The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site
2.2. Characterization of the Air Permeability of the Test-Classroom: Pressurization and Tracer Gas Decay Tests
2.3. Measurements and Estimates of Indoor Air Quality Under Different Ventilation Scenarios
2.3.1. Measurements of Ventilation Scenarios
2.3.2. Simulations of Ventilation Scenarios
2.3.3. Effect of the Crowding Index
2.4. Energy Need for Heating
3. Results
3.1. Pressurization and Tracer Gas Decay Test Results
3.2. CO2 Concentrations for Different Ventilation Scenarios
Effect of the Crowding Index on CO2 Concentrations
3.3. Energy Need for Different Ventilation Scenarios
Effect of the Crowding Index on Energy Need
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Awbi, H.B. Ventilation for Good Indoor Air Quality and Energy Efficiency. Energy Procedia 2017, 112, 277–286. [Google Scholar] [CrossRef]
- Gil-Baez, M.; Barrios-Padura, Á.; Molina-Huelva, M.; Chacartegui, R. Natural ventilation systems in 21st-century for near zero energy school buildings. Energy 2017, 137, 1186–1200. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings (Recast). Official Journal of the European Union: 2010; Vol. L153/13. Available online: https://eur-lex.europa.eu (accessed on 20 April 2019).
- D’Agostino, D.; Mazzarella, L. What is a Nearly zero energy building? Overview, implementation and comparison of definitions. J. Buil. Eng. 2019, 21, 200–212. [Google Scholar] [CrossRef]
- Attia, S.; Eleftheriou, P.; Xeni, F.; Morlot, R.; Ménézo, C.; Kostopoulos, V.; Betsi, M.; Kalaitzoglou, I.; Pagliano, L.; Cellura, M.; et al. Overview and future challenges of nearly zero energy buildings (nZEB) design in Southern Europe. Energy Build. 2017, 155, 439–458. [Google Scholar] [CrossRef]
- Guillén-Lambea, S.; Rodríguez-Soria, B.; Marín, J.M. Review of European ventilation strategies to meet the cooling and heating demands of nearly zero energy buildings (nZEB)/Passivhaus. Comparison with the USA. Renew. Sustain. Energy Rev. 2016, 62, 561–574. [Google Scholar] [CrossRef]
- Guyot, G.; Sherman, M.H.; Walker, I.S. Smart ventilation energy and indoor air quality performance in residential buildings: A review. Energy Build. 2018, 165, 416–430. [Google Scholar] [CrossRef]
- D’Agostino, D.; Mazzarella, L. Data on energy consumption and Nearly zero energy buildings (NZEBs) in Europe. Data Brief 2018, 21, 2470–2474. [Google Scholar] [CrossRef] [PubMed]
- Ciampi, G.; Rosato, A.; Scorpio, M.; Sibilio, S. Energy and Economic Evaluation of Retrofit Actions on an Existing Historical Building in the South of Italy by Using a Dynamic Simulation Software. Energy Procedia 2015, 78, 741–746. [Google Scholar] [CrossRef]
- Ciulla, G.; Galatioto, A.; Ricciu, R. Energy and economic analysis and feasibility of retrofit actions in Italian residential historical buildings. Energy Build. 2016, 128, 649–659. [Google Scholar] [CrossRef]
- Luddeni, G.; Krarti, M.; Pernigotto, G.; Gasparella, A. An analysis methodology for large-scale deep energy retrofits of existing building stocks: Case study of the Italian office building. Sustain. Cities Soc. 2018, 41, 296–311. [Google Scholar] [CrossRef]
- Ma, Z.; Cooper, P.; Daly, D.; Ledo, L. Existing building retrofits: Methodology and state-of-the-art. Energy Build. 2012, 55, 889–902. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Frattolillo, A.; Dell’Isola, M. The effect of the ventilation retrofit in a school on CO2, airborne particles, and energy consumptions. Build. Environ. 2019, 156, 1–11. [Google Scholar] [CrossRef]
