Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Ticks and Synthetic Acaricides
4. Tick Control Methods
Acaricidal Class | First Year of Use | Mode of Action | First Report of Resistance | Mechanisms of Resistance | References |
---|---|---|---|---|---|
Arsenic | 1893 | 1937 | [9,41,49] | ||
Organochlorines | 1946 | GABA-gated chloride channel antagonists Bind at the picrotoxinin site in the γ-aminobutyric acid (GABA) chloride ionophore complex. | 1952 | Enhanced metabolism and reduced absorption of the chemical | [14,40,41] |
Organophosphates | 1955 | Acetylcholinesterase Inhibits the action of acetylcholinesterase | 1965 | Target-site insensitivity | [14,40,41] |
Carbamates | 1955 | Inhibits the action of acetylcholinesterase | 1965 | [14,40,41] | |
Formamidines (Amitraz) | 1975 | Octopamine receptor α-2 agonist Overstimulates the nervous system | 1981 | Mutations in the octopamine/tyramine receptor Target-site insensitivity in G protein-coupled receptors Amino acid substitution in the beta-2-adrenergic-like octopamine receptor | [4,8,14,40,50] |
Pyrethroids | 1977 | GABA-gated chloride channel antagonists Prolongs opening of sodium channels in nerve, muscle, and other excitable cells. | 1989 | Mutations in the voltage gated sodium channel gene | [8,40,41,51] |
Macrocyclic lactones | 1981 | Has a toxic effect on ticks by stimulating the release and binding of GABA at nerve endings, which eventually blocks the transmittance of electrical activity in nerves and muscle cells Glutamate–gated Cl-channel Blocks nerve signals by interfering with the glutamate gated chloride (GlCl) | 2001 | Insensitivity of the GABA or glutamate gated chloride ion channels | [8,40,41,52] |
Phenylpyrazoles (Fipronil) | 1993 | Blocks the gamma-Aminobutyric acid gated chloride ion-channel (GABA-C) | 2003 | Mutations in the GABA-Cl gene | [41,53,54,55] |
Benzoylphenyl urea (Fluazuron) | 1990 | Disturbs cuticle formation Blocks the incorporation of radiola-beled N-acetylglucosamine | 2010 | [41,56] | |
Spinosad (Tetracyclic-macrolide compounds) | 2001 | Nicotinic acetylcholine receptors (nAChRs) γ-amino-butyric acid (GABA) receptors Hyperexcitation and disruption of an insect’s nervous system | [41,57,58,59,60] | ||
Isoxazolines | 2014 | Inhibits GABA-gated chloride ion channels | [36,61,62] |
5. Tick Resistance
- Natural resistance or tolerance: “present in the external body-part and in all individuals of the species and does not develop as a result of acaricidal use”. This may be due to the impermeability of the cuticle or behavioral traits. It is not necessarily transmitted to their offspring [47].
6. Natural Products
7. Essential Oils in Control of Ticks
Acaricidal Activity of Essential Oils against Ticks
8. Mechanisms of Action of the Essential Oils and/or Their Components against Ticks
8.1. Neurotoxicity Effects
8.2. Inhibition of Acetylcholinesterase Activity
8.3. Binding-Octopamine Receptors
8.4. Mechanical Effects
8.5. Repellent Effects
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klompen, J.S.H.; Black, W.C., IV; Keirans, J.E.; Oliver, J.H. Evolution of Ticks. Annu. Rev. Entomol. 1996, 41, 141–161. [Google Scholar] [CrossRef] [PubMed]
- Barker, S.C.; Murrell, A. Systematics and evolution of ticks with a list of valid genus and species names. Parasitology 2004, 129, S15–S36. [Google Scholar] [CrossRef] [PubMed]
- Djebir, S.; Ksouri, S.; Trigui, M.; Tounsi, S.; Boumaaza, A.; Hadef, Y.; Benakhla, A. Chemical Composition and Acaricidal Activity of the Essential Oils of Some Plant Species of Lamiaceae and Myrtaceae against the Vector of Tropical Bovine Theileriosis: Hyalomma scupense (syn. Hyalomma detritum). BioMed Res. Int. 2019, 2019, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alota, S.L.; Edquiban, T.R.J.; Galay, R.L.; Bernardo, J.M.G.; Sandalo, K.A.C.; Divina, B.P.; Tanaka, T. Determination of resistance status to amitraz in the cattle tick Rhipicephalus (Boophilus) microplus from Luzon, Philippines, through bioassay and molecular analysis. Exp. Appl. Acarol. 2021, 83, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.; Abbas, R.Z.; Masood, S.; Iqbal, Z.; Khan, M.K.; Saleemi, M.K.; Raza, M.A.; Mahmood, M.S.; Khan, J.A.; Sindhu, Z.D. Acaricidal and insecticidal effects of essential oils against ectoparasites of veterinary importance. Bol. Latinoam. Caribe Plant. Med. Aromat. 2018, 17, 441–452. [Google Scholar]
- Pazinato, R.; Volpato, A.; Baldissera, M.D.; Santos, R.C.V.; Baretta, D.; Vaucher, R.A.; Giongo, J.L.; Boligon, A.A.; Stefani, L.M.; Da Silva, A.S. In vitro effect of seven essential oils on the reproduction of the cattle tick Rhipicephalus microplus. J. Adv. Res. 2016, 7, 1029–1034. [Google Scholar] [CrossRef] [Green Version]
- Luns, D.A.R.; Martins, R.; Pombal, S.; Rodilla, J.M.L.; Githaka, N.W.; Vaz, I.D.S., Jr.; Logullo, C. Effect of essential oils against acaricide-susceptible and acaricide-resistant Rhipicephalus ticks. Exp. Appl. Acarol. 2021, 83, 597–608. [Google Scholar] [CrossRef] [PubMed]
- George, J.E.; Pound, J.M.; Davey, R.B. Chemical control of ticks on cattle and the resistance of these parasites to acaricides. Parasitology 2004, 129, S353–S366. [Google Scholar] [CrossRef] [PubMed]
- Adenubi, O.; Fasina, F.; McGaw, L.; Eloff, J.; Naidoo, V. Plant extracts to control ticks of veterinary and medical importance: A review. S. Afr. J. Bot. 2016, 105, 178–193. [Google Scholar] [CrossRef]
- Furtado, F.N.; Silva, V.A.R.; Pereira, J.R.G.; Kisue, A.; Coêlho, F.A.S.; Coêlho, M.D.G. Avaliação in vitro do potencial acaricida do óleo essencial de Tagetes minuta frente a Riphicephalus (Boophilus) microplus (Canestrini, 1887). Rev. Biociênc. 2013, 19, 104–110. [Google Scholar]
- Nogueira, J.; Vinturelle, R.; Mattos, C.; Tietbohl, L.A.C.; Santos, M.G.; Vaz, J.I.D.S.; Mourão, S.C.; Rocha, L.; Folly, E. Acaricidal Properties of the Essential Oil from Zanthoxylum caribaeum against Rhipicephalus microplus. J. Med. Èntomol. 2014, 51, 971–975. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, S.M.; El-Namaky, A.H.; Kamel, R.O. In vivo evaluation of-xic effects of avermectin, Citrus sinensis var. balady and C. limon on female Hyalomma dromedarii (Acari: Ixodidae). Acarologia 2009, 49, 13–22. [Google Scholar]
- Cruz, E.M.D.O.; Costa-Junior, L.; Pinto, J.A.O.; Santos, D.; de Araujo, S.A.; Arrigoni-Blank, M.D.F.; Bacci, L.; Alves, P.; Cavalcanti, S.C.D.H.; Blank, A.F. Acaricidal activity of Lippia gracilis essential oil and its major constituents on the tick Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2013, 195, 198–202. [Google Scholar] [CrossRef] [Green Version]
