck, M.; Saade, M.R.M.; Balouktsi, M.; Rasmussen, F.N.; Birgisdottir, H.; Frischknecht, R.; Habert, G.; Lützkendorf, T.; Passer, A. Embodied GHG emissions of buildings—The hidden challenge for effective climate change mitigation. Appl. Energy 2020, 258, 114107. [Google Scholar] [CrossRef]
- Hietaharju, P.; Pulkkinen, J.; Ruusunen, M.; Louis, J.-N. A stochastic dynamic building stock model for determining long-term district heating demand under future climate change. Appl. Energy 2021, 295, 116962. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, M.; Li, K.; Ma, Z.; Feng, W.; Cai, W. Historical carbon abatement in the commercial building operation: China versus the US. Energy Econ. 2022, 105, 105712. [Google Scholar] [CrossRef]
- Yan, R.; Ma, M.; Zhou, N.; Feng, W.; Xiang, X.; Mao, C. Towards COP27: Decarbonization patterns of residential building in China and India. Appl. Energy 2023, 352, 122003. [Google Scholar] [CrossRef]
- Ma, M.; Ma, X.; Cai, W.; Cai, W. Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak. Appl. Energy 2020, 273, 115247. [Google Scholar] [CrossRef]
- Yang, F.; Yousefpour, R.; Hu, Y.; Zhang, Y.; Li, J.; Wang, H. Assessing the efficiency of urban blue-green space in carbon-saving: Take a high-density urban area in a cold region as an example. J. Clean. Prod. 2024, 479, 144017. [Google Scholar] [CrossRef]
- Schüle, S.A.; Hilz, L.K.; Dreger, S.; Bolte, G. Social Inequalities in Environmental Resources of Green and Blue Spaces: A Review of Evidence in the WHO European Region. Int. J. Environ. Res. Public Health 2019, 16, 1216. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Qian, S.; Meng, C.; Chang, Y.; Guo, W.; Sha, W.; Sun, Y. Blue-Green Space Changes of Baiyangdian Wetland in Xiong’an New Area, China. Adv. Meteorol. 2022, 2022, 4873393. [Google Scholar] [CrossRef]
- Hutyra, L.R.; Yoon, B.; Hepinstall-Cymerman, J.; Alberti, M. Carbon consequences of land cover change and expansion of urban lands: A case study in the Seattle metropolitan region. Landsc. Urban Plann. 2011, 103, 83–93. [Google Scholar] [CrossRef]
- Zhang, Y.; Meng, W.; Yun, H.; Xu, W.; Hu, B.; He, M.L.; Mo, X.; Zhang, L. Is urban green space a carbon sink or source? A case study of China based on LCA method. Environ. Impact Assess. Rev. 2022, 94, 106766. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plann. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Contesse, M.; Vliet, B.J.M.V.; Lenhart, J. Is urban agriculture urban green space? A comparison of policy arrangements for urban green space and urban agriculture in Santiago de Chile. Land Use Policy 2018, 71, 566–577. [Google Scholar] [CrossRef]
- Aram, F.; Higueras García, E.; Solgi, E.; Mansournia, S. Urban green space cooling effect in cities. Heliyon 2019, 5, e01339. [Google Scholar] [CrossRef]
- Wang, C.; Ren, Z.; Dong, Y.; Zhang, P.; Guo, Y.; Wang, W.; Bao, G. Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban For. Urban Green. 2022, 74, 127635. [Google Scholar] [CrossRef]
- Yu, Z.; Xu, S.; Zhang, Y.; Jørgensen, G.; Vejre, H. Strong contributions of local background climate to the cooling effect of urban green vegetation. Sci. Rep. 2018, 8, 6798. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, W.; Zhang, Z.; Cao, W.; Wu, T. How can urban green spaces be planned to mitigate urban heat island effect under different climatic backgrounds? A threshold-based perspective. Sci. Total Environ. 2023, 890, 164422. [Google Scholar] [CrossRef]
- Farkas, J.Z.; Hoyk, E.; Morais, M.B.D.; Csomós, G. A systematic review of urban green space research over the last 30 years: A bibliometric analysis. Heliyon 2023, 9, e13406. [Google Scholar] [CrossRef] [PubMed]
