Evaluating the Impact of an Active Labour Market Policy on Employment: Short- and Long-Term Perspectives
Abstract
:1. Introduction
2. The Labour Market Insertion Contract
3. Methodology
3.1. The Potential Outcomes Model
3.2. Methods of Selection on Observables
3.3. Propensity Score Matching
4. Database
5. Results and Discussion
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abadie, Alberto, and Guido W. Imbens. 2006. Large sample properties of matching estimators for average treatment effects. Econometrica 74: 235–67. [Google Scholar] [CrossRef]
- Abadie, Alberto, and Guido W. 2016. Imbens. Matching on the Estimated Propensity Score. Econometrica 84: 781–807. [Google Scholar] [CrossRef]
- Becker, Sasha O., and Andrea Ichino. 2002. Estimation of average treatment effects based on propensity scores. The Stata Journal 2: 358–77. [Google Scholar]
- BOE. 1997. Ley 64/1997, de 26 de Diciembre, por la que se regulan incentivos en materia de Seguridad Social y carácter fiscal para el fomento de la contratación indefinida y la estabilidad en el empleo. Boletín Oficial del Estado 312: 38251–54. [Google Scholar]
- BOE. 2001. Ley 12/2001, de 9 de Julio, de medidas urgentes de reforma de trabajo para el incremento del empleo y la mejora de su calidad. Boletín Oficial del Estado 164: 24890–902. [Google Scholar]
- BOE. 2006. Ley 43/2006, de 29 de Diciembre, para la mejora del crecimiento y del empleo. Boletín Oficial del Estado 312: 46586–600. [Google Scholar]
- BOE. 2007. Ley 44/2007, de 14 de Diciembre, para la regulación del régimen y de las empresas de inserción. Boletín Oficial del Estado 299: 51331–39. [Google Scholar]
- Bonnal, Liliane, Denis Fougère, and Anne Sérandon. 1997. Evaluating the impact of French employment policies on individual labour market histories. The Review of Economic Studies 64: 683–713. [Google Scholar] [CrossRef]
- Brodaty, Thomas, Bruno Crépon, and Denis Fougère. 2002. Do Long-Term Unemployed Workers Benefit from Active Labor Market Programs? Evidence from France. New York: Mimeo. [Google Scholar]
- Cansino, José Manuel, and Antonio Sánchez-Braza. 2010. Evaluación del impacto de un programa de formación sobre el tiempo de búsqueda de un empleo. Investigaciones Regionales 19: 51–74. [Google Scholar]
- Cansino, José Manuel, and Antonio Sánchez-Braza. 2011. Effectiveness of public training programs reducing the time needed to find a job. Estudios de Economía Aplicada 29: 1–26. [Google Scholar]
- Cansino, José Manuel, Jaime Lopez-Melendo, Maria del P. Pablo-Romero, and Antonio Sánchez-Braza. 2013. An economic evaluation of public programs for internationalization: The case of the Diagnostic program in Spain. Evaluation and Program Planning 41: 38–46. [Google Scholar] [CrossRef] [PubMed]
- Card, David, Jochen Kluve, and Andrea Weber. 2010. Active labour market policy evaluations. A meta-analysis. The Economic Journal 120: 452–47. [Google Scholar] [CrossRef]
- Clemente, Jesús. 2007. Estudio cuantitativo del impacto de las bonificaciones sobre el empleo; Madrid: Ministerio de Trabajo y Asuntos Sociales.
- Dehejia, Rajeev H., and Sadek Wahba. 1999. Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs. Journal of the American Statistical Association 94: 1053–62. [Google Scholar] [CrossRef]
- Dehejia, Rajeev H., and Sadek Wahba. 2002. Propensity score matching-methods for nonexperimental causal studies. The Review of Economics and Statistics 84: 151–61. [Google Scholar] [CrossRef]
- Duch, Raymond M., and Randy Stevenson. 2006. Assesing the magnitude of the economic vote over time and across nations. Electoral Studies 25: 528–47. [Google Scholar] [CrossRef]
- Eurostat. 2012. Unemployment Statistics. Available online: http://ec.europa.eu/eurostat/web/lfs/data/database (accessed on 28 September 2012).