- Abbas, R.Z.; Zaman, M.A.; Colwell, D.D.; Gilleard, J.; Iqbal, Z. Acaricide resistance in cattle ticks and approaches-its management: The state of play. Vet. Parasitol. 2014, 203, 6–20. [Google Scholar] [CrossRef] [PubMed]
- Castro, K.N.D.C.; Canuto, K.M.; de Brito, E.S.; Costa-Junior, L.; De Andrade, I.M.; Magalhães, J.A.; Barros, D.M.A. In vitro efficacy of essential oils with different concentrations of 1,8-cineole against Rhipicephalus (Boophilus) microplus. Rev. Bras. Parasitol. Vet. 2018, 27, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Quadros, D.; Johnson, T.; Whitney, T.; Oliver, J.; Chávez, A.O. Plant-Derived Natural Compounds for Tick Pest Control in Livestock and Wildlife: Pragmatism or Utopia? Insects 2020, 11, 490. [Google Scholar] [CrossRef] [PubMed]
- George, D.R.; Finn, R.D.; Graham, K.M.; Sparagano, O.A. Present and future potential of plant-derived products to control arthropods of veterinary and medical significance. Parasites Vectors 2014, 7, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellse, L.; Wall, R. The use of essential oils in veterinary ectoparasite control: A review. Med. Veter.- Èntomol. 2013, 28, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Kolaczinski, J.; Curtis, C. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: A review of the debate. Food Chem. Toxicol. 2004, 42, 697–706. [Google Scholar] [CrossRef] [PubMed]
- Freitas, D.R.J.; Pohl, P.C.; Vaz, I.S., Jr. Caracterização da resistência para acaricidas no carrapato Boophilus microplus. Acta Sci. Vet. 2005, 33, 109–117. [Google Scholar] [CrossRef]
- Ramwell, C.T.; Sinclair, C.J.; Van Beinum, G.W.; Bryning, G. Management of the environmental inputs and risks of cypermethrin based sheep dips. Central. Sci. Lab. Rep. 2009, 1, 35–43. [Google Scholar]
- Pinto, Z.T.; Carneiro, J.F.; Carriço, C.; Caetano, R.L.; Ferreira, V.D.S.B.; Mendonça, P.M.; Berenger, A.L.R.; Figueiredo, M.R. Acaricidal effects of seven Brazilian plant extracts. Rev. Colomb. Entomol. 2018, 44, 44–47. [Google Scholar] [CrossRef]
- Martinez-Velazquez, M.; Castillo-Herrera, G.A.; Rosario-Cruz, R.; Flores-Fernandez, J.M.; Lopez-Ramirez, J.; Hernandez-Gutierrez, R.; Lugo-Cervantes, E.D.C.; Rosario-Cruz, R. Acaricidal effect and chemical composition of essential oils extracted from Cuminum cyminum, Pimenta dioica and Ocimum basilicum against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitol. Res. 2010, 108, 481–487. [Google Scholar] [CrossRef]
- Martinez-Velazquez, M.; Rosario-Cruz, R.; Castillo-Herrera, G.; Flores-Fernandez, J.M.; Alvarez, A.H.; Lugo-Cervantes, E.; Rosario-Cruz, R. Acaricidal Effect of Essential Oils from Lippia graveolens (Lamiales: Verbenaceae), Rosmarinus officinalis (Lamiales: Lamiaceae), and Allium sativum (Liliales: Liliaceae) against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). J. Med. Èntomol. 2011, 48, 822–827. [Google Scholar] [CrossRef] [PubMed]
- Shezryna, S.; Anisah, N.; Saleh, I.; A Syamsa, R. Acaricidal activity of the essential oils from Citrus hystrix (Rutaceae) and Cymbopogon citratus (Poaceae) on the cattle tick Rhipicephalus (Boophilus) microplus larvae (Acari: Ixodidae). Trop. Biomed. 2020, 37, 433–442. [Google Scholar]
- Drummond, R.O.; Ernst, S.E.; Trevino, J.L.; Gladney, W.J.; Graham, O.H. Boophilus annulatus and B. microplus: Laboratory Tests of Insecticides 13. J. Econ. Èntomol. 1973, 66, 130–133. [Google Scholar] [CrossRef] [PubMed]
- George, J.E. Present and Future Technologies for Tick Control. Ann. N. Y. Acad. Sci. 2006, 916, 583–588. [Google Scholar] [CrossRef]
- Graf, J.-F.; Gogolewski, R.; Leach-Bing, N.; Sabatini, G.A.; Molento, M.B.; Bordin, E.L.; Arantes, G.J. Tick control: An industry point of view. Parasitology 2004, 129, S427–S442. [Google Scholar] [CrossRef] [PubMed]
- Wharton, R.H. Acaricide Resistance and Alternative Methods of Tick Control. World Anim. Rev. 1983, 36, 34–41. [Google Scholar]
- Sonenshine, D.E. Tick pheromones and their use in tick control. Annu. Rev. Èntomol. 2006, 51, 557–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casida, J.E. Pyrethrum flowers and pyrethroid insecticides. Environ. Health Perspect. 1980, 34, 189–202. [Google Scholar] [CrossRef]
- ATSDR. Piretrinas y piretroides (Pyrethrins and Pyrethroids) |-xFAQ ATSDR. Available online: https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts155.html (accessed on 1 October 2019).
- Davey, R.B.; George, J.E.; Snyder, D.E. Efficacy of a single whole-body spray treatment of spinosad, against Boophilus microplus (Acari: Ixodidae) on cattle. Vet. Parasitol. 2001, 99, 41–52. [Google Scholar] [CrossRef]
- Cetin, H.; Cilek, J.E.; Aydin, L.; Yanikoglu, A. Acaricidal effects of the essential oil of Origanum minutiflorum (Lamiaceae) against Rhipicephalus turanicus (Acari: Ixodidae). Vet. Parasitol. 2009, 160, 359–361. [Google Scholar] [CrossRef] [PubMed]
- Brito, L.G.; Barbieri, F.S.; Rocha, R.B.; Oliveira, M.C.S.; Ribeiro, E.S. Evaluation of the Efficacy of Acaricides Used- Control the Cattle Tick, Rhipicephalus microplus, in Dairy Herds Raised in the Brazilian Southwestern Amazon. Vet. Med. Int. 2011, 2011, 806093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoop, W.L.; Hartline, E.J.; Gould, B.R.; Waddell, M.E.; McDowell, R.G.; Kinney, J.B.; Lahm, G.P.; Long, J.K.; Xu, M.; Wagerle, T.; et al. Discovery and mode of action of afoxolaner, a new isoxazoline parasiticide for dogs. Vet. Parasitol. 2014, 201, 179–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weber, T.; Selzer, P.M. Isoxazolines: A Novel Chemotype Highly Effective on Ectoparasites. ChemMedChem 2016, 11, 270–276. [Google Scholar] [CrossRef]
- McTier, T.L.; Chubb, N.; Curtis, M.P.; Hedges, L.; Inskeep, G.A.; Knauer, C.S.; Menon, S.; Mills, B.; Pullins, A.; Zinser, E.; et al. Discovery of sarolaner: A novel, orally administered, broad-spectrum, isoxazoline ectoparasiticide for dogs. Vet. Parasitol. 2016, 222, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Little, S.E. Lotilaner—A novel systemic tick and flea control product for dogs. Parasites Vectors 2017, 10, 539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abebe, D.; Kebede, A. Review on Acaricide Resistant Bovine Ticks and Alternative Solutions. Eur. J. Biol. Sci. 2018, 10, 86–94. [Google Scholar] [CrossRef]
