Small Molecule Compounds, A Novel Strategy against Streptococcus mutans
Abstract
:1. Introduction
2. Drug Repurposing
3. Screening from the Small-Molecule Library
4. Screening from Natural Products
5. Target-Based Designing
5.1. SrtA and Antigens I/II Inhibitor
5.2. Gtfs Inhibitor
Small Molecules | Chemical Formula | Mechanisms | References |
---|---|---|---|
Compound IIIF1 | Selectively bond GtfC and significantly inhibit the biofilm formation | [113] | |
Myricetin (Myr) | Inhibit SrtA and reduce the adhesion and biofilm formation of S. mutans | [106] | |
Peptide (p1025) | Inhibit the adhesion and biofilm formation of S. mutans | [107,108,109] | |
9b | Inhibit S.mutans biofilms by inhibiting Gtfs | [112] |
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Twetman, S. Prevention of dental caries as a non-communicable disease. Eur. J. Oral Sci. 2018, 126, 19–25. [Google Scholar] [CrossRef] [Green Version]
- The Global Burden of Diseases; Injury Incidence; Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017, 390, 1211–1259. [Google Scholar] [CrossRef] [Green Version]
- Marsh, P.D. In Sickness and in Health-What Does the Oral Microbiome Mean to Us? An Ecological Perspective. Adv. Dent. Res. 2018, 29, 60–65. [Google Scholar] [CrossRef]
- Tanner, A.C.; Kressirer, C.A.; Faller, L.L. Understanding Caries From the Oral Microbiome Perspective. J. Calif. Dent. Assoc. 2016, 44, 437–446. [Google Scholar] [PubMed]
- Marsh, P.D. Microbial ecology of dental plaque and its significance in health and disease. Adv. Dent. Res. 1994, 8, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Zhang, K.; Zhou, X.; Liu, C.; Li, M.; Li, Y.; Wang, R.; Li, Y.; Li, J.; Shi, W.; et al. Involvement of gshAB in the interspecies competition within oral biofilm. J. Dent. Res. 2013, 92, 819–824. [Google Scholar] [CrossRef] [PubMed]
- Marsh, P.D. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent. Clin. N. Am. 2010, 54, 441–454. [Google Scholar] [CrossRef]
- Rosan, B.; Lamont, R.J. Dental plaque formation. Microbes Infect. 2000, 2, 1599–1607. [Google Scholar] [CrossRef]
- Algburi, A.; Comito, N.; Kashtanov, D.; Dicks, L.M.T.; Chikindas, M.L. Erratum for Algburi et al., Control of Biofilm Formation: Antibiotics and Beyond. Appl. Environ. Microbiol. 2017, 83, e00165-17. [Google Scholar] [CrossRef] [Green Version]
- Gluzman, R.; Katz, R.V.; Frey, B.J.; McGowan, R. Prevention of root caries: A literature review of primary and secondary preventive agents. Spec. Care Dent. 2013, 33, 133–140. [Google Scholar] [CrossRef] [Green Version]
- Van der Weijden, F.A.; Van der Sluijs, E.; Ciancio, S.G.; Slot, D.E. Can Chemical Mouthwash Agents Achieve Plaque/Gingivitis Control? Dent. Clin. N. Am. 2015, 59, 799–829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina, E.; Pieper, D.H. Tackling Threats and Future Problems of Multidrug-Resistant Bacteria. Curr. Top. Microbiol. Immunol. 2016, 398, 3–33. [Google Scholar] [PubMed]
- Walsh, T.; Oliveira-Neto, J.M.; Moore, D. Chlorhexidine treatment for the prevention of dental caries in children and adolescents. Cochrane Database Syst. Rev. 2015, 4, CD008457. [Google Scholar] [CrossRef]
- Roman, B.I. The Expanding Role of Chemistry in Optimizing Proteins for Human Health Applications. J. Med. Chem. 2021, 64, 7179–7188. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Fu, Y.; Liu, J. Chemical reprogramming and transdifferentiation. Curr. Opin. Genet. Dev. 2017, 46, 104–113. [Google Scholar] [CrossRef]
- Garcia, S.S.; Blackledge, M.S.; Michalek, S.; Su, L.; Ptacek, T.; Eipers, P.; Morrow, C.; Lefkowitz, E.J.; Melander, C.; Wu, H. Targeting of Streptococcus mutans Biofilms by a Novel Small Molecule Prevents Dental Caries and Preserves the Oral Microbiome. J. Dent. Res. 2017, 96, 807–814. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Kitagawa, H.; Izutani, N.; Kitagawa, R.; Maezono, H.; Yamaguchi, M.; Imazato, S. Evolution of resistance to cationic biocides in Streptococcus mutans and Enterococcus faecalis. J. Dent. 2016, 47, 18–22. [Google Scholar] [CrossRef]
