Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes
Abstract
:1. Introduction
2. Case Studies
3. Methodology
3.1. Data Collection
3.2. Building Modelling
3.2.1. Weather Data
3.2.2. Building Data and Constructions
3.2.3. Internal Heat Gains
3.2.4. Infiltration
3.2.5. Model Calibration
3.3. Comparison Analysis and Traditional Strategies Implementation
4. Results and Discussion
4.1. Observed Data Analysis
4.2. Building Model Calibration
4.3. Comparative Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- UN Habitat. The Right to Adequate Housing; United Nations: Geneva, Switzerland, 2009; Volume 21, p. 59. [Google Scholar]
- Bouillon, P. Un espacio para el desarrollo: los mercados de vivienda en América Latina y el Caribe; Inter-American Development Bank: Washington, DC, USA, 2012; pp. 68–96. [Google Scholar]
- Libertun de Duren, N.; López Lamia, A.; Brakarz, J.; Marcano, L.M.; Román- Sánchez, S.; Alemán, M.; De la Bastida, J.L.; Campillo, G.; Escobar, X.; Lugo, M.; et al. National Social Housing Program—Stage II; Inter-American Development Bank: Washington, DC, USA, 2012. [Google Scholar]
- Instituto Nacional de Estadística y Censos. Available online: http://www.ecuadorencifras.gob.ec/ (accessed on 22 April 2015).
- Instituto Nacional de Estadística y Censos (INEC). Condiciones de Vida de los Ecuatorianos—Vivienda; INEC: Quito, Ecuador, 2006. [Google Scholar]
- Marincic, I.; Ochoa, J.M.; Alpuche, M.G.; González, I. Comparative analysis of the thermal behavior between cellular concrete blocks and stabilized earth blocks as wall materials. Energy Procedia 2014, 57, 1783–1791. [Google Scholar] [CrossRef]
- De Dear, R.J.; Brager, G.S. Thermal comfort in naturally ventilated buildings: Revisions to ASHRAE Standard 55. Energy Build. 2002, 34, 549–561. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.X.; Ouyang, Q.; Cao, B. Measurement and field survey of indoor thermal comfort in rural housing of northern China in winter. J. Southeast Univ. 2009, 1, 245–251. [Google Scholar]
- Palme, M.; Guerra, J.; Alfaro, S. Thermal performance of traditional and new concept houses in the ancient village of San Pedro de Atacama and surroundings. Sustainability 2014, 6, 3321–3337. [Google Scholar] [CrossRef]
- Dear, K.B.G.; McMichael, A.J. The health impacts of cold homes and fuel poverty. BMJ 2011, 342, d2807. [Google Scholar] [CrossRef] [PubMed]
- Maidment, C.; Jones, C.; Webb, T.; Hathway, A.; Gilbertson, J. The impact of household energy efficiency measures on health: A meta-analysis. Energy Policy 2014, 65, 583–593. [Google Scholar] [CrossRef]
- Ormandy, D.; Ezratty, V. Health and thermal comfort: From WHO guidance to housing strategies. Energy Policy 2012, 49, 116–121. [Google Scholar] [CrossRef]
- USA Department of Energy. In EnergyPlus: Energy Simulation Software. Available online: https://energyplus.net/ (accessed on 30 August 2016).
- ASHRAE. Handbook Fundamentals; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2009; Volume 30329. [Google Scholar]
- Allinson, D.; Hall, M. Hygrothermal analysis of a stabilised rammed earth test building in the UK. Energy Build. 2010, 42, 845–852. [Google Scholar] [CrossRef]
- Adenaike, F.A. Brickyard practises in Nigeria: Improving the compressive strength of cement stabilised earth bricks through soil. IJSER 2015, 6, 1235–1242. [Google Scholar]
- Adam, E.; Agib, A. Compressed Stabilised Earth Block Manufacture in Sudan; UNESCO: Paris, France, 2001. [Google Scholar]
- Mino-Rodriguez, I.; Gaona, G.; Lobato, A.; Naranjo-Mendoza, C.; Labus, J. Implementation of GIS methodology and passive strategies to improve the quality of social housing in the Andean region of Ecuador. World Sustain. Build. 2014, 3, 148–156. [Google Scholar]
- McMullan, R. Environmental Science in Building, 7th ed.; Palgrave macmillan: Basingstoke, UK, 2012. [Google Scholar]
- EnergyPlus. Engineering Reference. The Reference to EnergyPlus Calculations. Available online: http://infohouse.p2ric.org/ref/36/35821.pdf (accessed on 30 August 2016).
- Coakley, D.; Raftery, P.; Keane, M. A review of methods to match building energy simulation models to measured data. Renew. Sustain. Energy Rev. 2014, 37, 123–141. [Google Scholar] [CrossRef]
- Paliouras, P.; Matzaflaras, N.; Peuhkuri, R.H.; Kolarik, J. Using measured indoor environment parameters for calibration of building simulation model—A passive house case study. Energy Procedia 2015, 78, 1227–1232. [Google Scholar] [CrossRef] [Green Version]
- Martín, S.; Mazarrón, F.R.; Cañas, I. Study of thermal environment inside rural houses of Navapalos (Spain): The advantages of reuse buildings of high thermal inertia. Constr. Build. Mater. 2010, 24, 666–676. [Google Scholar] [CrossRef]
- Carnevale, E.; Rakotomamonjy, B.; Sevillano Gutiérrez, E.; Abad Rodas, M. de L. Orientaciones para la conservación de inmuebles patrimoniales de Tierra en Cuenca; UNESCO: Cuenca, Ecuador, 2015. [Google Scholar]
- Municipio del Distrito Metropolitano de Quito (DMQ). Normas de Arquitectura y Urbanismo; Concejo Metropolitano de Quito: Quito, Ecuador, 2003. [Google Scholar]
- Nicol, J.F.; Humphreys, M.A. Adaptive thermal comfort and sustainable thermal standards for buildings. Energy Build. 2002, 34, 563–572. [Google Scholar] [CrossRef]
Roof | Walls | Windows | Frames | Door | Floor | |
---|---|---|---|---|---|---|
Case A | Concrete Tiles | CSEB (14 cm)/Plaster | Single Clear 3 mm | Wood | Wood | Concrete + Plaster |
5.01 W/m2K | 2.24 W/m2K | 6.30 W/m2K | 3.63 W/m2K | 2.25 W/m2K | 2.48 W/m2K | |
Case B | Zinc | Hollow Cement Blocks | Single Clear 3 mm | Metal | Metal | Concrete |
8.33 W/m2K | 4.63 W/m2K | 6.30 W/m2K | 5.88 W/m2K | 3.85 W/m2K | 4.43 W/m2K |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miño-Rodríguez, I.; Naranjo-Mendoza, C.; Korolija, I. Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes. Buildings 2016, 6, 36. https://doi.org/10.3390/buildings6030036
Miño-Rodríguez I, Naranjo-Mendoza C, Korolija I. Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes. Buildings. 2016; 6(3):36. https://doi.org/10.3390/buildings6030036
Chicago/Turabian StyleMiño-Rodríguez, Isabel, Carlos Naranjo-Mendoza, and Ivan Korolija. 2016. "Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes" Buildings 6, no. 3: 36. https://doi.org/10.3390/buildings6030036
APA StyleMiño-Rodríguez, I., Naranjo-Mendoza, C., & Korolija, I. (2016). Thermal Assessment of Low-Cost Rural Housing—A Case Study in the Ecuadorian Andes. Buildings, 6(3), 36. https://doi.org/10.3390/buildings6030036