- Rocha, A.D.; Vulova, S.; Meier, F.; Förster, M.; Kleinschmit, B. Mapping evapotranspirative and radiative cooling services in an urban environment. Sustain. Cities Soc. 2022, 85, 104051. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plann. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Somarakis, G.; Stagakis, S.; Chrysoulakis, N. Think Nature Nature-Based Solutions Handbook; Think Nature project funded by the EU Horizon 2020 research and innovation programme under grant agreement No. 730338; University of Helsinki: Helsinki, Finland, 2019. [Google Scholar]
- Morabito, M.; Crisci, A.; Guerri, G.; Messeri, A.; Congedo, L.; Munafò, M. Surface urban heat islands in Italian metropolitan cities: Tree cover and impervious surface influences. Sci. Total Environ. 2021, 751, 142334. [Google Scholar] [CrossRef] [PubMed]
- Marando, F.; Heris, M.P.; Zulian, G.; Udías, A.; Mentaschi, L.; Chrysoulakis, N.; Parastatidis, D.; Maes, J. Urban heat island mitigation by green infrastructure in European Functional Urban Areas. Sustain. Cities Soc. 2022, 77, 103564. [Google Scholar] [CrossRef]
- Akbari, H. Shade trees reduce building energy use and CO2 emissions from power plants. Environ. Pollut. 2022, 116, S119–S126. [Google Scholar] [CrossRef]
- Bayulken, B.; Huisingh, D.; Fisher, P.M.J. How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review. J. Clean. Prod. 2021, 288, 12556. [Google Scholar] [CrossRef]
- Du, C.L.; Jia, W.X.; Wang, K. Valuing carbon saving potential of urban parks in thermal mitigation: Linking accumulative and accessibility perspectives. Urban Clim. 2023, 51, 101645. [Google Scholar] [CrossRef]
- Chen, M.; Jia, W.; Du, C.; Shi, M.; Henebry, G.M.; Wang, K. Carbon saving potential of urban parks due to heat mitigation in Yangtze River Economic Belt. J. Clean. Prod. 2023, 385, 135713. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, Q.; Li, X. Promoting sustainable carbon sequestration of plants in urban greenspace by planting design: A case study in parks of Beijing. Urban For. Urban Green. 2021, 64, 127291. [Google Scholar] [CrossRef]
- Zhao, D.; Cai, J.; Xu, Y.; Liu, Y.; Yao, M. Carbon sinks in urban public green spaces under carbon neutrality: A bibliometric analysis and systematic literature review. Urban For. Urban Green. 2023, 86, 128037. [Google Scholar] [CrossRef]
- Jo, H.K.; Kim, J.Y.; Park, H.M. Carbon reduction and planning strategies for urban parks in Seoul. Urban For. Urban Green. 2019, 41, 48–54. [Google Scholar] [CrossRef]
- Nowak, D.J.; Crane, D.E.; Stevens, J.C. Air pollution removal by urban trees and shrubs in the United States. Urban For. Urban Green. 2006, 4, 115–123. [Google Scholar] [CrossRef]
- Noszczyk, T.; Gorzelany, J.; Kukulska-Kozieł, A.; Hernik, J. The impact of the COVID-19 pandemic on the importance of urban green spaces to the public. Land Use Policy 2022, 113, 105925. [Google Scholar] [CrossRef]
- Ding, A.; Cenci, J.; Zhang, J. Links between the pandemic and urban green spaces, a perspective on spatial indices of landscape garden cities in China. Sustain. Cities Soc. 2022, 85, 104046. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Wai, O.W.H.; Li, Y.S.; Zhan, J.M.; Ho, Y.A.; Li, J.; Lam, E. Effect of green roof on ambient CO2 concentration. Build. Environ. 2010, 45, 2644–2651. [Google Scholar] [CrossRef]
- UK Green Building Council. The Value of Urban Nature-Based Solutions; UK Green Building Council: London, UK, 2022. [Google Scholar]
- Hashem, E.A.R.; Salleh, N.Z.M.; Abdullah, M.; Ali, A.; Faisal, F.; Nor, R.M. Research trends, developments, and future perspectives in brand attitude: A bibliometric analysis utilizing the Scopus database (1944–2021). Heliyon 2023, 9, e12765. [Google Scholar] [CrossRef]