- Canale, L.; Dell’Isola, M.; Ficco, G.; Di Pietra, B.; Frattolillo, A. Estimating the impact of heat accounting on Italian residential energy consumption in different scenarios. Energy Build. 2018, 168, 385–398. [Google Scholar] [CrossRef]
- Dell’Isola, M.; Ficco, G.; Arpino, F.; Cortellessa, G.; Canale, L. A novel model for the evaluation of heat accounting systems reliability in residential buildings. Energy Build. 2017, 150, 281–293. [Google Scholar] [CrossRef]
- Arpino, F.; Cortellessa, G.; Dell’Isola, M.; Ficco, G.; Marchesi, R.; Tarini, C. Influence of Installation Conditions on Heating Bodies Thermal Output: Preliminary Experimental Results. Energy Procedia 2016, 101, 74–80. [Google Scholar] [CrossRef]
- Intelligent Energy for Europe Programme. Energy Efficiency Trends and Policies in the Household and Tertiary Sectors. An Analysis Based on the ODYSSEE and MURE Databases. Available online: http://www.odyssee-mure.eu/publications/br/energy-efficiency-in-buildings.html (accessed on 20 April 2019).
- European SolarThermal Industry Federation. Solar Thermal Markets in Europe. Trends and Market Statistics 2014; European SolarThermal Industry Federation: Brussels, Belgium, 2015; Available online: http://www.estif.org/fileadmin/estif/content/market_data/downloads/2014_solar_thermal_markets_LR.pdf (accessed on 28 April 2019).
- European Committee for Standardisation. UNI EN 15251—Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics; European Committee for Standardisation: Brussels, Belgium, 2008. [Google Scholar]
- Persily, A.; de Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A. Is CO2 a good proxy for indoor air quality in classrooms? Part 2: Health outcomes and perceived indoor air quality in relation to classroom exposure and building characteristics. Build. Serv. Eng. Res. Technol. 2015, 36, 162–181. [Google Scholar] [CrossRef]
- Chatzidiakou, L.; Mumovic, D.; Summerfield, A. Is CO2 a good proxy for indoor air quality in classrooms? Part 1: The interrelationships between thermal conditions, CO2 levels, ventilation rates and selected indoor pollutants. Build. Serv. Eng. Res. Technol. 2015, 36, 129–161. [Google Scholar] [CrossRef]
- Ramalho, O.; Wyart, G.; Mandin, C.; Blondeau, P.; Cabanes, P.-A.; Leclerc, N.; Mullot, J.-U.; Boulanger, G.; Redaelli, M. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Build. Environ. 2015, 93, 115–124. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Pereira, C.; Teixeira, J.P.; Fernandes, E.D.O. Indoor air quality in Portuguese schools: levels and sources of pollutants. Indoor Air 2016, 26, 526–537. [Google Scholar] [CrossRef]
- Morawska, L.; Ayoko, G.A.; Bae, G.N.; Buonanno, G.; Chao, C.Y.H.; Clifford, S.; Fu, S.C.; Hanninen, O.; He, C.; Isaxon, C.; et al. Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environ. Int. 2017, 108, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Rivas, I.; Viana, M.; Moreno, T.; Bouso, L.; Pandolfi, M.; Alvarez-Pedrerol, M.; Forns, J.; Alastuey, A.; Sunyer, J.; Querol, X. Outdoor infiltration and indoor contribution of UFP and BC, OC, secondary inorganic ions and metals in PM2.5 in schools. Atmos. Environ. 2015, 106, 129–138. [Google Scholar] [CrossRef]