- Saputo, S.; Faustoferri, R.C.; Quivey, R.G., Jr. Vitamin D Compounds Are Bactericidal against Streptococcus mutans and Target the Bacitracin-Associated Efflux System. Antimicrob. Agents Chemother. 2018, 62, e01675-17. [Google Scholar] [CrossRef] [Green Version]
- Saputo, S.; Faustoferri, R.C.; Quivey, R.G., Jr. A Drug Repositioning Approach Reveals that Streptococcus mutans Is Susceptible to a Diverse Range of Established Antimicrobials and Nonantibiotics. Antimicrob. Agents Chemother. 2018, 62, e01674-17. [Google Scholar] [CrossRef] [Green Version]
- De, A.; Lupidi, G.; Petrelli, D.; Vitali, L.A. Molecular cloning and biochemical characterization of Xaa-Pro dipeptidyl-peptidase from Streptococcus mutans and its inhibition by anti-human DPP IV drugs. FEMS Microbiol. Lett. 2016, 363, fnw066. [Google Scholar] [CrossRef] [PubMed]
- Green, B.D.; Flatt, P.R.; Bailey, C.J. Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diabetes Vasc. Dis. Res. 2006, 3, 159–165. [Google Scholar] [CrossRef]
- De, A.; Pompilio, A.; Francis, J.; Sutcliffe, I.C.; Black, G.W.; Lupidi, G.; Petrelli, D.; Vitali, L.A. Antidiabetic “gliptins” affect biofilm formation by Streptococcus mutans. Microbiol. Res. 2018, 209, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.; Liu, J.; Ling, J. Efflux inhibitor suppresses Streptococcus mutans virulence properties. FEMS Microbiol. Lett. 2017, 364, fnx033. [Google Scholar] [CrossRef] [Green Version]
- Preiss, L.; Langer, J.D.; Yildiz, O.; Eckhardt-Strelau, L.; Guillemont, J.E.; Koul, A.; Meier, T. Structure of the mycobacterial ATP synthase Fo rotor ring in complex with the anti-TB drug bedaquiline. Sci. Adv. 2015, 1, e1500106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Yu, W.; Zhou, S.; Zhang, B.; Lo, E.C.M.; Xu, X.; Zhang, D. In vitro Antibacterial Activity of an FDA-Approved H(+)-ATPase Inhibitor, Bedaquiline, Against Streptococcus mutans in Acidic Milieus. Front. Microbiol. 2021, 12, 647611. [Google Scholar] [CrossRef]
- Gerits, E.; Defraine, V.; Vandamme, K.; De Cremer, K.; De Brucker, K.; Thevissen, K.; Cammue, B.P.; Beullens, S.; Fauvart, M.; Verstraeten, N.; et al. Repurposing Toremifene for Treatment of Oral Bacterial Infections. Antimicrob. Agents Chemother. 2017, 61, e01846-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerits, E.; Van der Massen, I.; Vandamme, K.; De Cremer, K.; De Brucker, K.; Thevissen, K.; Cammue, B.P.A.; Beullens, S.; Fauvart, M.; Verstraeten, N.; et al. In vitro activity of the antiasthmatic drug zafirlukast against the oral pathogens Porphyromonas gingivalis and Streptococcus mutans. FEMS Microbiol. Lett. 2017, 364, fnx005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuete, V.; Eyong, K.O.; Folefoc, G.N.; Beng, V.P.; Hussain, H.; Krohn, K.; Nkengfack, A.E. Antimicrobial activity of the methanolic extract and of the chemical constituents isolated from Newbouldia laevis. Pharmazie 2007, 62, 552–556. [Google Scholar]
- Kuete, V.; Alibert-Franco, S.; Eyong, K.O.; Ngameni, B.; Folefoc, G.N.; Nguemeving, J.R.; Tangmouo, J.G.; Fotso, G.W.; Komguem, J.; Ouahouo, B.M.; et al. Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int. J. Antimicrob. Agents 2011, 37, 156–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuang, X.; Yang, T.; Zhang, C.; Peng, X.; Ju, Y.; Li, C.; Zhou, X.; Luo, Y.; Xu, X. Repurposing Napabucasin as an Antimicrobial Agent against Oral Streptococcal Biofilms. BioMed Res. Int. 2020, 2020, 8379526. [Google Scholar] [CrossRef]
- Lyu, X.; Li, C.; Zhang, J.; Wang, L.; Jiang, Q.; Shui, Y.; Chen, L.; Luo, Y.; Xu, X. A Novel Small Molecule, LCG-N25, Inhibits Oral Streptococcal Biofilm. Front. Microbiol. 2021, 12, 654692. [Google Scholar] [CrossRef]