- Fredriksson, Peter, and Per Johansson. 2003. Employment, Mobility, and Active Labor Market Programs. IFAU Working Paper 1–39. Uppsala: Institute for Labour Market Policy Evaluation. [Google Scholar]
- García Pérez, José Ignacio. 2008. La muestra continua de vidas laborales. Una guía de uso para el análisis de transiciones. Revista de Economía Aplicada 16: 5–28. [Google Scholar]
- Gerfin, Michael, and Michael Lechner. 2002. A microeconometric evaluation of the active labour market policy in Switzerland. The Economic Journal 112: 854–93. [Google Scholar] [CrossRef]
- Hahn, Jinyong. 1998. On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66: 315–31. [Google Scholar] [CrossRef]
- Heckman, James J., and Joseph V. Hotz. 1989. Choosing among alternative nonexperimental methods for estimating the impact of social programs: The case of manpower training. Journal of the American Statistical Association 84: 862–74. [Google Scholar] [CrossRef]
- Heckman, James J., Hidehiko Ichimura, and Petra E. Todd. 1997. Matching as an econometric evaluation estimator: Evidence from evaluating a job training program. The Review of Economic Studies 64: 605–54. [Google Scholar] [CrossRef]
- Heckman, James J., Hidehiko Ichimura, and Petra E. Todd. 1998. Matching as an econometric evaluation estimator. The Review of Economic Studies 65: 261–94. [Google Scholar] [CrossRef]
- Hirano, Keisuke, and Guido W. Imbens. 2001. Estimation of causal effects using propensity score weighting: An application to data on right heart catheterization. Health Services and Outcomes Research Methodology 2: 259–78. [Google Scholar] [CrossRef]
- Holland, Paul W. 1986. Statistics and causal inference. Journal of the American Statistical Association 81: 945–60. [Google Scholar] [CrossRef]
- Imai, Kosuke. 2005. Do get-out-the-vote calls reduce turnout? The importance of statistical methods for field experiments. The American Political Science Review 99: 283–300. [Google Scholar] [CrossRef]
- Imbens, Guido W., and Jeffrey Wooldridge. 2009. Recent developments in the econometrics of program evaluation. Journal of Economic Literature 47: 5–86. [Google Scholar] [CrossRef] [Green Version]
- INE. 2012. Encuesta de Población Activa (EPA), de 2001 a 2006. Instituto Nacional de Estadística. Available online: http://www.ine.es/dyngs/INEbase/es/operacion.htm?c=Estadistica_C&cid=1254736176918&menu=resultados&idp=1254735976595 (accessed on 28 September 2012).
- Kluve, Jochen. 2010. The effectiveness of European active labor market programs. Labour Economics 17: 904–18. [Google Scholar] [CrossRef]
- Kluve, Jochen, Hartmut Lehmann, and Christoph M. Schmidt. 1999. Active labor market policies in Poland: Human capital enhancement, stigmatization or benefit churning? Journal of Comparative Economics 27: 61–89. [Google Scholar] [CrossRef]
- Lorentzen, Thomas, and Espen Dahl. 2005. Active labour market programs in Norway: Are they helpful for social assistance recipients? Journal of European Social Policy 15: 27–45. [Google Scholar] [CrossRef]
- Ministerio de Empleo y Seguridad Social. 2010. Muestra Continua de Vidas Laborales (MCVL), ediciones de 2004 a 2009; Madrid: Ministerio de Empleo y Seguridad Social.
- OECD. 2014. Public Expenditure and Participant Stocks on Labour Market Programmes. Organisation for Economic Co-operation and Development. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=LMPEXP (accessed on 15 July 2014).