- Salthammer, T.; Uhde, E.; Schripp, T.; Schieweck, A.; Morawska, L.; Mazaheri, M.; Clifford, S.; He, C.; Buonanno, G.; Querol, X.; et al. Children’s well-being at schools: Impact of climatic conditions and air pollution. Environ. Int. 2016, 94, 196–210. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Russi, A.; Massimo, A.; Buonanno, G. The effect of natural ventilation strategy on indoor air quality in schools. Sci. Total Environ. 2017, 595, 894–902. [Google Scholar] [CrossRef]
- Stabile, L.; Dell’Isola, M.; Frattolillo, A.; Massimo, A.; Russi, A. Effect of natural ventilation and manual airing on indoor air quality in naturally ventilated Italian classrooms. Build. Environ. 2016, 98, 180–189. [Google Scholar] [CrossRef]
- Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Sunyer, J.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C. Indoor/outdoor relationships and mass closure of quasi-ultrafine, accumulation and coarse particles in Barcelona schools. Atmos. Chem. Phys. 2014, 14, 4459–4472. [Google Scholar] [CrossRef]
- Neft, I.; Scungio, M.; Culver, N.; Singh, S. Simulations of aerosol filtration by vegetation: Validation of existing models with available lab data and application to near-roadway scenario. Aerosol Sci. Technol. 2016, 50, 937–946. [Google Scholar] [CrossRef]
- Scungio, M.; Arpino, F.; Stabile, L.; Buonanno, G. Numerical Simulation of Ultrafine Particle Dispersion in Urban Street Canyons with the Spalart-Allmaras Turbulence Model. Aerosol Air Qual. Res. 2013, 13, 1423–1437. [Google Scholar] [CrossRef]
- Scungio, M.; Buonanno, G.; Arpino, F.; Ficco, G. Influential parameters on ultrafine particle concentration downwind at waste-to-energy plants. Waste Manag. 2015, 38, 157–163. [Google Scholar] [CrossRef]
- Scungio, M.; Stabile, L.; Rizza, V.; Pacitto, A.; Russi, A.; Buonanno, G. Lung cancer risk assessment due to traffic-generated particles exposure in urban street canyons: A numerical modelling approach. Sci. Total Environ. 2018, 631–632, 1109–1116. [Google Scholar] [CrossRef]
- Scungio, M.; Vitanza, T.; Stabile, L.; Buonanno, G.; Morawska, L. Characterization of particle emission from laser printers. Sci. Total Environ. 2017, 586, 623–630. [Google Scholar] [CrossRef]
- Stabile, L.; Massimo, A.; Rizza, V.; D’Apuzzo, M.; Evangelisti, A.; Scungio, M.; Frattolillo, A.; Cortellessa, G.; Buonanno, G. A novel approach to evaluate the lung cancer risk of airborne particles emitted in a city. Sci. Total Environ. 2019, 656, 1032–1042. [Google Scholar] [CrossRef]
- Stabile, L.; Scungio, M.; Buonanno, G.; Arpino, F.; Ficco, G. Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air 2017, 27, 398–408. [Google Scholar] [CrossRef]
- Radulov, L.; Kaloyanov, N.; Petran, H. European Commission Funded RePublic_ZEB Project. D2.1 Report on the Preliminary Assessment of the Public Building Stock. 2016. Available online: http://www.republiczeb.org (accessed on 20 April 2019).
- Agenzia Nazionale per l’Efficienza Energetica. Efficienza Energetica. Rapporto Annuale. Analisi e Risultati delle Policy di Efficienza Energetica nel Nostro Paese. 2017. Available online: http://www.efficienzaenergetica.enea.it/ (accessed on 20 April 2019).
- Legambiente. Ecosistema Scuola—XIX Rapporto di Legambiente Sulla Qualità Dell’ediliza Scolastica, Delle Strutture e dei Servizi; LEGAMBIENTE ONLUS: Roma, Italy, 2018; Available online: https://www.legambiente.it/wp-content/uploads/ecosistema_scuola_2018.pdf (accessed on 10 March 2019).