- Reshma, K.R.; Prakasan, K. Synthetic Acaricides as A Promising-ol in Tick Control Program-The Present Scenario. Entomol. Appl. Sci. Lett. 2020, 7, 58–69. [Google Scholar]
- Angus, B.M. The history of the cattle tick Boophilus microptus in Australia and achievements in its control. Int. J. Parasitol. 1996, 26, 1341–1355. [Google Scholar] [CrossRef]
- Harris, R.L.; George, J.E.; Ahrens, E.H.; Davey, R.B.; Bazan, H.O. Selection for Resistance to Coumaphos in a Strain of Southern Cattle Tick (Acari: Ixodidae). J. Econ. Èntomol. 1988, 81, 545–548. [Google Scholar] [CrossRef] [PubMed]
- Hemingway, J.; Field, L.; Vontas, J. An Overview of Insecticide Resistance. Science 2002, 298, 96–97. [Google Scholar] [CrossRef]
- Raynal, J.T.; Da Silva, A.A.B.; Sousa, T.D.J.; Bahiense, T.C.; Meyer, R.; Portela, R.W. Acaricides efficiency on Rhipicephalus (Boophilus) microplus from Bahia state North-Central region. Rev. Bras. Parasitol. Vet. 2013, 22, 71–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, G.; Naureen, A.; Firyal, S.; Saqib, M. Tick control strategies in dairy production medicine. Pakistan. Vet. J. 2008, 28, 43–50. [Google Scholar]
- Nath, S.; Mandal, S.; Pal, S.; Jadhao, S.; Ottalwar, N.; Sanyal, P. Impact and Management of Acaricide Resistance-Pertaining to Sustainable Control of Ticks. Int. J. Livest. Res. 2018, 8, 46. [Google Scholar] [CrossRef]
- Rodriguez-Vivas, R.I.; Jonsson, N.; Bhushan, C. Strategies for the control of Rhipicephalus microplus ticks in a world of conventional acaricide and macrocyclic lactone resistance. Parasitol. Res. 2017, 117, 3–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, R.D. Tick control on domestic animals. 1. A brief history of economic significance of tick infestations. Trop. Sci. 1969, 11, 113. [Google Scholar]
- Catterall, W.A. Structural biology: A 3D view of sodium channels. Nature 2001, 409, 988–991. [Google Scholar] [CrossRef] [PubMed]
- Schnitzerling, H.J.; Nolan, J.; Hughes, S. Toxicology and metabolism of isomers of flumethrin in larvae of pyrethroid susceptible and resistant strains of the cattle tick Boophilus microplus (Acari: Ixodidae). Exp. Appl. Acarol. 1989, 6, 47–54. [Google Scholar] [CrossRef]
- Lovis, L.; Reggi, J.; Berggoetz, M.; Betschart, B.; Sager, H. Determination of Acaricide Resistance in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) Field Populations of Argentina, South Africa, and Australia with the Larval Tarsal Test. J. Med. Èntomol. 2013, 50, 326–335. [Google Scholar] [CrossRef] [PubMed]
- Castro-Janer, E.; Rifran, L.; Piaggio, J.; Gil, A.; Miller, R.; Schumaker, T. In vitro tests to establish LC50 and discriminating concentrations for fipronil against Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) and their standardization. Vet. Parasitol. 2009, 162, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Janer, E.C.; Klafke, G.; Fontes, F.; Capurro, M.; Schumaker, T. Mutations in Rhipicephalus microplus GABA gated chloride channel gene associated with fipronil resistance. Ticks Tick-borne Dis. 2019, 10, 761–765. [Google Scholar] [CrossRef] [PubMed]
- Simon-Delso, N.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Chagnon, M.; Downs, C.; Furlan, L.; Gibbons, D.W.; Giorio, C.; Girolami, V.; et al. Systemic insecticides (neonicotinoids and fipronil): Trends, uses, mode of action and metabolites. Environ. Sci. Pollut. Res. 2014, 22, 5–34. [Google Scholar] [CrossRef]
- Junquera, P.; Hosking, B.; Gameiro, M.; Macdonald, A. Benzoylphenyl ureas as veterinary antiparasitics. An overview and outlook with emphasis on efficacy, usage and resistance. Parasite 2019, 26, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparks, T.C.; Crouse, G.D.; Durst, G. Natural products as insecti-cides: The biology, biochemistry and quantitative structure—Activity relationships of spinosyns and spinosoids. Pest. Manag. Sci. 2001, 57, 896–905. [Google Scholar] [CrossRef] [PubMed]
- Salgado, V.L. Studies on the Mode of Action of Spinosad: Insect Symptoms and Physiological Correlates. Pestic. Biochem. Physiol. 1998, 60, 91–102. [Google Scholar] [CrossRef]
- Snyder, D.E.; Cruthers, L.R.; Slone, R.L. Preliminary study on the acaricidal efficacy of spinosad administered orally to dogs infested with the brown dog tick, Rhipicephalus sanguineus (Latreille, 1806) (Acari: Ixodidae). Vet. Parasitol. 2009, 166, 131–135. [Google Scholar] [CrossRef]
- A Kirst, H. The spinosyn family of insecticides: Realizing the potential of natural products research. J. Antibiot. 2010, 63, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ozoe, Y.; Asahi, M.; Ozoe, F.; Nakahira, K.; Mita, T. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochem. Biophys. Res. Commun. 2010, 391, 744–749. [Google Scholar] [CrossRef]
- Gassel, M.; Wolf, C.; Noack, S.; Williams, H.; Ilg, T. The novel isoxazoline ectoparasiticide fluralaner: Selective inhibition of arthropod γ-aminobutyric acid- and l-glutamate-gated chloride channels and insecticidal/acaricidal activity. Insect Biochem. Mol. Biol. 2014, 45, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, V.L.S.; Dos Santos, J.C.; Bordignon, S.A.; Apel, M.A.; Henriques, A.T.; Von Poser, G.L. Acaricidal properties of the essential oil from Hesperozygis ringens (Lamiaceae) on the cattle tick Riphicephalus (Boophilus) microplus. Bioresour. Technol. 2010, 101, 2506–2509. [Google Scholar] [CrossRef]
- De Meneghi, D.; Stachurski, F.; Adakal, H. Experiences in Tick Control by Acaricide in the Traditional Cattle Sector in Zambia and Burkina Faso: Possible Environmental and Public Health Implications. Front. Public Health 2016, 4, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, N.K.; Abhijit, N.; Harkirat, S. Detection of multi-acaricide resistance in Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Explor. Anim. Med. Res. 2019, 9, 24–28. [Google Scholar]
- Sangster, N. Managing parasiticide resistance. Vet. Parasitol. 2001, 98, 89–109. [Google Scholar] [CrossRef]
- Corley, S.W.; Jonsson, N.N.; Piper, E.K.; Cutullé, C.; Stear, M.; Seddon, J. Mutation in the Rm AOR gene is associated with amitraz resistance in the cattle tick Rhipicephalus microplus. Proc. Natl. Acad. Sci. USA 2013, 110, 16772–16777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, B.F. The Genetics of Resistance by Ticks- Acaricides. Aust. Vet. J. 1972, 48, 345–350. [Google Scholar] [CrossRef]
- Benavides, E. Control de Las Pérdidas Ocasionadas Por Los Parásitos Del Ganado. Carta Fedegan 2001, 69, 52–63. [Google Scholar]