- Quintanilla, Raquel Yolanda. 2001. El contrato de inserción [art. 15.1.d) E.T.]. Revista del Ministerio de Trabajo y Asuntos Sociales 33: 189–214. [Google Scholar]
- Rosenbaum, Paul R. 2002. Covariance adjustment in randomized experiments and observational studies. Statistical Science 17: 286–304. [Google Scholar]
- Rosenbaum, Paul R., and Donald B. Rubin. 1983. The central role of the propensity score in observational studies for causal effects. Biometrika 70: 41–55. [Google Scholar] [CrossRef]
- Rosholm, Michael, and Michael Svarer. 2004. Estimating the Treated Effect of Active Labor Market Programs. IZA Discussion Paper No.1300 1–40. Bonn: Institute for the Study of Labor. [Google Scholar]
- Rubin, Donald B. 1974. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology 66: 688–701. [Google Scholar] [CrossRef]
- Rubin, Donald B. 1978. Bayesian inference for causal effects the role of randomization. The Annals of Statistics 6: 34–58. [Google Scholar] [CrossRef]
- SEPE. 2012. Datos estadísticos de contratos, de 2002 a 2006. Servicio Público de Empleo Estatal. Available online: https://www.sepe.es/contenidos/que_es_el_sepe/estadisticas/datos_estadisticos/contratos/index.html (accessed on 28 September 2012).
- Toharia, Luis. 2008. El efecto de las bonificaciones de las cotizaciones a la Seguridad Social para el empleo en la afiliación a la Seguridad Social. Un intento de evaluación Macroeconómica, microeconómica e institucional; Madrid: Ministerio de Trabajo e Inmigración.
- Zweimüller, Josef, and Rudolf Winter-Ebmer. 1996. Manpower training programs and employment stability. Economica 63: 113–30. [Google Scholar] [CrossRef]
Total Individuals | ||||
---|---|---|---|---|
Variable | Description | Obs. | Mean | Std.Dev. |
1. Socio-demographic factors. Base category: women with no education. | ||||
Gender | 1 if male; 0 if female. | 2638 | 0.498 | 0.500 |
Age | Age at end of contract, between 18 and 30 years old. | 5294 | 24.563 | 3.264 |
Compulsory | 1 if has compulsory studies; 0 otherwise. | 1977 | 0.373 | 0.484 |
College | 1 if has high school studies or similar; 0 otherwise. | 1582 | 0.299 | 0.458 |
Degree level | 1 if has university studies; 0 otherwise. | 985 | 0.186 | 0.389 |
2. Year end and duration of the respective contract. Base category: duration less than 10 months. | ||||
Year | 1 if contract ends in 2002; 2 if ends in 2003; 3 if ends in 2004; 4 if ends in 2005; 5 if ends in 2006 | 5294 | 2.500 | 1.287 |
Duration | 1 if duration of contract is equal or greater of 10 months (maximum duration: 12 months) | 5294 | 0.231 | 0.422 |
3. Profesional group. Base category: workers and similar. | ||||
Specialists | 1 if Official 3th grade and specialists; 0 otherwise. | 806 | 0.152 | 0.359 |
Official | 1 if Official 1st and 2nd grade; 0 otherwise. | 664 | 0.125 | 0.331 |