- Ang, C.W.; Jarrad, A.M.; Cooper, M.A.; Blaskovich, M.A.T. Nitroimidazoles: Molecular Fireworks That Combat a Broad Spectrum of Infectious Diseases. J. Med. Chem. 2017, 60, 7636–7657. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.R.; Santos, E.B.; Pinto, S.C.; Gomes, J.C.; Vaz, I.P.; Carvalho, M.F. Antimicrobial effect and transdentinal diffusion of new intracanal formulations containing nitrofurantoin or doxycycline. Braz. Dent. J. 2014, 25, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Kuang, X.; Zhou, Y.; Peng, X.; Guo, Q.; Yang, T.; Zhou, X.; Luo, Y.; Xu, X. A Novel Small Molecule, ZY354, Inhibits Dental Caries-Associated Oral Biofilms. Antimicrob. Agents Chemother. 2019, 63, e02414-18. [Google Scholar] [CrossRef] [Green Version]
- Wachters, F.M.; Van Putten, J.W.; Kramer, H.; Erjavec, Z.; Eppinga, P.; Strijbos, J.H.; de Leede, G.P.; Boezen, H.M.; de Vries, E.G.; Groen, H.J. First-line gemcitabine with cisplatin or epirubicin in advanced non-small-cell lung cancer: A phase III trial. Br. J. Cancer 2003, 89, 1192–1199. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.J. A perspective of publicly accessible/open-access chemistry databases. Drug Discov. Today 2008, 13, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Haney, E.F.; Trimble, M.J.; Cheng, J.T.; Valle, Q.; Hancock, R.E.W. Critical Assessment of Methods to Quantify Biofilm Growth and Evaluate Antibiofilm Activity of Host Defence Peptides. Biomolecules 2018, 8, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The Biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 1. [Google Scholar] [CrossRef]
- Senadheera, D.; Cvitkovitch, D.G. Quorum sensing and biofilm formation by Streptococcus mutans. Adv. Exp. Med. Biol 2008, 631, 178–188. [Google Scholar]
- Chen, X.; Liu, C.; Peng, X.; He, Y.; Liu, H.; Song, Y.; Xiong, K.; Zou, L. Sortase A-mediated modification of the Streptococcus mutans transcriptome and virulence traits. Mol. Oral Microbiol. 2019, 34, 219–233. [Google Scholar] [CrossRef] [PubMed]
- Krzysciak, W.; Jurczak, A.; Koscielniak, D.; Bystrowska, B.; Skalniak, A. The virulence of Streptococcus mutans and the ability to form biofilms. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 499–515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkinson, H.F.; Demuth, D.R. Structure, function and immunogenicity of streptococcal antigen I/II polypeptides. Mol. Microbiol. 1997, 23, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Munro, G.H.; Evans, P.; Todryk, S.; Buckett, P.; Kelly, C.G.; Lehner, T. A protein fragment of streptococcal cell surface antigen I/II which prevents adhesion of Streptococcus mutans. Infect. Immun. 1993, 61, 4590–4598. [Google Scholar] [CrossRef] [Green Version]
- Love, R.M.; McMillan, M.D.; Jenkinson, H.F. Invasion of dentinal tubules by oral streptococci is associated with collagen recognition mediated by the antigen I/II family of polypeptides. Infect. Immun. 1997, 65, 5157–5164. [Google Scholar] [CrossRef] [Green Version]
- Bramstedt, F. Polysaccharide synthesis through plaque streptococci as an important factor in the etiology of caries. DDZ Dtsch. Zahnarztebl. 1968, 22, 563–564. [Google Scholar]
- Kim, D.; Barraza, J.P.; Arthur, R.A.; Hara, A.; Lewis, K.; Liu, Y.; Scisci, E.L.; Hajishengallis, E.; Whiteley, M.; Koo, H. Spatial mapping of polymicrobial communities reveals a precise biogeography associated with human dental caries. Proc. Natl. Acad. Sci. USA 2020, 117, 12375–12386. [Google Scholar] [CrossRef]
- Bowen, W.H.; Koo, H. Biology of Streptococcus mutans-derived glucosyltransferases: Role in extracellular matrix formation of cariogenic biofilms. Caries Res. 2011, 45, 69–86. [Google Scholar] [CrossRef]
- Rivera-Quiroga, R.E.; Cardona, N.; Padilla, L.; Rivera, W.; Rocha-Roa, C.; Diaz De Rienzo, M.A.; Morales, S.M.; Martinez, M.C. In Silico Selection and In Vitro Evaluation of New Molecules That Inhibit the Adhesion of Streptococcus mutants through Antigen I/II. Int. J. Mol. Sci. 2020, 22, 377. [Google Scholar] [CrossRef]