- Nolan, J. Acaricide Resistance in the Cattle Tick Boophilus microplus, Report of Workshop Leader-FAO/UN Consultant, Porto Alegre, RS, Brazil; Food and Agriculture Organization of the United Nations Publishing Services: Rome, Italy, 1994. [Google Scholar]
- Chen, A.C.; He, H.; Davey, R.B. Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet. Parasitol. 2007, 148, 379–383. [Google Scholar] [CrossRef] [PubMed]
- Davey, R.B.; Miller, R.J.; George, J.E. Efficacy of amitraz applied as a dip against an amitraz-resistant strain of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) infested on cattle. Vet. Parasitol. 2008, 152, 127–135. [Google Scholar] [CrossRef]
- Miller, R.J.; Davey, R.B.; White, W.H.; George, J.E. A comparison of three bioassay techniques- determine amitraz susceptibility in Boophilus microplus (Acari: Ixodidae). J. Med. Entomol. 2007, 44, 283–294. [Google Scholar] [CrossRef]
- Mekonnen, S.; Bryson, N.R.; Fourie, L.J.; Peter, R.J.; Spickett, A.M.; Taylor, R.J.; Strydom, T.; Horak, I.G. Acaricide resistance profiles of single- and multi-host ticks from communal and commercial farming areas in the Eastern Cape and North-West Provinces of South Africa. Onderstepoort J. Vet. Res. 2002, 69, 99–105. [Google Scholar]
- Jongejan, F.; Uilenberg, G. The global importance of ticks. Parasitology 2004, 129, S3–S14. [Google Scholar] [CrossRef] [PubMed]
- A Alonso-Díaz, M.; I Rodríguez-Vivas, R.; Fragoso-Sánchez, H.; Rosario-Cruz, R. Resistencia de la garrapata Boophilus microplus a los ixodicidas. Arch. Med. Vet. 2006, 38, 105–113. [Google Scholar] [CrossRef]
- Yessinou, R.E.; Akpo, Y.; Sidick, A.; Adoligbe, C.; Karim, I.Y.A.; Akogbeto, M.; Farougou, S. Evidence of multiple mechanisms of alphacypermethrin and deltamethrin resistance in ticks Rhipicephalus microplus in Benin, West Africa. Ticks Tick-Borne Dis. 2018, 9, 665–671. [Google Scholar] [CrossRef]
- Rosado-Aguilar, J.; Arjona-Cambranes, K.; Torres-Acosta, J.; Rodríguez-Vivas, R.; Bolio-González, M.; Ortega-Pacheco, A.; Alzina-López, A.; Gutiérrez-Ruiz, E.; Gutiérrez-Blanco, E.; Aguilar-Caballero, A. Plant products and secondary metabolites with acaricide activity against ticks. Vet. Parasitol. 2017, 238, 66–76. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Encouraging Innovation in Biopesticide Development. (New Alert Issue). Science for Environment Policy. European Commission. 2008. Available online: https://ec.europa.eu/environment/integration/research/newsalert/pdf/134na5_en.pdf. (accessed on 16 June 2021).
- Natural Tick Repellents and Pesticides|Lyme Disease CDC. 2018. Available online: https://www.cdc.gov/lyme/prev/natural-repellents.html. (accessed on 13 August 2018).
- Schmutterer, H. Properties and Potential of Natural Pesticides from the Neem Tree, Azadirachta indica. Annu. Rev. Entomol. 1990, 35, 271–297. [Google Scholar] [CrossRef]
- Neem Foundation. Neem. History of Usage. 2018. Available online: https://neemfoundation.org/about-neem/history-of-usage/ (accessed on 13 June 2021).
- Campos, E.V.R.; de Oliveira, J.L.; Pascoli, M.; de Lima, R.; Fraceto, L.F. Neem Oil and Crop Protection: From Now- the Future. Front. Plant. Sci. 2016, 7, 1494. [Google Scholar] [CrossRef] [Green Version]
- Cetin, H.; Cilek, J.; Oz, E.; Aydin, L.; Deveci, O.; Yanikoglu, A. Acaricidal activity of Satureja thymbra L. essential oil and its major components, carvacrol and γ-terpinene against adult Hyalomma marginatum (Acari: Ixodidae). Vet. Parasitol. 2010, 170, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Koç, S.; Oz, E.; Aydın, L.; Cetin, H. Acaricidal activity of the essential oils from three Lamiaceae plant species on Rhipicephalus turanicus Pom. (Acari: Ixodidae). Parasitol. Res. 2012, 111, 1863–1865. [Google Scholar] [CrossRef]
- Gomes, G.A.; Monteiro, C.M.O.; Julião, L.D.S.; Maturano, R.; Senra, T.O.S.; Zeringóta, V.; Calmon, F.; Matos, R.; Daemon, E.; de Carvalho, M.G. Acaricidal activity of essential oil from Lippia sidoides on unengorged larvae and nymphs of Rhipicephalus sanguineus (Acari: Ixodidae) and Amblyomma cajennense (Acari: Ixodidae). Exp. Parasitol. 2014, 137, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, F.M.; Delmonte, C.C.; Novato, T.L.P.; Monteiro, C.M.O.; Daemon, E.; Vilela, F.M.P.; Amaral, M.P.H. Acaricidal activity of essential oil of Syzygium aromaticum, hydrolate and eugenol formulated or free on larvae and engorged females of Rhipicephalus microplus. Med. Vet. Èntomol. 2017, 32, 41–47. [Google Scholar] [CrossRef]
- Rosado-Aguilar, J.; Aguilar-Caballero, A.J.; Rodriguez-Vivas, R.; Borges-Argaez, R.; Garcia-Vazquez, Z.; Mendez-Gonzalez, M. Acaricidal activity of extracts from Petiveria alliacea (Phytolaccaceae) against the cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2010, 168, 299–303. [Google Scholar] [CrossRef]
- Marchesini, P.; Barbosa, A.F.; Franco, C.; Novato, T.; Sanches, M.N.G.; de Carvalho, M.G.; Fabri, R.L.; Daemon, E.; Monteiro, C.M.O. Activity of the extract of Acmella oleracea on immature stages of Amblyomma sculptum(Acari: Ixodidae). Vet. Parasitol. 2018, 254, 147–150. [Google Scholar] [CrossRef]
- Fouche, G.; Ramafuthula, M.; Maselela, V.; Mokoena, M.; Senabe, J.; Leboho, T.; Sakong, B.M.; Adenubi, O.T.; Eloff, J.N.; Wellington, K.W. Acaricidal activity of the organic extracts of thirteen South African plants against Rhipicephalus (Boophilus) decoloratus (Acari: Ixodidae). Vet. Parasitol. 2016, 224, 39–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fouche, G.; Sakong, B.M.; Adenubi, O.T.; Dzoyem, J.P.; Naidoo, V.; Leboho, T.; Wellington, K.W.; Eloff, J.N. Investigation of the acaricidal activity of the acetone and ethanol extracts of 12 South African plants against the adult ticks of Rhipicephalus turanicus. Onderstepoort J. Vet. Res. 2017, 84. [Google Scholar] [CrossRef] [PubMed]
- Jia, M.; He, Q.; Wang, W.; Dai, J.; Zhu, L. Chemical composition and acaricidal activity of Arisaema anurans essential oil and its major constituents against Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2018, 261, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Charlie-Silva, I.; Giglioti, R.; Magalhães, P.M.; Sousa, I.M.; Foglio, M.A.; Oliveira, M.C.; Chagas, A.C.S. Lack of impact of dietary inclusion of dried Artemisia annua leaves for cattle on infestation by Rhipicephalus (Boophilus) microplus ticks. Ticks Tick-Borne Dis. 2018, 9, 1115–1119. [Google Scholar] [CrossRef]