Assistant | 1 if Assitant and auxiliar without titulation; 0 otherwise. | 633 | 0.120 | 0.324 |
Administrative | 1 if Administrative auxiliar, administrative and supervisor; 0 otherwise. | 1314 | 0.248 | 0.432 |
Engineers | 1 if Technical engineers, graduates and senior management; 0 otherwise. | 508 | 0.096 | 0.295 |
4. Economic activity. Base category: other unspecified | ||||
Agri./Extractive | 1 if agriculture and extractive; 0 otherwise. | 649 | 0.123 | 0.328 |
Energy/Construction | 1 if energy and construction; 0 otherwise. | 1509 | 0.285 | 0.451 |
Trade/Hotel/Transport | 1 if trade, hotel and transport; 0 otherwise. | 438 | 0.083 | 0.276 |
Financial/Property | 1 if financial and real estate; 0 otherwise | 254 | 0.048 | 0.214 |
Education | 1 if educational activities; 0 otherwise. | 853 | 0.161 | 0.368 |
Public/Health/Social | 1 if public administration, health and other social activities; 0 otherwise. | 615 | 0.116 | 0.320 |
5. Community implementation of the respective contract. Base category: Catalonia. | ||||
Andalusia | 1 if Andalusia; 0 otherwise. | 841 | 0.159 | 0.366 |
Aragon | 1 if Aragon; 0 otherwise. | 117 | 0.022 | 0.147 |
Asturias | 1 if Asturias; 0 otherwise. | 135 | 0.026 | 0.158 |
Balearic Islands | 1 if Balearic Islands; 0 otherwise. | 111 | 0.021 | 0.143 |
Basque Country | 1 if Basque Country; 0 otherwise. | 241 | 0.046 | 0.208 |
Canary Islands | 1 if Canary Islands; 0 otherwise. | 327 | 0.062 | 0.241 |
Cantabria | 1 if Cantabria; 0 otherwise. | 88 | 0.017 | 0.128 |
Castile and Leon | 1 if Castile and Leon; 0 otherwise. | 300 | 0.057 | 0.231 |
Castile-La Mancha | 1 if Castile-La Mancha; 0 otherwise. | 249 | 0.047 | 0.212 |
Ceuta and Melilla | 1 if Ceuta and Melilla; 0 otherwise. | 33 | 0.006 | 0.079 |
Extremadura | 1 if Extremadura; 0 otherwise. | 91 | 0.017 | 0.130 |
Galicia | 1 if Galicia; 0 otherwise. | 498 | 0.094 | 0.292 |
Madrid | 1 if Madrid; 0 otherwise. | 761 | 0.144 | 0.351 |
Murcia | 1 if Murcia; 0 otherwise. | 119 | 0.022 | 0.148 |
Rioja | 1 if Rioja; 0 otherwise. | 45 | 0.009 | 0.092 |
Valencian Community | 1 if Valencian Community; 0 otherwise. | 578 | 0.109 | 0.312 |
Participants | Control | |||||
---|---|---|---|---|---|---|
Variable | Obs. | Mean | Std.Dev. | Obs. | Mean | Std.Dev. |
1. Socio-demographic factors. Base category: women with no education. | ||||||
Gender | 347 | 0.345 | 0.476 | 2291 | 0.534 | 0.499 |
Age | 1006 | 24.904 | 3.099 | 4288 | 24.483 | 3.297 |
Compulsory | 298 | 0.296 | 0.457 | 1679 | 0.392 | 0.488 |
College | 274 | 0.272 | 0.445 | 1308 | 0.305 | 0.460 |
Degree level | 287 | 0.285 | 0.452 | 698 | 0.163 | 0.369 |
2. Year end and duration of the respective contract. Base category: duration less than 10 months. | ||||||
Year | 1006 | 2.405 | 1.102 | 4288 | 2.522 | 1.326 |