- Fuoco, F.; Stabile, L.; Buonanno, G.; Trassiera, C.; Massimo, A.; Russi, A.; Mazaheri, M.; Morawska, L.; Andrade, A. Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere 2015, 6, 1652. [Google Scholar] [CrossRef]
- Rovelli, S.; Cattaneo, A.; Nuzzi, C.P.; Spinazzè, A.; Piazza, S.; Carrer, P.; Cavallo, D.M. Airborne particulate matter in school classrooms of northern Italy. Int. J. Environ. Res. Public Health 2014, 11, 1398–1421. [Google Scholar] [CrossRef]
- Ruggieri, S.; Longo, V.; Perrino, C.; Canepari, S.; Drago, G.; L’Abbate, L.; Balzan, M.; Cuttitta, G.; Scaccianoce, G.; Minardi, R.; et al. Indoor Air Quality in Schools of a Highly Polluted South Mediterranean Area. Indoor Air 2019, 29, 276–290. [Google Scholar] [CrossRef]
- Decreto Ministeriale 18/12/1975. Norme Tecniche Aggiornate Relative All’edilizia Scolastica, Ivi Compresi gli Indici di Funzionalità Didattica, Edilizia ed Urbanistica, da Osservarsi Nella Esecuzione di Opere di Edilizia Scolastica. 1975. Vol. Gazzetta Ufficiale n. 29 del 02/02/1976. Available online: http://anagrafeediliziascolastica.regione.marche.it/mappla/documentiedilizia/DM_18121975.pdf (accessed on 28 April 2019).
- Nabinger, S.; Persily, A. Impacts of airtightening retrofits on ventilation rates and energy consumption in a manufactured home. Energy Build. 2011, 43, 3059–3067. [Google Scholar] [CrossRef]
- European Committee for Standardisation. EN ISO 52016-1:2017. Energy Performance of Buildings—Energy Needs for Heating and Cooling, Internal Temperatures and Sensible and Latent Heat Loads—Part 1: Calculation Procedures; European Committee for Standardisation: Brussels, Belgium, 2017. [Google Scholar]
- Decreto Interministeriale 26/06/2015. Applicazione Delle Metodologie di Calcolo Delle Prestazioni Energetiche e Definizione delle Prescrizioni e dei Requisiti minimi Degli Edifici. 2015. Vol. Gazzetta Ufficiale n. 162 del 15/07/2015. Available online: https://www.gazzettaufficiale.it/eli/id/2015/07/15/15A05198/sg (accessed on 28 April 2019).
- International Organization for Standardization. ISO 9972—Thermal Performance of Buildings—Determination of Air Permeability of Buildings—Fan Pressurization Method. 2015. Available online: https://www.sis.se/api/document/preview/922341/ (accessed on 28 April 2019).
- International Organization for Standardization. ISO 12569:2017. Thermal Performance of Buildings and Materials—Determination of Specific Airflow Rate in Buildings—Tracer Gas Dilution Method; ISO: Geneva, Switzerland, 2017. [Google Scholar]
- d’Ambrosio Alfano, F.R.; Dell’Isola, M.; Ficco, G.; Tassini, F. Experimental analysis of air tightness in Mediterranean buildings using the fan pressurization method. Build. Environ. 2012, 53, 16–25. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Ficco, G.; Palella, B.I.; Riccio, G.; Ranesi, A. An Experimental Investigation on the Air Permeability of Passive Ventilation Grilles. Energy Procedia 2015, 78, 2869–2874. [Google Scholar] [CrossRef]
- d’Ambrosio Alfano, F.R.; Dell’Isola, M.; Ficco, G.; Palella, B.I.; Riccio, G. Experimental air-tightness analysis in mediterranean buildings after windows retrofit. Sustainability 2016, 8, 991. [Google Scholar] [CrossRef]