- Valcárcel, F.; Olmeda, A.S.; González, M.G.; Andrés, M.F.; Navarro-Rocha, J.; González-Coloma, A. Acaricidal and Insect Antifeedant Effects of Essential Oils From Selected Aromatic Plants and Their Main Components. Front. Agron. 2021, 3, 22. [Google Scholar] [CrossRef]
- Laghzaoui, E.-M.; Kasrati, A.; Abbad, A.; Leach, D.; Spooner-Hart, R.; El Mouden, E.H. Acaricidal properties of essential oils from Moroccan plants against immature ticks of Hyalomma aegyptium (Linnaeus, 1758); an external parasite of the spur-thighed tortoise (Testudo graeca). Int. J. Acarol. 2018, 44, 315–321. [Google Scholar] [CrossRef]
- Adenubi, O.T.; Abdalla, M.A.; Ahmed, A.S.; Njoya, E.M.; McGaw, L.J.; Eloff, J.N.; Naidoo, V. Isolation and characterization of two acaricidal compounds from Calpurnia aurea subsp. aurea (Fabaceae) leaf extract. Exp. Appl. Acarol. 2018, 75, 345–354. [Google Scholar] [CrossRef] [Green Version]
- Elmhalli, F.; Pålsson, K.; Örberg, J.; Grandi, G. Acaricidal properties of ylang-ylang oil and star anise oil against nymphs of Ixodes ricinus (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 209–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monteiro, I.N.; Monteiro, O.D.S.; Costa-Junior, L.M.; Lima, A.D.S.; Andrade, E.H.D.A.; Maia, J.G.S.; Filho, V.E.M. Chemical composition and acaricide activity of an essential oil from a rare chemotype of Cinnamomum verum Presl on Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2017, 238, 54–57. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Rocha, J.; Barrero, A.F.; Burillo, J.; Olmeda, A.S.; González-Coloma, A. Valorization of essential oils from two populations (wild and commercial) of Geranium macrorrhizum L. Ind. Crop. Prod. 2018, 116, 41–45. [Google Scholar] [CrossRef]
- Hue, T.; Cauquil, L.; Fokou, J.B.H.; Dongmo, P.M.J.; Bakarnga-Via, I.; Menut, C. Acaricidal activity of five essential oils of Ocimum species on Rhipicephalus (Boophilus) microplus larvae. Parasitol. Res. 2014, 114, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Ortiz de Elguea-Culebras, G.; Sánchez-Vioque, R.; Berruga, M.I.; Herraiz-Peñalver, D.; González-Coloma, A.; Andrés, M.F.; Santana-Méridas, O. Biocidal Potential and Chemical Composition of Industrial Essential Oils from Hyssopus officinalis, Lavandula × intermedia var. Super, and St. chamaecyparissus. Chem. Biodivers. 2018, 15, e1700313. [Google Scholar] [CrossRef] [PubMed]
- Junior, G.D.S.L.; Campos, J.P.; Monteiro, C.M.D.O.; Fiorotti, J.; Júnior, F.E.A.C.; Tomé, A.L.; Perinotto, W.M.D.S. Chemical composition and acaricidal activity of essential oils from fruits of Illicium verum and rhizomes of Curcuma zedoaria against Dermacentor nitens (Acari: Ixodidae). J. Essent. Oil Res. 2020, 32, 571–576. [Google Scholar] [CrossRef]
- Fernandez, C.M.M.; Da Rosa, M.F.; Fernandez, A.C.A.M.; Bortolucci, W.D.C.; Ferreira, F.B.P.; Linde, G.A.; Colauto, G.A.L.; Simões, M.R.; Lobo, V.D.S.; Gazim, Z.C. Essential oil and fractions isolated of Laurel to control adults and larvae of cattle ticks. Nat. Prod. Res. 2018, 34, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Julio, L.F.; Díaz, C.E.; Aissani, N.; Valcarcel, F.; Burillo, J.; Olmeda, S.; González-Coloma, A. Ixodicidal compounds from pre-domesticated Lavandula luisieri. Ind. Crop. Prod. 2017, 110, 83–87. [Google Scholar] [CrossRef]
- Gomes, G.A.; Monteiro, C.M.D.O.; Senra, T.D.O.S.; Zeringota, V.; Calmon, F.; Matos, R.; Daemon, E.; Gois, R.W.D.S.; Santiago, G.M.P.; de Carvalho, M.G. Chemical composition and acaricidal activity of essential oil from Lippia sidoides on larvae of Dermacentor nitens (Acari: Ixodidae) and larvae and engorged females of Rhipicephalus microplus (Acari: Ixodidae). Parasitol. Res. 2012, 111, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Rajakumar, G.; Rahuman, A.A.; Roopan, S.M.; Chung, I.-M.; Anbarasan, K.; Karthikeyan, V. Efficacy of larvicidal activity of green synthesized titanium dioxide nanoparticles using Mangifera indica extract against blood-feeding parasites. Parasitol. Res. 2014, 114, 571–581. [Google Scholar] [CrossRef]
- Lebouvier, N.; Hue, T.; Brophy, J.; Hnawia, E.; Nour, M. Chemical Composition and Acaricidal Activity of Nemuaron vieillardii Essential Oil against the Cattle Tick Rhipicephalus (Boophilus) microplus. Nat. Prod. Commun. 2016, 11, 1934578X1601101235. [Google Scholar] [CrossRef] [Green Version]
- Dantas, A.; Machado, D.; Araujo, A.; Oliveira-Junior, R.; Lima-Saraiva, S.; Ribeiro, L.; Almeida, J.; Horta, M. Acaricidal activity of extracts from the leaves and aerial parts of Neoglaziovia variegata (Bromeliaceae) on the cattle tick Rhipicephalus (Boophilus) microplus. Res. Vet. Sci. 2015, 100, 165–168. [Google Scholar] [CrossRef]
- Ferreira, T.P.; Cid, Y.P.; Cardilo, M.A.; Dos Santos, G.C.M.; Avelar, B.R.; Freitas, J.P.; Ożarowski, M.; Souza, M.; Chaves, D. In vitro Acaricidal Activity of Ocimum gratissimum Essential Oil on Rhipicephalus sanguineus, Amblyomma sculptum and Rhipicephalus microplus Larvae. Rev. Virtual De Quim. 2019, 11, 1604–1613. [Google Scholar] [CrossRef]
- Figueiredo, A.; Nascimento, L.M.; Lopes, L.G.; Giglioti, R.; Albuquerque, R.D.; Santos, M.G.; Falcão, D.Q.; Nogueira, J.A.; Rocha, L.; Chagas, A.C.S. First report of the effect of Ocotea elegans essential oil on Rhipicephalus (Boophilus) microplus. Vet. Parasitol. 2018, 252, 131–136. [Google Scholar] [CrossRef] [Green Version]
- Coskun, S.; Girisgin, O.; Kürkcüoglu, M.; Malyer, H.; Girisgin, A.O.; Kırımer, N.; Baser, K.H.C. Acaricidal efficacy of Origanum onites L. essential oil against Rhipicephalus turanicus (Ixodidae). Parasitol. Res. 2008, 103, 259–261. [Google Scholar] [CrossRef] [PubMed]
- Ferraz, A.; Balbino, J.M.; Zini, C.A.; Ribeiro, V.L.S.; Bordignon, S.A.L.; Von Poser, G. Acaricidal activity and chemical composition of the essential oil from three Piper species. Parasitol. Res. 2010, 107, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.M.M.; Lorenzetti, F.B.; Bernuci, K.Z.; Iwanaga, C.C.; Bortolucci, W.D.C.; Romagnolo, M.B.; Simões, M.R.; Cortez, D.A.G.; Scodro, R.B.D.L.; Gazim, Z.C.; et al. Larvicidal potential of piperovatine in the control of cattle tick. Vet. Parasitol. 2018, 263, 5–9. [Google Scholar] [CrossRef]