Duration | 1006 | 0.224 | 0.417 | 4288 | 0.233 | 0.423 |
3. Profesional group. Base category: workers and similar. | ||||||
Specialists | 27 | 0.027 | 0.162 | 779 | 0.182 | 0.386 |
Official | 43 | 0.043 | 0.202 | 621 | 0.145 | 0.352 |
Assistant | 106 | 0.105 | 0.307 | 527 | 0.123 | 0.328 |
Administrative | 161 | 0.160 | 0.367 | 1153 | 0.269 | 0.443 |
Engineers | 318 | 0.316 | 0.465 | 190 | 0.044 | 0.206 |
4. Economic activity. Base category: other unspecified. | ||||||
Agri./Extractive | 24 | 0.024 | 0.153 | 625 | 0.146 | 0.353 |
Energy/Construction | 18 | 0.018 | 0.133 | 1491 | 0.348 | 0.476 |
Trade/Hotel/Transport | 13 | 0.013 | 0.055 | 435 | 0.101 | 0.302 |
Financial/Property | 24 | 0.024 | 0.153 | 230 | 0.054 | 0.225 |
Education | 646 | 0.642 | 0.480 | 207 | 0.048 | 0.214 |
Public/Health/Social | 202 | 0.201 | 0.401 | 413 | 0.096 | 0.295 |
5. Community implementation of the respective contract. Base category: Catalonia. | ||||||
Andalusia | 95 | 0.094 | 0.293 | 746 | 0.174 | 0.379 |
Aragon | 21 | 0.021 | 0.143 | 96 | 0.022 | 0.148 |
Asturias | 30 | 0.030 | 0.170 | 105 | 0.024 | 0.155 |
Balearic Islands | 14 | 0.014 | 0.117 | 97 | 0.023 | 0.149 |
Basque Country | 35 | 0.035 | 0.183 | 206 | 0.048 | 0.214 |
Canary Islands | 98 | 0.097 | 0.297 | 229 | 0.053 | 0.225 |
Cantabria | 25 | 0.025 | 0.156 | 63 | 0.015 | 0.120 |
Castile and Leon | 70 | 0.070 | 0.255 | 230 | 0.054 | 0.225 |
Castile-La Mancha | 92 | 0.091 | 0.288 | 157 | 0.037 | 0.188 |
Ceuta and Melilla | 27 | 0.027 | 0.162 | 6 | 0.001 | 0.037 |
Extremadura | 7 | 0.007 | 0.083 | 84 | 0.020 | 0.139 |
Galicia | 223 | 0.222 | 0.416 | 275 | 0.064 | 0.245 |
Madrid | 99 | 0.098 | 0.298 | 662 | 0.154 | 0.361 |
Murcia | 10 | 0.001 | 0.032 | 118 | 0.028 | 0.164 |
Rioja | 10 | 0.010 | 0.099 | 35 | 0.008 | 0.090 |
Valencian Community | 98 | 0.097 | 0.297 | 480 | 0.112 | 0.315 |
Variable | (1) | (2) | (3) | (4) | (5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Constant | −0.948 | *** | −0.838 | *** | −0.166 | −0.461 | * | −0.671 | ** | ||
(0.161) | (0.165) | (0.178) | (0.235) | (0.257) | |||||||
1. Socio-demographic factors | Gender | −0.411 | *** | −0.409 | *** | −0.425 | *** | −0.360 | *** | −0.311 | *** |
(0.042) | (0.042) | (0.048) | (0.062) | (0.065) | |||||||
Age | 0.015 | ** | 0.015 | ** | 0.000 | −0.015 | −0.023 | ** | |||
(0.006) | (0.006) | (0.007) | (0.009) | (0.010) | |||||||
Compulsory | −0.228 | *** | −0.234 | *** | −0.165 | ** | −0.132 | −0.100 | |||
(0.064) | (0.064) | (0.065) | (0.091) | (0.093) | |||||||
College | −0.195 | *** | −0.200 | *** | −0.192 | *** | −0.188 | * | −0.176 | * | |
(0.067) | (0.067) | (0.072) | (0.097) | (0.101) | |||||||
Degree Level | 0.157 | ** | 0.156 | ** | −0.208 | ** | −0.140 | −0.061 | |||
(0.071) | (0.071) | (0.083) | (0.110) | (0.116) | |||||||
