Numerical Analysis of the Creep and Shrinkage Experienced in the Sydney Opera House and the Rise of Digital Twin as Future Monitoring Technology
Abstract
:1. Introduction
2. Finite Element Modelling Strategy
2.1. Shell
2.2. Interior
2.3. Windows
2.4. Podium
2.5. Foundation
2.6. Load Path
2.7. Model Layout
3. Analysis under Dead and Wind Loads
3.1. Dead Loads
3.2. Wind Loads
4. Analysis of Creep and Shrinkage
4.1. Model Inputs
4.1.1. Creep Analysis
4.1.2. Shrinkage Analysis
4.2. Obtained Results
4.2.1. Creep Effect
4.2.2. Shrinkage Effect
4.2.3. Mesh Quality
4.3. Discussion of Creep and Shrinkage Analysis
5. Suggestions for Further Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wells, K. Sydney Opera House. 2013. Available online: http://www.australia.gov.au/about-australia/australian-story/sydney-opera-house (accessed on 17 October 2013).
- Murray, P. The Saga of Sydney Opera House: The Dramatic Story of the Design and Construction of the Icon of Modern Australia; Spon Press: London, UK, 2004; p. 23. [Google Scholar]
- Cooperative Research Centre for Construction Innovation. Solutions for Managing the Sydney Opera House; Adopting BIM for Facilities Management, Cooperative Research Centre for Construction Innovation: Brisbane, Australia, 2007; Available online: http://www.sbenrc.com.au/wp-content/uploads/2013/10/11-AdoptingBIMforFacilitiesManagement-SolutionsforManagingtheSydneyOperaHouse.pdf (accessed on 11 October 2013).
- Cooperative Research Centre for Construction Innovation. Benefiting from Innovation; Clients Driving Construction Innovation, Cooperative Research Centre for Construction Innovation: Brisbane, Australia, 2008; pp. 163–167. [Google Scholar]
- Schevers, H.; Mitchell, J.; Akhurst, P.; Marchant, D.; Bull, S.; McDonald, K.; Drogemuller, R.; Linning, C. Towards digital facility modelling for Sydney opera house using IFC and semantic web technology. J. Inf. Technol. Constr. (ITcon) 2007, 12, 347–362. [Google Scholar]
- Ranzi, G.; McTaggart, G.; Moffat, B.; Lee, B.; Ross, K.; Cook, M. Concrete Conservation Framework for the Sydney Opera House. IABSE Symp. Rep. 2017, 108, 364–365. [Google Scholar] [CrossRef]
- National Geographic. Sydney Opera House; Richard Hammond’s Engineering Connections, 2009. Available online: http://www.nationalgeographic.com.au/tv/engineering-connections/episodes.aspx?series=2#about (accessed on 7 September 2009).
- Utzon, J. The Red Book. 1958. Available online: https://www.records.nsw.gov.au/archives/magazine/galleries/sydney-opera-house-the-red-book / (accessed on 7 September 1958).
- Utzon, J. The Yellow Book. 1962. Available online: https://gallery.records.nsw.gov.au/index.php/galleries/sydney-opera-house/sydney-opera-house-the-yellow-book/ (accessed on 7 September 1962).
- Aberdeen Group. Sydney Opera House; Aberdeen Group: Waltham, MA, USA, 1967; pp. 1–2. [Google Scholar]
- Arup, O.; Zunz, J.; Jenkins, R.; Croft, D.; Hooper, J.; Nutt, J.; O’Brien, T. Sydney Opera House. Arup J. 1973, 8, 26–52. [Google Scholar]
- Joint Technical Committee. AS/NZS 1170.2: 2011 Structural Design Actions-Part 2: Wind Actions; Australian/New Zealand Standard (AS/NZS), Joint Technical Committee BD-006; Joint Technical Committee: Brisbane, Australia; Wellington, New Zealand, 2011. [Google Scholar]
- Hoerner, S. Fluid-Dynamic Drag, 2nd ed.; Hoerner Fluid Dynamics: Bakersfield, CA, USA, 1965; pp. 24–51. [Google Scholar]
- Caltrans. Structural Modelling and Analysis; Bridge Design Practice: Sacramento, CA, USA, 2015; p. 6. Available online: http://www.dot.ca.gov/hq/esc/techpubs/manual/bridgemanuals/bridge-design-practice/pdf/bdp_4.pdf (accessed on 7 September 2015).
- Strand7. Strand7 R2.4 Released. News.St7. 2010. Available online: http://www.strand7.com/News.St7/Issue%207/News.St7%207-2010.pdf (accessed on 7 September 2010).
- Strand7. CEB-FIP MC 90 Concrete Creep and Shrinkage. 2017. Available online: http://file:///C:/Users/dfog3763/Downloads/ST7-1.20.40.12-CEB-FIP-MC-90-Concrete-Creep-and-Shrinkage%20(2).pdf (accessed on 7 September 2017).