- Alsharif, A.H.; Salleh, N.Z.M.; Baharun, R.; Hashem, E.A.R.; Mansor, A.A.; Ali, J.; Abbas, A.F. Neuroimaging Techniques in Advertising Research: Main Applications, Development, and Brain Regions and Processes. Sustainability 2021, 13, 6488. [Google Scholar] [CrossRef]
- Wang, J.; Zheng, T.; Wang, Q.; Xu, B.; Wang, L. A bibliometric review of research trends on bioelectrochemical systems. Curr. Sci. 2015, 109, 2204–2211. [Google Scholar] [CrossRef]
- Votsis, A.; Haavisto, R. Urban DNA and Sustainable Cities: A Multi-City Comparison. Front. Environ. Sci. 2019, 7, 4. [Google Scholar] [CrossRef]
- Min, K.; Yoon, M.; Furuya, K. A Comparison of a Smart City’s Trends in Urban Planning before and after 2016 through Keyword Network Analysis. Sustainability 2019, 11, 3155. [Google Scholar] [CrossRef]
- Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G. Networks beyond pairwise interactions: Structure and dynamics. Phys. Rep. 2020, 874, 1–92. [Google Scholar]
- Leydesdorff, L.; Vaughan, L. Co-occurrence matrices and their applications in information science: Extending ACA to the web environment. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 1616–1628. [Google Scholar] [CrossRef]
- Wang, J.; Cheng, Q.; Lu, W.; Dou, Y.; Li, P. A term function–aware keyword citation network method for science mapping analysis. Inf. Process. Manag. 2023, 60, 103405. [Google Scholar] [CrossRef]
- Behrouzi, S.; Sarmoor, Z.S.; Hajsadeghi, K.; Kavousi, K. Predicting scientific research trends based on link prediction in keyword networks. J. Informetr. 2020, 14, 101079. [Google Scholar] [CrossRef]
- Min, K.; Jun, B.; Lee, J.; Kim, H.; Furuya, K. Analysis of Environmental Issues with an Application of Civil Complaints: The Case of Shiheung City, Republic of Korea. Int. J. Environ. Res. Public Health 2019, 16, 1018. [Google Scholar] [CrossRef]
- Balasubramaniam, K.N.; Kaburu, S.S.K.; Marty, P.R.; Beisner, B.A.; Bliss-Moreau, E.; Arlet, M.E.; Ruppert, N.; Ismail, A.; Anuar Mohd Sah, S.; Mohan, L.; et al. Implementing social network analysis to understand the socioecology of wildlife co-occurrence and joint interactions with humans in anthropogenic environments. J. Anim. Ecol. 2021, 90, 2819–2833. [Google Scholar] [CrossRef]
- Butts, C.T. Revisiting the Foundations of Network Analysis. Science 2009, 325, 414–416. [Google Scholar] [CrossRef]
- Guan, J.; Yan, Y.; Zhang, J.J. The impact of collaboration and knowledge networks on citations. J. Informetr. 2017, 11, 407–422. [Google Scholar] [CrossRef]
- Uddin, S.; Khan, A. The impact of author-selected keywords on citation counts. J. Informetr. 2016, 10, 1166–1177. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, J.; Hou, W.; Tu, X.; Xu, J.; Song, F.; Wang, Z.; Lu, Z. Mapping the knowledge structure of research on patient adherence: Knowledge domain visualization based co-word analysis and social network analysis. PLoS ONE 2012, 7, e34494. [Google Scholar] [CrossRef]
- Bamakan, S.M.H.; Nurgaliev, I.; Qu, Q. Opinion leader detection: A methodological review. Expert Syst. Appl. 2019, 115, 200–222. [Google Scholar] [CrossRef]
- Lin, W.; Wu, X.; Wang, Z.; Wan, X.; Li, H. Topic Network Analysis Based on Co-Occurrence Time Series Clustering. Mathematics 2022, 10, 2846. [Google Scholar] [CrossRef]
- Jung, H.; Lee, B.G. Research trends in text mining: Semantic network and main path analysis of selected journals. Expert Syst. Appl. 2020, 162, 113851. [Google Scholar] [CrossRef]
- UNDP. The Millennium Development Goals Report 2015. Available online: https://www.undp.org/publications/millennium-development-goals-report-2015 (accessed on 14 April 2025).