2. Year end and duration | Year | −0.048 | *** | −0.040 | ** | −0.020 | −0.017 | ||||
(0.015) | (0.016) | (0.022) | (0.024) | ||||||||
Duration | −0.018 | −0.039 | 0.171 | ** | −0.077 | ||||||
(0.048) | (0.053) | (0.064) | (0.073) | ||||||||
3. Profesional group | Specialists | −1.165 | *** | −0.859 | *** | −0.904 | *** | ||||
(0.095) | (0.113) | (0.119) | |||||||||
Official | −0.808 | *** | −0.498 | *** | −0.490 | *** | |||||
(0.086) | (0.114) | (0.116) | |||||||||
Assistant | −0.359 | *** | −0.396 | *** | −0.371 | *** | |||||
(0.075) | (0.095) | (0.100) | |||||||||
Administrative | −0.624 | *** | −0.493 | *** | −0.423 | *** | |||||
(0.065) | (0.083) | (0.090) | |||||||||
Engineers | 0.939 | *** | 0.872 | *** | 0.933 | *** | |||||
(0.082) | (0.105) | (0.113) | |||||||||
4. Economic activity | Agri./Extractive | −0.528 | *** | −0.480 | *** | ||||||
(0.118) | (0.122) | ||||||||||
Energy/Construction | −0.864 | *** | −0.941 | *** | |||||||
(0.116) | (0.121) | ||||||||||
Trade/Hotel/Transport | −1.062 | *** | −1.084 | *** | |||||||
(0.236) | (0.255) | ||||||||||
Financial/Property | −0.124 | −0.177 | |||||||||
(0.139) | (0.145) | ||||||||||
Education | 1.949 | *** | 1.875 | *** | |||||||
(0.079) | (0.082) | ||||||||||
Public/Health/Social | 0.631 | *** | 0.630 | *** | |||||||
(0.084) | (0.087) | ||||||||||
5. Community implementation | Andalusia | 0.227 | * | ||||||||
(0.127) | |||||||||||
Aragon | 0.239 | ||||||||||
(0.202) | |||||||||||
Asturias | 0.629 | *** | |||||||||
(0.169) | |||||||||||
Balearic Islands | 0.069 | ||||||||||
(0.233) | |||||||||||
Basque Country | 0.343 | ** | |||||||||
(0.167) | |||||||||||
Canary Islands | 0.835 | *** | |||||||||
(0.141) | |||||||||||
Cantabria | 0.495 | ** | |||||||||
(0.210) | |||||||||||
Castile and Leon | 0.449 | *** | |||||||||
(0.145) | |||||||||||
Castile-La Mancha | 0.809 | *** | |||||||||
(0.150) | |||||||||||
Ceuta and Melilla | 0.794 | ** | |||||||||
(0.346) | |||||||||||
Extremadura | −0.349 | ||||||||||
(0.328) | |||||||||||
Galicia | 1.136 | *** | |||||||||
(0.126) | |||||||||||
Madrid | 0.106 | ||||||||||
(0.127) | |||||||||||
Murcia | −2.006 | *** | |||||||||
(0.550) | |||||||||||
Rioja | 0.194 | ||||||||||
(0.252) | |||||||||||
Valencian Comunity | 0.233 | * | |||||||||
(0.123) | |||||||||||
Número Obs. | 5294 | 5294 | 5294 | 5294 | 5294 | ||||||
Log. Verosimilitud | −2480.9 | −2476.4 | −2119.7 | −1256.8 | −1158.7 | ||||||
Pseudo-R2 | 0.0363 | 0.0380 | 0.1766 | 0.5118 | 0.5499 | ||||||
LR chi2 | 186.74 | 195.77 | 909.20 | 2634.98 | 2831.23 | ||||||
(p-value) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Variable | (1) | (2) | (3) | (4) | (5) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Constant | −1.599 | *** | −1.403 | *** | −0.146 | −0.582 | −0.920 | * | |||