- Comite Euro-International Du Beton. CEB-FIP Model Code 1990; Thomas Telford Services Ltd.: Lausanne, Switzerland, 1990. [Google Scholar]
- Hahn, A. Sydney Opera House; Geometric Architecture, Pendant Publishing: London, UK, 2012; p. 5. [Google Scholar]
- Rokugo, K.; Kunieda, M.; Lim, S. Patching Repair with ECC on Cracked Concrete Surface; Department of Civil Engineering, Gifu University: Gifu, Japan, 2005; pp. 1–10. [Google Scholar]
- Kheradmand, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Shrinkage performance of fly ash alkali-activated cement based binder mortars. KSCE J. Civ. Eng. 2018, 22, 1854–1864. [Google Scholar] [CrossRef]
- Kewalramani, M.; Mohamed, O.; Syed, Z.I. Engineered Cementitious Composites for Modern Civil Engineering Structures in Hot Arid Coastal Climatic Conditions. In Proceedings of the International High-Performance Built Environment Conference, Sydney, Australia, 17–18 November 2016; pp. 1–7. [Google Scholar]
- Kim, Y.; Quinn, K.; Satrom, N.; Garcia, J.; Sun, W.; Ghannoum, W.; Jirsa, J. Shear Strengthening of Reinforced and Prestressed Concrete Beams Using Carbon Fiber Reinforced Polymer (CFPR) Sheets and Anchors; University of Texas, Center for Transportation and Research: Austin, TX, USA, 2011; pp. 9–13. [Google Scholar]
- Mastali, M.; Valente, I.B.; Barros, J.A. Development of innovative hybrid sandwich panel slabs: Advanced numerical simulations and parametric studies. Compos. Struct. 2016, 152, 362–381. [Google Scholar] [CrossRef] [Green Version]
- Mastali, M.; Kinnunen, P.; Dalvand, A.; Firouz, R.M.; Illikainen, M. Drying shrinkage in alkali-activated binders–A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Abdollahnejad, Z.; Mastali, M.; Mastali, M.; Dalvand, A. Comparative Study on the Effects of Recycled Glass–Fiber on Drying Shrinkage Rate and Mechanical Properties of the Self-Compacting Mortar and Fly Ash–Slag Geopolymer Mortar. J. Mater. Civ. Eng. 2017, 29, 04017076. [Google Scholar] [CrossRef]
- Kheradmand, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Drying shrinkage of fly ash geopolymeric mortars reinforced with polymer hybrid fibres. Proc. Inst. Civ. Eng. Constr. Mater. 2017, 1–13. [Google Scholar] [CrossRef]
- Golewski, G.L. An assessment of microcracks in the Interfacial Transition Zone of durable concrete composites with fly ash additives. Compos. Struct. 2018, 200, 515–520. [Google Scholar] [CrossRef]
- Golewski, G.L. Evaluation of morphology and size of cracks of the Interfacial Transition Zone (ITZ) in concrete containing fly ash (FA). J. Hazard. Mater. 2018, 357, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Sepasgozar, S.M.E.; Shirowzhan, S.; Tahmasebinia, F. Infrastructure Management, Construction, Structure and Industry 4.0; IntechOpen: London, UK, 2019. [Google Scholar]
- Sepasgozar, S.M.; Forsythe, P.; Shirowzhan, S. Evaluation of terrestrial and mobile scanner technologies for part-built information modelling. J. Constr. Eng. Manag. 2018, 144, 04018110. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Shirowzhan, S.; Wang, C.C. A Scanner Technology Acceptance Model for Construction Projects. Procedia Eng. 2017, 1237–1246. [Google Scholar] [CrossRef]
- Sepasgozar, S.; Lim, S.; Shirowzhan, S.; Kim, Y.; Nadoushani, Z.M. Utilisation of a New Terrestrial Scanner for Reconstruction of As-built Models: A Comparative Study, ISARC. In Proceedings of the International Symposium on Automation and Robotics in Construction, Oulu, Finland, 15–18 June 2015; p. 1. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Wang, C.; Shirowzhan, S. Challenges and Opportunities for Implementation of Laser Scanners in Building Construction. In Proceedings of the 33rd International Symposium on Automation and Robotics in Construction (ISARC 2016), Auburn, AL, USA, 18–21 July 2016; pp. 742–751. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Forsythe, P.; Shirowzhan, S.; Norzahari, F. Scanners and Photography: A Combined Framework. In Proceedings of the 40th Australasian Universities Building Education Association (AUBEA), Cairns, Australia, 6–8 July 2016; pp. 819–828. [Google Scholar]
- Shirowzhan, S.; Sepasgozar, S.; Liu, C. Monitoring physical progress of indoor buildings using mobile and terrestrial point clouds. Constr. Res. Congr. 2018, 2018. [Google Scholar] [CrossRef]