- Stabile, L.; Frattolillo, A.; Dell’Isola, M.; Massimo, A.; Russi, A. Air Permeability of Naturally Ventilated Italian Classrooms. Energy Procedia 2015, 78, 3150–3155. [Google Scholar] [CrossRef]
- Bekö, G.; Gustavsen, S.; Frederiksen, M.; Bergsøe, N.C.; Kolarik, B.; Gunnarsen, L.; Toftum, J.; Clausen, G. Diurnal and seasonal variation in air exchange rates and interzonal airflows measured by active and passive tracer gas in homes. Build. Environ. 2016, 104, 178–187. [Google Scholar] [CrossRef]
- Biler, A.; Unlu Tavil, A.; Su, Y.; Khan, N. A Review of Performance Specifications and Studies of Trickle Vents. Buildings 2018, 8, 152. [Google Scholar] [CrossRef]
- Howard-Reed, C.; Wallace, L.A.; Ott, W.R. The Effect of Opening Windows on Air Change Rates in Two Homes. J. Air Waste Manag. Assoc. 2002, 52, 147–159. [Google Scholar] [CrossRef]
- Wallace, L.A.; Emmerich, S.J.; Howard-Reed, C. Continuous measurements of air change rates in an occupied house for 1 year: The effect of temperature, wind, fans, and windows. J. Exposure Anal. Environ. Epidemiol. 2002, 12, 296–306. [Google Scholar] [CrossRef]
- Mahyuddin, N.; Awbi, H.B. A Review of CO2 Measurement Procedures in Ventilation Research. Int. J. Vent. 2012, 10, 353–370. [Google Scholar] [CrossRef]
- International Organization for Standardization. ISO 52003-1:2017. Energy Performance of Buildings—Indicators, Requirements, Ratings and Certificates—Part 1: General Aspects and Application to the Overall Energy Performance. 2017. Available online: https://www.sis.se/api/document/preview/921997/ (accessed on 28 April 2019).
- Decreto del Presidente della Repubblica 412/1993. Regolamento Recante Norme per la Progettazione, L’installazione, L’esercizio e la Manutenzione Degli Impianti Termici Degli Edifici ai Fini del Contenimento dei Consumi di Energia, in Attuazione dell’art. 4, Comma 4, Della L. 9 Gennaio 1991, n. 1. 1993. Vol. Gazzetta Ufficiale n. 242 del 14/10/1993. Available online: https://www.gazzettaufficiale.it/eli/id/1993/10/14/093G0451/sg (accessed on 28 April 2019).
- International Organization for Standardization. ISO 15927-6. Hygrothermal Performance of Buildings—Calculation and Presentation of Climatic Data—Part 6: Accumulated Temperature Differences (Degree-Days). Available online: https://www.sis.se/api/document/preview/909034/ (accessed on 28 April 2019).
- Dubrul, C. Inhabitant Behaviour with Respect to Ventilation—A Summary Report of IEA Annex VIII; Air Infiltration and Ventilation Centre: Coventry, UK, 1988. [Google Scholar]
- Persily, A.K.; Linteris, G.T. A comparison of measured and predicted infiltration rates. ASHRAE Trans. 1983, 89. [Google Scholar]
- Sherman, M.H. Estimation of infiltration from leakage and climate indicators. Energy Build. 1987, 10, 81–86. [Google Scholar] [CrossRef]
- Asif, A.; Zeeshan, M.; Jahanzaib, M. Indoor temperature, relative humidity and CO2 levels assessment in academic buildings with different heating, ventilation and air-conditioning systems. Build. Environ. 2018, 133, 83–90. [Google Scholar] [CrossRef]