(0.284) | (0.292) | (0.318) | (0.441) | (0.486) | |||||||
1. Socio-demographic factors | Gender | −0.731 | *** | −0.729 | *** | −0.805 | *** | −0.641 | *** | −0.549 | *** |
(0.075) | (0.075) | (0.088) | (0.119) | (0.123) | |||||||
Age | 0.027 | ** | 0.027 | ** | 0.001 | −0.035 | ** | −0.051 | *** | ||
(0.011) | (0.011) | (0.013) | (0.017) | (0.018) | |||||||
Compulsory | −0.408 | *** | −0.421 | *** | −0.322 | *** | −0.243 | −0.194 | |||
(0.113) | (0.113) | (0.115) | (0.176) | (0.181) | |||||||
College | −0.349 | *** | −0.361 | *** | −0.389 | *** | −0.307 | * | −0.291 | ||
(0.118) | (0.118) | (0.128) | (0.185) | (0.193) | |||||||
Degree Level | 0.255 | ** | 0.252 | ** | −0.403 | *** | −0.232 | −0.098 | |||
(0.122) | (0.122) | (0.148) | (0.207) | (0.221) | |||||||
2. Year end and duration | Year | −0.082 | *** | −0.076 | ** | −0.029 | −0.018 | ||||
(0.026) | (0.029) | (0.042) | (0.045) | ||||||||
Duration | −0.008 | −0.088 | 0.358 | *** | −0.111 | ||||||
(0.085) | (0.095) | (0.120) | (0.144) | ||||||||
3. Profesional group | Specialists | −2.311 | *** | −1.528 | *** | −1.644 | *** | ||||
(0.208) | (0.208) | (0.215) | |||||||||
Official | −1.508 | *** | −0.915 | *** | −0.873 | *** | |||||
(0.172) | (0.208) | (0.217) | |||||||||
Assistant | −0.661 | *** | −0.691 | *** | −0.615 | *** | |||||
(0.135) | (0.176) | (0.190) | |||||||||
Administrative | −1.138 | *** | −0.834 | *** | −0.719 | *** | |||||
(0.118) | (0.155) | (0.169) | |||||||||
Engineers | 1.517 | *** | 1.651 | *** | 1.766 | *** | |||||
(0.138) | (0.197) | (0.217) | |||||||||
4. Economic activity | Agri./Extractive | −1.070 | *** | −1.009 | *** | ||||||
(0.238) | (0.250) | ||||||||||
Energy/Construction | −2.014 | *** | −2.133 | *** | |||||||
(0.274) | (0.279) | ||||||||||
Trade/Hotel/Transport | −2.482 | *** | −2.553 | *** | |||||||
(0.582) | (0.569) | ||||||||||
Financial/Property | −0.346 | −0.450 | |||||||||
(0.270) | (0.280) | ||||||||||
Education | 3.357 | *** | 3.219 | *** | |||||||
(0.149) | (0.152) | ||||||||||
Public/Health/Social | 1.042 | *** | 1.047 | *** | |||||||
(0.156) | (0.164) | ||||||||||
5. Community implementation | Andalusia | 0.362 | |||||||||
(0.244) | |||||||||||
Aragon | 0.451 | ||||||||||
(0.369) | |||||||||||
Asturias | 1.220 | *** | |||||||||
(0.312) | |||||||||||
Balearic Islands | 0.219 | ||||||||||
(0.432) | |||||||||||
Basque Country | 0.677 | ** | |||||||||
(0.312) | |||||||||||
Canary Islands | 1.591 | *** | |||||||||
(0.273) | |||||||||||
Cantabria | 0.949 | ** | |||||||||
(0.368) | |||||||||||
Castile and Leon | 0.776 | *** | |||||||||
(0.263) | |||||||||||
Castile-La Mancha | 1.443 | *** | |||||||||
(0.286) | |||||||||||
Ceuta and Melilla | 1.556 | ** | |||||||||
(0.606) | |||||||||||
Extremadura | −0.736 | ||||||||||
(0.585) | |||||||||||