- Shirowzhan, S.; Trinder, J. Building classification from lidar data for spatio-temporal assessment of 3D urban developments. Procedia Eng. 2017, 180, 1453–1461. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Lim, S.; Shirowzhan, S. Implementation of Rapid As-built Building Information Modeling Using Mobile LiDAR. In Proceedings of the 2014 Construction Research Congress: Construction in a Global Network, Atlanta, GA, USA, 19–21 May 2014; pp. 209–218. [Google Scholar]
- Sepasgozar, S.M.; Davis, S.R.; Li, H.; Luo, X. Modeling the Implementation Process for New Construction Technologies: Thematic Analysis Based on Australian and US Practices. J. Manag. Eng. 2018, 34, 05018005. [Google Scholar] [CrossRef]
- Sepasgozar, S.M.; Davis, S.R. Modelling the Construction Technology Implementation Framework: An Empirical Study. In Proceedings of the International Symposium on Automation and Robotics in Construction and Mining (ISARC 2015), Oulu, Finland, 15–18 June 2015. [Google Scholar]
Location: Sydney, Australia | Opening year: 1973 |
Architects: Jorn Utzon, Peter Hall | Approximate cost: $102 million AUD |
Structural engineers: Ove Arup & Partners | Height: 65 m |
Function: Performance facility | Capacity: 5532 patrons |
Details of the Structural Elements | Suggested Structural Element Sizes |
---|---|
Shells | All member sizes of the precast concrete shell structure were scaled from Jorn Utzon’s Yellow Book details including elevations, curvature of interior geometry and thickness of the section, understanding that the external curvature follows the 75 m radius sphere concept. |
Post-tensioning cables | 15.2 mm diameter strands (159 kN applied tension). (University of Sydney, 2016) |
Semi-arches | Scaled from Yellow Book. |
Precast concrete intermediate segment | Scaled from Yellow Book. |
Material Properties | Strand Elements | Young’s Modulus (MPa) | Density (kg/m3) | Poisson’s Ratio | Sectional Area (m2) |
---|---|---|---|---|---|
Concrete (40 MPa) | Brick | 32,800 | 2400 | 0.2 | N/A |
Steel | Longitudinal Beam | 200,000 | 7850 | 0.3 | 0.006567 |
Steel | Lateral Beam | 200,000 | 7850 | 0.3 | 0.002919 |
Variable | Result | Reasoning |
---|---|---|
32 m/s | ||
0.75 | ||
0.98 | ||
0.948 | by linear interpolation | |
24 m/s | ||
30.336 m/s | ||
Case | Average (m/s) | Disp. Y (mm) |
---|---|---|
5 year | 27.17 | 3.16 |
20 year | 31.41 | 11.0 |
50 year | 33.11 | 12.3 |
100 year | 34.81 | 13.5 |
500 year | 38.21 | 16.5 |
Analysis | Solver |
---|---|
Dead and Wind Load | Linear Static |
Creep and Shrinkage | QuasiStatic |
1.0 | |
1037 | |
0.3 | |
3.4 |
Type of Cement | Slowly Hardening Cements SL | Normal or Rapid Hardening Cements N and R | Rapid Hardening High Strength Cements RS |
---|---|---|---|
4 | 5 | 8 |
1.0 | |
4411 | |
0.5 | |
0.00027328 |
Parameter | Present | 2050 |
---|---|---|
0.000245 | 0.000255 | |
0.00064 | 0.000643 | |
Total Strain (%) | 0.0885 | 0.0898 |
(MPa) | 177.0 | 179.6 |
(kN) | 32.12 | 32.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tahmasebinia, F.; Fogerty, D.; Wu, L.O.; Li, Z.; Sepasgozar, S.M.E.; Zhang, K.; Sepasgozar, S.; Marroquin, F.A. Numerical Analysis of the Creep and Shrinkage Experienced in the Sydney Opera House and the Rise of Digital Twin as Future Monitoring Technology. Buildings 2019, 9, 137. https://doi.org/10.3390/buildings9060137
Tahmasebinia F, Fogerty D, Wu LO, Li Z, Sepasgozar SME, Zhang K, Sepasgozar S, Marroquin FA. Numerical Analysis of the Creep and Shrinkage Experienced in the Sydney Opera House and the Rise of Digital Twin as Future Monitoring Technology. Buildings. 2019; 9(6):137. https://doi.org/10.3390/buildings9060137
Chicago/Turabian StyleTahmasebinia, Faham, Daniel Fogerty, Lang Oliver Wu, Zhichao Li, Saleh Mohammad Ebrahimzadeh Sepasgozar, Kai Zhang, Samad Sepasgozar, and Fernando Alonso Marroquin. 2019. "Numerical Analysis of the Creep and Shrinkage Experienced in the Sydney Opera House and the Rise of Digital Twin as Future Monitoring Technology" Buildings 9, no. 6: 137. https://doi.org/10.3390/buildings9060137
APA StyleTahmasebinia, F., Fogerty, D., Wu, L. O., Li, Z., Sepasgozar, S. M. E., Zhang, K., Sepasgozar, S., & Marroquin, F. A. (2019). Numerical Analysis of the Creep and Shrinkage Experienced in the Sydney Opera House and the Rise of Digital Twin as Future Monitoring Technology. Buildings, 9(6), 137. https://doi.org/10.3390/buildings9060137