- Rey-Valeirón, C.; Pérez, K.; Guzmán, L.; López-Vargas, J.; Valarezo, E. Acaricidal effect of Schinus molle (Anacardiaceae) essential oil on unengorged larvae and engorged adult females of Rhipicephalus sanguineus (Acari: Ixodidae). Exp. Appl. Acarol. 2018, 76, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Vasquez, L.R.; Olmeda, A.S.; Zuñiga, G.; Villarroel, L.; Echeverri, L.F.; Gonzalez-Coloma, A.; Reina, M. Insect Antifeedant and Ixodicidal Compounds from Senecio adenotrichius. Chem. Biodivers. 2016, 14, e1600155. [Google Scholar] [CrossRef]
- Andreotti, R.; Garcia, M.V.; Cunha, R.C.; Barros, J.C. Protective action of Tagetes minuta (Asteraceae) essential oil in the control of Rhipicephalus microplus (Canestrini, 1887) (Acari: Ixodidae) in a cattle pen trial. Vet. Parasitol. 2013, 197, 341–345. [Google Scholar] [CrossRef] [PubMed]
- Gazim, Z.C.; Demarchi, I.G.; Lonardoni, M.V.C.; Amorim, A.C.L.; Hovell, A.M.C.; Rezende, C.M.; Ferreira, G.A.; de Lima, E.L.; de Cosmo, F.A.; Cortez, D.A.G. Acaricidal activity of the essential oil from Tetradenia riparia (Lamiaceae) on the cattle tick Rhipicephalus (Boophilus) microplus (Acari; Ixodidae). Exp. Parasitol. 2011, 129, 175–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novato, T.P.L.; Araújo, L.X.; de Monteiro, C.M.O.; Maturano, R.; Senra, T.D.O.S.; Matos, R.; Gomes, G.A.; de Carvalho, M.G.; Daemon, E. Evaluation of the combined effect of thymol, carvacrol and (E)-cinnamaldehyde on Amblyomma sculptum (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) larvae. Vet. Parasitol. 2015, 212, 331–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramírez, C.; Ibarra, F.; Pérez, H.I.; Manjarrez, N.; Salgado, H.J.; Ortega, L. Assessment and determination of LC 50 of carvacrol and salicylic acid analogues with acaricide activity in larvae and adult ticks of Rhipicephalus (Boophilus) microplus. Parasite Epidemiol. Control 2016, 1, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novato, T.; Gomes, G.A.; Zeringóta, V.; Franco, C.T.; de Oliveira, D.R.; Melo, D.; de Carvalho, M.G.; Daemon, E.; Monteiro, C.M.D.O. In vitro assessment of the acaricidal activity of carvacrol, thymol, eugenol and their acetylated derivatives on Rhipicephalus microplus (Acari: Ixodidae). Vet. Parasitol. 2018, 260, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Machtinger, E.T.; Li, A.Y. Evaluation of four commercial natural products for repellency and toxicity against the lone star tick, Amblyomma americanum (Acari: Ixodidae). Exp. Appl. Acarol. 2017, 73, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Benelli, G.; Pavela, R. Repellence of essential oils and selected compounds against ticks—A systematic review. Acta Trop. 2018, 179, 47–54. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of essential oils: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Blenau, W.; Rademacher, E.; Baumann, A. Plant essential oils and formamidines as insecticides/acaricides: What are the molecular targets? Apidologie 2011, 43, 334–347. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Pavela, R.; Canale, A.; Mehlhorn, H. Tick repellents and acaricides of botanical origin: A green roadmap to control tick-borne diseases? Parasitol. Res. 2016, 115, 2545–2560. [Google Scholar] [CrossRef]
- Elmhalli, F.; Garboui, S.S.; Borg-Karlson, A.-K.; Mozūraitis, R.; Baldauf, S.L.; Grandi, G. The repellency and toxicity effects of essential oils from the Libyan plants Salvadora persica and Rosmarinus officinalis against nymphs of Ixodes ricinus. Exp. Appl. Acarol. 2019, 77, 585–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salman, M.; Abbas, R.Z.; Israr, M.; Abbas, A.; Mehmood, M.K.; Khan, M.K.; Sindhu, Z.U.D.; Hussain, R.; Saleemi, M.K.; Shah, S. Repellent and acaricidal activity of essential oils and their components against Rhipicephalus ticks in cattle. Vet. Parasitol. 2020, 283, 109178. [Google Scholar] [CrossRef]
- Kaaya, G.P. The potential for antitick plants as components of an integrated tick control strategy. Ann. N. Y. Acad. Sci. 2000, 916. [Google Scholar] [CrossRef]
- Goode, P.; Ellse, L.; Wall, R. Preventing tick attachment to dogs using essential oils. Ticks Tick-Borne Dis. 2018, 9, 921–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ribeiro, V.L.S.; Avancini, C.; Gonçalves, K.; Toigo, E.; von Poser, G. Acaricidal activity of Calea serrata (Asteraceae) on Boophilus microplus and Rhipicephalus sanguineus. Vet. Parasitol. 2008, 151, 351–354. [Google Scholar] [CrossRef]
- Ribeiro, V.L.S.; Toigo, E.; Bordignon, S.A.; Gonçalves, K.; von Poser, G. Acaricidal properties of extracts from the aerial parts of Hypericum polyanthemum on the cattle tick Boophilus microplus. Vet. Parasitol. 2007, 147, 199–203. [Google Scholar] [CrossRef]
- Amer, A.M.; Amer, M.M. Efficacy and Safety of Natural Essential Oils Mixture on Tick Infestation in Dogs. Adv. Anim. Vet. Sci. 2020, 8, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Powers, C.N.; Osier, J.L.; McFeeters, R.L.; Brazell, C.B.; Olsen, E.L.; Moriarity, D.M.; Satyal, P.; Setzer, W.N. Antifungal and Cytotoxic Activities of Sixty Commercially-Available Essential Oils. Molecules 2018, 23, 1549. [Google Scholar] [CrossRef] [Green Version]
- Burgess, I.F. The mode of action of dimeticone 4% lotion against head lice, Pediculus capitis. BMC Pharmacol. 2009, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowska, M.; Rogalska, J.; Wyszkowska, J.; Stankiewicz, M. Molecular Targets for Components of Essential Oils in the Insect Nervous System—A Review. Molecules 2017, 23, 34. [Google Scholar] [CrossRef] [Green Version]
- Camilo, C.J.; Alves Nonato, C.D.F.; Galvão-Rodrigues, F.F.; Costa, W.D.; Clemente, G.G.; Sobreira Macedo, M.A.C.; Galvão Rodrigues, F.F.; Da Costa, J.G.M. Acaricidal activity of essential oils: A review. Trends Phytochem. Res. 2017, 1, 183–198. [Google Scholar]
- López, M.D.; Pascual-Villalobos, M. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crop. Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Anderson, J.; Coats, J. Acetylcholinesterase inhibition by nootkatone and carvacrol in arthropods. Pestic. Biochem. Physiol. 2012, 102, 124–128. [Google Scholar] [CrossRef] [Green Version]
- Keane, S.; Ryan, M.F. Purification, characterisation, and inhibition by monoterpenes of acetyl- cholinesterase from the waxmoth, Galleria mellonella (L.). Insect Biochem. Mol. Biol. 1999, 29, 1097–1104. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, B.H.; Choi, W.S.; Park, B.S.; Kim, J.G.; Campbell, B.C. Fumigant-xicity of volatile natural products from Korean spices and medicinal plants-wards the rice weevil, Sitophilus oryzae (L). Pest Manag. Sci. 2001, 57, 548–553. [Google Scholar] [CrossRef]