Galicia | 2.110 | *** | |||||||||
(0.237) | |||||||||||
Madrid | 0.195 | ||||||||||
(0.235) | |||||||||||
Murcia | −3.539 | *** | |||||||||
(1.071) | |||||||||||
Rioja | 0.406 | ||||||||||
(0.469) | |||||||||||
Valencian Comunity | 0.492 | ** | |||||||||
0.362 | |||||||||||
Número Obs. | 5294 | 5294 | 5294 | 5294 | 5294 | ||||||
Log. Verosimilitud | −2480.8 | −2476.5 | −2113.9 | −1257.2 | −1159.5 | ||||||
Pseudo-R2 | 0.0363 | 0.0380 | 0.1788 | 0.5116 | 0.5500 | ||||||
LR chi2 | 186.87 | 195.48 | 920.69 | 2634.10 | 2830.51 | ||||||
(p-value) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Response Variable | Bandwidth | Std. Dev. | t–Stat. | Prob. | ||
---|---|---|---|---|---|---|
Y1 | 0.01 | −75.710 | *** | 10.066 | −7.521 | 0.000 |
0.05 | −75.953 | *** | 10.021 | −7.579 | 0.000 | |
0.10 | −75.407 | *** | 9.430 | −7.997 | 0.000 | |
0.15 | −78.011 | *** | 9.045 | −8.625 | 0.000 | |
0.20 | −81.457 | *** | 7.762 | −10.494 | 0.000 | |
Y2 | 0.01 | −154.182 | *** | 25.369 | −6.078 | 0.000 |
0.05 | −148.543 | *** | 25.104 | −5.917 | 0.000 | |
0.10 | −145.279 | *** | 24.710 | −5.879 | 0.000 | |
0.15 | −150.810 | *** | 22.478 | −6.709 | 0.000 | |
0.20 | −160.828 | *** | 20.765 | −7.745 | 0.000 |
Response Variable | Radius | Std. Dev. | t–Stat. | Prob. | ||
---|---|---|---|---|---|---|
Y1 | 0.01 | −91.714 | *** | 5.055 | −18.142 | 0.000 |
0.05 | −90.996 | *** | 5.102 | −17.837 | 0.000 | |
0.10 | −90.560 | *** | 5.122 | −17.679 | 0.000 | |
0.15 | −90.631 | *** | 5.106 | −17.750 | 0.000 | |
0.20 | −90.662 | *** | 5.093 | −17.802 | 0.000 | |
Y2 | 0.01 | −199.061 | *** | 12.927 | −15.399 | 0.000 |
0.05 | −195.046 | *** | 13.028 | −14.972 | 0.000 | |
0.10 | −193.169 | *** | 13.073 | −14.776 | 0.000 | |
0.15 | −193.307 | *** | 13.037 | −14.827 | 0.000 | |
0.20 | −193.444 | *** | 13.008 | −14.871 | 0.000 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cansino, J.M.; Sánchez-Braza, A.; Espinoza, N. Evaluating the Impact of an Active Labour Market Policy on Employment: Short- and Long-Term Perspectives. Soc. Sci. 2018, 7, 58. https://doi.org/10.3390/socsci7040058
Cansino JM, Sánchez-Braza A, Espinoza N. Evaluating the Impact of an Active Labour Market Policy on Employment: Short- and Long-Term Perspectives. Social Sciences. 2018; 7(4):58. https://doi.org/10.3390/socsci7040058
Chicago/Turabian StyleCansino, José M., Antonio Sánchez-Braza, and Nereyda Espinoza. 2018. "Evaluating the Impact of an Active Labour Market Policy on Employment: Short- and Long-Term Perspectives" Social Sciences 7, no. 4: 58. https://doi.org/10.3390/socsci7040058
APA StyleCansino, J. M., Sánchez-Braza, A., & Espinoza, N. (2018). Evaluating the Impact of an Active Labour Market Policy on Employment: Short- and Long-Term Perspectives. Social Sciences, 7(4), 58. https://doi.org/10.3390/socsci7040058