- Krawczyk, D.A.; Rodero, A.; Gładyszewska-Fiedoruk, K.; Gajewski, A. CO2 concentration in naturally ventilated classrooms located in different climates—Measurements and simulations. Energy Build. 2016, 129, 491–498. [Google Scholar] [CrossRef]
- Shendell, D.G.; Prill, R.; Fisk, W.J.; Apte, M.G.; Blake, D.; Faulkner, D. Associations between classroom CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 2004, 14, 333–341. [Google Scholar] [CrossRef]
- Cornaro, C.; Paravicini, A.; Cimini, A. Monitoring Indoor Carbon Dioxide Concentration and Effectiveness of Natural Trickle Ventilation in a Middle School in Rome. Indoor Built Environ. 2013, 22, 445–455. [Google Scholar] [CrossRef]
- Heebøll, A.; Wargocki, P.; Toftum, J. Window and door opening behavior, carbon dioxide concentration, temperature, and energy use during the heating season in classrooms with different ventilation retrofits—ASHRAE RP1624. Sci. Technol. Built Environ. 2018, 24, 626–637. [Google Scholar] [CrossRef]
- Azara, A.; Dettori, M.; Castiglia, P.; Piana, A.; Durando, P.; Parodi, V.; Salis, G.; Saderi, L.; Sotgiu, G. Indoor Radon Exposure in Italian Schools. Int. J. Environ. Res. Public Health 2018, 15, 749. [Google Scholar] [CrossRef]
- Mazaheri, M.; Reche, C.; Rivas, I.; Crilley, L.R.; Álvarez-Pedrerol, M.; Viana, M.; Tobias, A.; Alastuey, A.; Sunyer, J.; Querol, X.; et al. Variability in exposure to ambient ultrafine particles in urban schools: Comparative assessment between Australia and Spain. Environ. Int. 2016, 88, 142–149. [Google Scholar] [CrossRef]
- Reche, C.; Viana, M.; Rivas, I.; Bouso, L.; Alvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Outdoor and indoor UFP in primary schools across Barcelona. Sci. Total Environ. 2014, 493, 943–953. [Google Scholar] [CrossRef]
- Viana, M.; Rivas, I.; Querol, X.; Alastuey, A.; Álvarez-Pedrerol, M.; Bouso, L.; Sioutas, C.; Sunyer, J. Partitioning of trace elements and metals between quasi-ultrafine, accumulation and coarse aerosols in indoor and outdoor air in schools. Atmos. Environ. 2015, 106, 392–401. [Google Scholar] [CrossRef]
Opaque Component | Stratigraphy | U Value (W m−2 K−1) |
---|---|---|
outer walls |
| 0.72 |
floor |
| 1.10 |
roof |
| 0.99 |
Ventilation Scenarios | Test | Methodology | Crowding Index (m2 person−1) |
---|---|---|---|
Natural ventilation | NV (simulated) | CO2 concentration estimates carried out on the basis of CO2 mass balance equation considering the air exchange rate just relying on leakages of the classroom envelope (no manual door/window airing). | 2.2 |
Free-running ventilation | FRV 1 FRV 2 FRV 3 FRV 4 FRV 5 (experimental) | Five different CO2 concentration measurements performed during school-time. No airing procedures were imposed. The windows were opened by classroom occupants according to their air quality perception. Short door opening periods were just allowed. | 2.2 |
Manual airing | MA 1 MA 2 MA 3 (experimental) | Three different CO2 concentration measurements performed during school-time imposing scheduled windows opening periods: 10 min h−1 (MA 1), 15 min h−1 (MA 2), and 20 min h−1 (MA 3). | 2.2 |