- Picollo, M.I.; Toloza, A.C.; Cueto, G.M.; Zygadlo, J.; Zerba, E. Anticholinesterase and pediculicidal activities of monoterpenoids. Fitoterapia 2008, 79, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.; El-Arami, S.A.A. Fumigant and Contact Toxicities of Monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their Inhibitory Effects on Acetylcholinesterase Activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef]
- Siramon, P.; Ohtani, Y.; Ichiura, H. Biological performance of Eucalyptus camaldulensis leaf oils from Thailand against the subterranean termite Coptotermes formosanus Shiraki. J. Wood Sci. 2009, 55, 41–46. [Google Scholar] [CrossRef] [Green Version]
- Seo, S.M.; Kim, J.; Kang, J.S.; Koh, S.H.; Ahn, Y.J.; Kang, K.S.; Park, I.K. Fumigant-xicity and acetylcholinesterase inhibitory activity of 4 Asteraceae plant essential oils and their constituents against Japanese termite (Reticulitermes speratus Kolbe). Pestic. Biochem. Physiol. 2014, 113, 55–61. [Google Scholar] [CrossRef]
- Yeom, H.-J.; Jung, C.-S.; Kang, J.; Kim, J.; Lee, J.-H.; Kim, D.-S.; Kim, H.-S.; Park, P.-S.; Kang, K.-S.; Park, I.-K. Insecticidal and Acetylcholine Esterase Inhibition Activity of Asteraceae Plant Essential Oils and Their Constituents against Adults of the German Cockroach (Blattella germanica). J. Agric. Food Chem. 2015, 63, 2241–2248. [Google Scholar] [CrossRef] [PubMed]
- Kostyukovsky, M.; Rafaeli, A.; Gileadi, C.; Demchenko, N.; Shaaya, E. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: Possible mode of action against insect pests. Pest Manag. Sci. 2002, 58, 1101–1106. [Google Scholar] [CrossRef]
- Enan, E. Insecticidal activity of essential oils: Octopaminergic sites of action. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2001, 130, 325–337. [Google Scholar] [CrossRef]
- Grifman, M.; Arbel, A.; Ginzberg, D.; Glick, D.; Elgavish, S.; Shaanan, B.; Soreq, H. In vitro phosphorylation of acetylcholinesterase at non-consensus protein kinase a sites enhances the rate of acetylcholine hydrolysis. Brain. Res. Mol. Brain Res. 1997, 51, 179–187. [Google Scholar] [CrossRef]
- Aazza, S.; Lyoussi, B.; Megías, C.; Cortés-Giraldo, I.; Vioque, J.; Figueiredo, A.C.; Miguel, M.G. Anti-oxidant, Anti-inflammatory and Anti-proliferative Activities of Moroccan Commercial Essential Oils. Nat. Prod. Commun. 2014, 9, 587–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, B.; Al-Wabel, N.A.; Shams, S.; Ahamad, A.; Khan, S.; Anwar, F. Essential oils used in aromatherapy: A systemic review. Asian Pac. J. Trop. Biomed. 2015, 5, 601–611. [Google Scholar] [CrossRef] [Green Version]
- Andrade, B.F.M.T.; Conti, B.J.; Santiago, K.; Fernandes, A.; Sforcin, J.M. Cymbopogon martinii essential oil and geraniol at noncytotoxic concentrations exerted immunomodulatory/anti-inflammatory effects in human monocytes. J. Pharm. Pharmacol. 2014, 66, 1491–1496. [Google Scholar] [CrossRef]
- Wanzala, W.; Hassanali, A.; Mukabana, W.R.; Takken, W. Repellent Activities of Essential Oils of Some Plants Used Traditionally to Control the Brown Ear Tick, Rhipicephalus appendiculatus. J. Parasitol. Res. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Soutar, O.; Cohen, F.; Wall, R. Essential oils as tick repellents on clothing. Exp. Appl. Acarol. 2019, 79, 209–219. [Google Scholar] [CrossRef] [Green Version]
- Aquino, M.; Fyfe, M.; MacDougall, L.; Remple, V. West nile virus in British Columbia. Emerg. Infect. Dis. 2004, 10, 1499–1501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrington, J. Risk perceptions regarding ticks and Lyme disease: A national survey. Am. J. Prev. Med. 2004, 26, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect repellents: Historical perspectives and new developments. J. Am. Acad. Dermatol. 2008, 58, 865–871. [Google Scholar] [CrossRef] [PubMed]
- Bissinger, B.W.; Roe, R.M. Tick repellents: Past, present, and future. Pestic. Biochem. Physiol. 2009, 96, 63–79. [Google Scholar] [CrossRef]
- Osimitz, T.; Murphy, J.; Fell, L.; Page, B. Adverse events associated with the use of insect repellents containing N, N-diethyl-m-toluamide (DEET). Regul. Toxicol. Pharmacol. 2010, 56, 93–99. [Google Scholar] [CrossRef]
- Geetha, R.V.; Roy, A. Essential oil repellents-a short review. Int. J. Drug Dev. Res. 2014, 6, 20–27. [Google Scholar]
- Del Fabbro, S.; Nazzi, F. From chemistry- behavior molecular structure and bioactivity of repellents against Ixodes ricinus ticks. PLoS ONE 2013, 8, e67832. [Google Scholar] [CrossRef]
- Halos, L.; Baneth, G.; Beugnet, F.; Bowman, A.S.; Chomel, B.; Farkas, R.; Franc, M.; Guillot, J.; Inokuma, H.; Kaufman, R.; et al. Defining the concept of ‘tick repellency’in veterinary medicine. Parasitology 2012, 139, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.Y. Essential Oils as Repellents against Arthropods. BioMed Res. Int. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.; Hebert, A.A. Insect repellents: An overview. J. Am. Acad. Dermatol. 1997, 36, 243–249. [Google Scholar] [CrossRef]
- Carroll, J.F.; Tabanca, N.; Kramer, M.; Elejalde, N.M.; Wedge, D.E.; Bernier, U.R.; Coy, M.; Becnel, J.J.; Demirci, B.; Başer, K.H.C.; et al. Essential oils of Cupressus funebris, Juniperus communis, and J. chinensis (Cupressaceae) as repellents against ticks (Acari: Ixodidae) and mosquitoes (Diptera: Culicidae) and as toxicants against mosquitoes. J. Vector Ecol. 2011, 36, 258–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaenson, T.G.T.; Garboui, S.; Pålsson, K. Repellency of Oils of Lemon Eucalyptus, Geranium, and Lavender and the Mosquito Repellent MyggA Natural to Ixodes ricinus (Acari: Ixodidae) in the Laboratory and Field. J. Med. Èntomol. 2006, 43, 731–736. [Google Scholar] [CrossRef] [PubMed]
- Kulma, M.; Bubová, T.; Kopecký, O.; Rettich, F. Lavender, Eucalyptus, and Orange Essential Oils as Repellents against Ixodes Ricinus Females. Sci. Agric. Bohem. 2017, 48, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative repellency of 38 essential oils against mosquito bites. Phytother. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef] [PubMed]
Origin | Stage/Specie | Bioassay | Ref. |
---|---|---|---|
Acmella oleracea | L/N A. sculptum | LPT; LIT; NPT; NIT | [89] |
Allium sativum | L/R. microplus | LPT | [24] |
Aloe rupestris | L/A R. decoloratus | LPT; ACT; AIT | [90,91] |
Alpinia zerumbet | L/EF R. microplus | LPT; AIT | [15] |
Antizoma angustifolia | L/R. decoloratus | LPT | [90] |