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 14 April 2025).
- Röck, M.; Baldereschi, E.; Verellen, E.; Passer, A.; Sala, S.; Allacker, K. Environmental modelling of building stocks—An integrated review of life cycle-based assessment models to support EU policy making. Renew. Sustain. Energy Rev. 2021, 151, 111550. [Google Scholar] [CrossRef]
- Bertone, E.; Stewart, R.A.; Sahin, O.; Alam, M.; Zou, P.X.W.; Buntine, C.; Marshall, C. Guidelines, barriers and strategies for energy and water retrofits of public buildings. J. Clean. Prod. 2018, 174, 1064–1078. [Google Scholar] [CrossRef]
- IEA. Renovation of Near 20% of Existing Building Stock to Zero-Carbon-Ready by 2030 Is Ambitious but Necessary; IEA: Paris, France, 2022. [Google Scholar]
- Filippidou, F.; Navarro, J.P.J. Achiving the Cost-Effective Energy Transformation of Europe’s Buildings; JRC Technical Report; EUR 29906 EN; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Huang, H.; Wang, H.; Hu, Y.-J.; Li, C.; Wang, X. The development trends of existing building energy conservation and emission reduction—A comprehensive review. Energy Rep. 2022, 8, 13170–13188. [Google Scholar] [CrossRef]
- Olabi, A.G.; Shehata, N.; Issa, U.H.; Mohamed, O.A.; Mahmoud, M.; Abdelkareem, M.A.; Abdelzaher, M.A. The role of green buildings in achieving the sustainable development goals. Int. J. Thermofluids 2025, 24, 101002. [Google Scholar] [CrossRef]
- Darup, B.S. Passivhaus Quo Vadis? In Proceedings of the 22nd International Passive House Conference, Munich, Germany, 9–10 March 2008; Feist, W., Ed.; Passive House Institute: Darmstadt, Germany; Innsbruck, Austria, 2018; pp. 401–411. [Google Scholar]
- European Commisson. Good Ractice in Energy Efficiency, Clean Energy for All Europeans; European Union: Bruxelles, Belgium, 2017. [Google Scholar]
- D’Agostino, D.; Cuniberti, B.; Maschio, I. Criteria and structure of a harmonised data collection for NZEBs retrofit buildings in Europe. Energy Procedia 2017, 140, 170–181. [Google Scholar] [CrossRef]
- Gillott, M.; Spataru, C. 26—Materials for Energy Efficiency and Thermal Comfort in the Refurbishment of Existing Buildings; Woodhead Publishing Series in Energy; Materials for Energy Efficiency and Thermal Comfort in Buildings; Woodhead Publishing: Cambridge, UK, 2010. [Google Scholar]
- Karamoozian, M.; Zhang, H. Obstacles to green building accreditation during operating phases: Identifying Challenges and solutions for sustainable development. J. Asian Arch. Build. Eng. 2025, 24, 350–366. [Google Scholar] [CrossRef]
- Wei, J.; Li, J.; Zhao, J.; Wang, X. Hot Topics and Trends in Zero-Energy Building Research—A Bibliometrical Analysis Based on CiteSpace. Buildings 2023, 13, 479. [Google Scholar] [CrossRef]
- United Nations Environment Programme. 2022 Global Status Report for Buildings and Construction: Towards A Zero-Emissions, Efficient and Resilient Buildings and Construction Sector, Nairobi. 2022. Available online: https://www.unep.org/resources/publication/2022-global-status-report-buildings-and-construction (accessed on 5 April 2025).