MA EN 1 MA EN 2 MA EN 3 MA EN 4 (simulated) | CO2 concentration estimates carried out on the basis of CO2 mass balance equation considering measured air exchange rates and ventilation rates established by the EN 15251 standard [19]. | MA EN 1: 2.2 MA EN 2: 2.0 MA EN 3: 1.8 MA EN 4: 1.6 | |
Constant air volume mechanical ventilation | MV EN 1 MV EN 2 MV EN 3 MV EN 4 (simulated) | CO2 concentration estimates carried out on the basis of CO2 mass balance equation and ventilation rates established by the EN 15251 standard [19]. A steady-state ventilation flow rate was considered throughout the school-time. | MV EN 1: 2.2 MV EN 2: 2.0 MV EN 3: 1.8 MV EN 4: 1.6 |
Ventilation Scenarios | Test | n (h−1) | CO2 (ppm) | QH,ve (MJ) | QH,nd (MJ) | QH,ve/QH,nd | Energy Saving with Respect to Manual Airing Imposed by Standard (%) |
---|---|---|---|---|---|---|---|
Natural ventilation | NV | 0.22 ° | 2783 (782–4064) | 1.80 × 103 | 41.9 × 103 | 4% | 33% |
Free-running ventilation | FRV 1 | 0.43 Δ | 2078 (766–3377) | 3.51 × 103 | 43.6 × 103 | 8% | 30% |
FRV 2 | 0.55 Δ | 2044 (814–2922) | 4.49 × 103 | 44.6 × 103 | 10% | 29% | |
FRV 3 | 0.60 Δ | 1777 (770–2809) | 4.90 × 103 | 45.0 × 103 | 11% | 28% | |
FRV 4 | 0.63 Δ | 2272 (805–2778) | 5.12 × 103 | 45.3 × 103 | 11% | 28% | |
FRV 5 | 0.88 Δ | 1859 (723–2952) | 7.18 × 103 | 47.3 × 103 | 15% | 24% | |
Manual airing | MA 1 | 0.75 * | 1482 (700–2044) | 6.09 × 103 | 46.2 × 103 | 13% | 26% |
MA 2 | 1.01 * | 1310 (710–1791) | 8.23 × 103 | 48.3 × 103 | 17% | 23% | |
MA 3 | 1.27 * | 1085 (579–1688) | 10.4 × 103 | 50.5 × 103 | 21% | 19% | |
MA EN 1 | 2.76 ♦ | 912 (792–1090) | 22.5 × 103 | 62.6 × 103 | 36% | - | |
Mechanical ventilation | MV EN 1 | 2.76 ♦ | 965 (716–966) | 2.25 × 103 | 42.4 × 103 | 5% | 32% ∇ |
n ♦ (h−1) | Manual Airing Test | CO2 (ppm) | QH,nd (MJ) | Mechanical Ventilation Test | CO2 (ppm) | QH,nd (MJ) | Energy Saving (%) Δ | CO2 Difference (%) ° |
---|---|---|---|---|---|---|---|---|
2.76 | MA EN 1 | 912 (782–1090) | 62.6 × 103 | MV EN 1 | 965 (716–966) | 42.4 × 103 | 32% | * |
3.00 | MA EN 2 | 959 (849–1153) | 64.6 × 103 | MV EN 2 | 978 (735–978) | 42.6 × 103 | 34% | * |
3.24 | MA EN 3 | 1033 (922–1244) | 66.7 × 103 | MV EN 3 | 988 (753–988) | 42.7 × 103 | 36% | 4% |
3.57 | MA EN 4 | 1141 (1030–1142) | 69.2 × 103 | MV EN 4 | 998 (775–999) | 43.0 × 103 | 38% | 13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stabile, L.; Massimo, A.; Canale, L.; Russi, A.; Andrade, A.; Dell’Isola, M. The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms. Buildings 2019, 9, 110. https://doi.org/10.3390/buildings9050110
Stabile L, Massimo A, Canale L, Russi A, Andrade A, Dell’Isola M. The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms. Buildings. 2019; 9(5):110. https://doi.org/10.3390/buildings9050110
Chicago/Turabian StyleStabile, Luca, Angelamaria Massimo, Laura Canale, Aldo Russi, Alexandro Andrade, and Marco Dell’Isola. 2019. "The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms" Buildings 9, no. 5: 110. https://doi.org/10.3390/buildings9050110
APA StyleStabile, L., Massimo, A., Canale, L., Russi, A., Andrade, A., & Dell’Isola, M. (2019). The Effect of Ventilation Strategies on Indoor Air Quality and Energy Consumptions in Classrooms. Buildings, 9(5), 110. https://doi.org/10.3390/buildings9050110