Arisaema anurans | L/EF/egg R. microplus | LIT; AIT; EHT | [92] |
Artemisia annua | EF/R. microplus | In vivo | [93] |
Artemisia dracunculus | L/H. lusitanicum | LCT | [94] |
Artemisia herba alba | Egg/L/N/H. aegyptium; L/H. lusitanicum | EPT; LPT; NPT; LCT | [94,95] |
Calpurnia aurea | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91,96] |
Cananga odorata | N/I. ricinus | OFPM; LETM | [97] |
Cedrus atlantica | EF/R. microplus | AIT | [6] |
Chenopodium ambrosioides | Egg/L/N H. aegyptium | EPT; LPT; NPT | [95] |
Cinnamomum verum | L/EF R. microplus | LPT; AIT | [98] |
Cissus quadrangularis | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Citrus hystrix | L/R. microplus | LIT | [24] |
Clematis brachiata | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Cleome gynandra | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Cuminum cyminum | L/R. microplus | LPT | [23] |
Cymbopogon citratus | EF/L R. microplus | AIT; LIT | [6,24] |
Cymbopogon martinii | EF/R. microplus | AIT | [6] |
Dorystoechas hastata | L/R. turanicus | LIT | [85] |
Eucalyptus camaldulensis | L/A H. scupense | LIT; AIT | [3] |
Eucalyptus globulus | L/A/H. scupense | LIT; AIT | [3] |
Ficus sycomorus | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Geranium macrorrhizum | L/H. lusitanicum | LCT | [99] |
Homemade ocimum gratissimum | L/R. microplus | LPT | [100] |
Hyssopus officinalis | L/H. lusitanicum | LCT | [94,101] |
Illicium verum | N/I. ricinus; A/D. nitens | OFPM; LETM; AIT | [97,102] |
Juniperus thurifera var. africana | Egg/L/N H. aegyptium | EPT; LPT; NPT | [95] |
Laurus nobilis | L/EF R. microplus | LPT; AIT | [103] |
Lavandula angustifolia | L/H. lusitanicum | LCT | [94] |
Lavandula intermedia super | L/H. lusitanicum | LCT | [101] |
Lavandula luisieri | L/H. lusitanicum | LCT | [104] |
Lavandula pedunculata subsp. atlantica | Egg/L/N H. aegyptium | EPT; LPT; NPT | [95] |
Lavandula stoechas | L/A H. scupense | LIT; AIT | [3] |
Lippia gracilis | L/EF/R. microplus | LIT; AIT; LST | [13] |
Lippia graveolens | L/R. microplus | LPT | [24] |
Lippia sidoides | L/EF D. nitens; L/EF R. microplus; L/N R. sanguineus; L/N A. cajennense | AIT; NPT | [86,105] |
Mangifera indica | L/R. microplus; L/H. anatolicum; L/Ha. bispinosa | LPT | [106] |
Mentha longifolia | L/R. turanicus | LIT | [85] |
Mentha piperita | L/H. lusitanicum | LCT | [94] |
Mentha spicata | L/H. lusitanicum | LCT | [94] |
Mentha suaveolens | L/H. lusitanicum | LCT | [94] |
Mentha suaveolens subsp. timija | Egg/L/N H. aegyptium | EPT; LPT; NPT | [95] |
Mesosphaerum suaveolens | L/EF R. microplus | LPT; AIT | [15] |
Monsonia angustifolia | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Nemuaron vieillardii | L/R. microplus | LPT | [107] |
Neoglaziovia variegata | EF/R. microplus | AIT | [108] |
Ocimum gratissimum | L/EF R. microplus; L/A. sculptum; L/R. sanguineus | LPT; AIT; LIT | [15,100,109] |
Ocimum urticaefolium | L/R. microplus | LPT | [100] |
Ocotea elegans | L/EF R. microplus | LPT; AIT | [110] |
Origanum floribundum | L/A H. scupense | LIT; AIT | [3] |
Origanum minutiflorum | A/R. turanicus | VPT | [34] |
Origanum onites | A/R. turanicus | ACT | [111] |
Origanum vulgare subsp. virens | L/H. lusitanicum | LCT | [94] |
Pelargonium luridum | L/A R. decoloratus | LPT; ACT; AIT | [90,91] |
Pimenta dioica | L/R. microplus | LPT | [23] |
Piper amalago | L/R. microplus | LIT | [112] |
Piper corcovadensis | L/R. microplus | LPT | [113] |
Piper mikanianum | L/R. microplus | LIT | [112] |
Piper xylosteoides | L/R. microplus | LIT | [112] |
Rosmarinus officinalis | L/R. microplus; L/A H. scupense; L/H. lusitanicum | LPT; LIT; AIT; LCT | [3,24,94] |
Santolina chamaecyparissus | L/H. lusitanicum | LCT | [100] |
Satureja calamintha | Egg/L/N H. aegyptium | EPT; LPT; NPT | [95] |
Satureja montana | L/H. lusitanicum | LCT | [94] |
Satureja thymbra | A/H. marginatum | VPT | [84] |
Schinus molle | L/EF R. sanguineus | LPT; AIT | [114] |
Schkuhria pinnata | L/A R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Sclerocarya birrea | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Senecio adenotrichius | L/H. lusitanicum | LCT | [115] |
Senna italica | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Syzygium aromaticum | L/A R. microplus | LPT; AIT | [87] |
Tabernaemontana elegans | L/R. decoloratus; A/R. turanicus | LPT; ACT; AIT | [90,91] |
Tagetes minuta | EF/R. microplus | In vivo | [116] |
Tanacetum vulgare | L/H. lusitanicum | LCT | [94] |
Tetradenia riparia | L/EF R. microplus | LPT; AIT | [117] |
Thymus capitatus | L/A H. scupense | LIT; AIT | [3] |
Thymus mastichina | L/H. lusitanicum | LCT | [94] |
Thymus sipyleus subsp. sipyleus | L/R. turanicus | LIT | [85] |
Thymus vulgaris | L/H. lusitanicum | LCT | [94] |
Thymus zygis | L/H. lusitanicum | LCT | [94] |
Zanthoxylum caribaeum | A/R. microplus | AIT | [11] |
plant not specified | L/A. sculptum; L/D. nitens; L/A R. microplus | LPT;LIT; AIT | [118,119,120] |
Essentria IC3 © | N/A A. americanum | NPT; APT | [121] |
Mosquito Barrier © | N/A A. americanum | NPT; APT | [121] |
Vet’s Best © | N/A A. americanum | NPT; APT | [121] |
Wondercide © | N/A A. americanum | NPT; APT | [121] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selles, S.M.A.; Kouidri, M.; González, M.G.; González, J.; Sánchez, M.; González-Coloma, A.; Sanchis, J.; Elhachimi, L.; Olmeda, A.S.; Tercero, J.M.; et al. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens 2021, 10, 1379. https://doi.org/10.3390/pathogens10111379
Selles SMA, Kouidri M, González MG, González J, Sánchez M, González-Coloma A, Sanchis J, Elhachimi L, Olmeda AS, Tercero JM, et al. Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens. 2021; 10(11):1379. https://doi.org/10.3390/pathogens10111379
Chicago/Turabian StyleSelles, Sidi Mohammed Ammar, Mokhtaria Kouidri, Marta G. González, Julia González, María Sánchez, Azucena González-Coloma, Jaime Sanchis, Latifa Elhachimi, A. Sonia Olmeda, José Maria Tercero, and et al. 2021. "Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review" Pathogens 10, no. 11: 1379. https://doi.org/10.3390/pathogens10111379
APA StyleSelles, S. M. A., Kouidri, M., González, M. G., González, J., Sánchez, M., González-Coloma, A., Sanchis, J., Elhachimi, L., Olmeda, A. S., Tercero, J. M., & Valcárcel, F. (2021). Acaricidal and Repellent Effects of Essential Oils against Ticks: A Review. Pathogens, 10(11), 1379. https://doi.org/10.3390/pathogens10111379