- Dasgupta, A. IPCC 1.5° Report: We Need to Build and Live Differently in Cities, World Resources Institute. Available online: https://www.wri.org/ (accessed on 4 April 2025).
- Frenchman, D.; Zegras, C. Making the Clean Engergy City in China, Year 3 Report. Massachusetts Institute of Technology. Available online: http://energyproforma.mit.edu/webtool3/home (accessed on 1 April 2025).
- Feng, Y.; Fang, C.; Jia, X.; Song, P.; Zhou, L.; Xu, X.; Wang, K.; He, R.; Guo, N.; Ge, S. Dual pathways of carbon neutrality in urban green spaces: Assessment and regulatory strategies. Sustain. Cities Soc. 2025, 125, 106311. [Google Scholar] [CrossRef]
- Schettini, E.; Blanco, I.; Campiotti, C.A.; Bibbiani, C.; Fantozzi, F.; Vox, G. Green Control of Microclimate in Buildings. Agric. Agric. Sci. Procedia 2016, 8, 576–582. [Google Scholar] [CrossRef]
- Priya, U.K.; Senthil, R. A review of the impact of the green landscape interventions on the urban microclimate of tropical areas. Build. Environ. 2021, 205, 108190. [Google Scholar] [CrossRef]
- Drottberger, A.; Zhang, Y.; Yong, J.W.H.; Dubois, M.-C. Urban farming with rooftop greenhouses: A systematic literature review. Renew. Sustain. Energy Rev. 2023, 118, 113884. [Google Scholar] [CrossRef]
- Costanzo, V.; Evola, G.; Marletta, L. Energy savings in buildings or UHI mitigation? Comparison between green roofs and cool roofs. Energy Build. 2016, 114, 247–255. [Google Scholar] [CrossRef]
- Harada, Y.; Whitlow, T.H. Urban Rooftop Agriculture: Challenges to Science and Practice. Front. Sustain. Food Syst. 2020, 4, 76. [Google Scholar] [CrossRef]
Keywords | Frequency | Centrality Degree | Betweenness Degree |
---|---|---|---|
Urban Greening | 178 | 0.263158 | 0.005117 |
Existing Building Stock | 96 | 0.157895 | 0.004094 |
Urban Planning | 94 | 0.368421 | 0.082749 |
Low Energy Building | 83 | 0.105263 | - |
Sustainability | 78 | 0.210526 | 0.200000 |
UHI | 74 | 0.473684 | 0.143762 |
Environmental Justice | 72 | 0.315789 | 0.039669 |
Green Roof | 64 | 0.578947 | 0.333821 |
Thermal Comfort | 64 | 0.157895 | 0.010136 |
Green Infrastructure | 62 | 0.578947 | 0.140741 |
Environmental Policy | 56 | 0.210526 | 0.006823 |
Urban Environment | 56 | 0.210526 | 0.001462 |
Ecosystem Services | 52 | 0.368421 | 0.117593 |
NbS | 44 | 0.368421 | 0.087281 |
Land Use | 42 | 0.105263 | 0.002193 |
LCA | 39 | 0.105263 | - |
Renewable Energy | 39 | 0.052632 | - |
Indoor Environmental Quality | 36 | 0.052632 | - |
Carbon Sequestration | 35 | 0.052632 | - |
Urban Morphology | 31 | 0.105263 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, K. Exploring Research Fields in Green Buildings and Urban Green Spaces for Carbon-Neutral City Development. Buildings 2025, 15, 1463. https://doi.org/10.3390/buildings15091463
Min K. Exploring Research Fields in Green Buildings and Urban Green Spaces for Carbon-Neutral City Development. Buildings. 2025; 15(9):1463. https://doi.org/10.3390/buildings15091463
Chicago/Turabian StyleMin, Kyunghun. 2025. "Exploring Research Fields in Green Buildings and Urban Green Spaces for Carbon-Neutral City Development" Buildings 15, no. 9: 1463. https://doi.org/10.3390/buildings15091463
APA StyleMin, K. (2025). Exploring Research Fields in Green Buildings and Urban Green Spaces for Carbon-Neutral City Development. Buildings, 15(9), 1463. https://doi.org/10.3390/buildings15091463