- Chen, L.; Ren, Z.; Zhou, X.; Zeng, J.; Zou, J.; Li, Y. Inhibition of Streptococcus mutans biofilm formation, extracellular polysaccharide production, and virulence by an oxazole derivative. Appl. Microbiol. Biotechnol. 2016, 100, 857–867. [Google Scholar] [CrossRef]
- Liu, C.; Worthington, R.J.; Melander, C.; Wu, H. A new small molecule specifically inhibits the cariogenic bacterium Streptococcus mutans in multispecies biofilms. Antimicrob. Agents Chemother. 2011, 55, 2679–2687. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Nijampatnam, B.; Hua, Z.; Nguyen, T.; Zou, J.; Cai, X.; Michalek, S.M.; Velu, S.E.; Wu, H. Structure-Based Discovery of Small Molecule Inhibitors of Cariogenic Virulence. Sci. Rep. 2017, 7, 5974. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Cui, T.; Zeng, J.; Chen, L.; Zhang, W.; Xu, X.; Cheng, L.; Li, M.; Li, J.; Zhou, X.; et al. Molecule Targeting Glucosyltransferase Inhibits Streptococcus mutans Biofilm Formation and Virulence. Antimicrob. Agents Chemother. 2016, 60, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.F.; Boran, T.L. Roles of sortase in surface expression of the major protein adhesin P1, saliva-induced aggregation and adherence, and cariogenicity of Streptococcus mutans. Infect. Immun. 2003, 71, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmanli, M.; Yilmaz, G.T.; Tuzuner, T. Investigation of the antimicrobial activities of various antimicrobial agents on Streptococcus mutans Sortase A through computer-aided drug design (CADD) approaches. Comput. Methods Programs Biomed. 2021, 212, 106454. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Liang, D.F.; Bao, M.Y.; Sun, R.; Li, Y.Y.; Li, J.Z.; Wang, X.; Lu, K.M.; Bao, J.K. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A. Int. J. Oral Sci. 2017, 9, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Papenfort, K.; Bassler, B.L. Quorum sensing signal-response systems in Gram-negative bacteria. Nat. Rev. Microbiol. 2016, 14, 576–588. [Google Scholar] [CrossRef]
- Havarstein, L.S.; Diep, D.B.; Nes, I.F. A family of bacteriocin ABC transporters carry out proteolytic processing of their substrates concomitant with export. Mol. Microbiol. 1995, 16, 229–240. [Google Scholar] [CrossRef]
- Ishii, S.; Fukui, K.; Yokoshima, S.; Kumagai, K.; Beniyama, Y.; Kodama, T.; Fukuyama, T.; Okabe, T.; Nagano, T.; Kojima, H.; et al. High-throughput Screening of Small Molecule Inhibitors of the Streptococcus Quorum-sensing Signal Pathway. Sci. Rep. 2017, 7, 4029. [Google Scholar] [CrossRef] [Green Version]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The oral microbiota: Dynamic communities and host interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, H.; Lin, Z.; Xu, P. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 2015, 33, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- Sekiya, M.; Izumisawa, S.; Iwamoto-Kihara, A.; Fan, Y.; Shimoyama, Y.; Sasaki, M.; Nakanishi-Matsui, M. Proton-pumping F-ATPase plays an important role in Streptococcus mutans under acidic conditions. Arch. Biochem. Biophys. 2019, 666, 46–51. [Google Scholar] [CrossRef]
- Chen, Y.; Ju, Y.; Li, C.; Yang, T.; Deng, Y.; Luo, Y. Design, synthesis, and antibacterial evaluation of novel derivatives of NPS-2143 for the treatment of methicillin-resistant S. aureus (MRSA) infection. J. Antibiot. 2019, 72, 545–554. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Kuang, X.; Zhou, Y.; Yang, R.; Zhou, X.; Peng, X.; Luo, Y.; Xu, X. Antimicrobial activities of a small molecule compound II-6s against oral streptococci. J. Oral Microbiol. 2021, 13, 1909917. [Google Scholar] [CrossRef]
- Kim, K.; Kim, D.; Lee, H.; Lee, T.H.; Kim, K.Y.; Kim, H. New Pyrimidinone-Fused 1,4-Naphthoquinone Derivatives Inhibit the Growth of Drug Resistant Oral Bacteria. Biomedicines 2020, 8, 160. [Google Scholar] [CrossRef]
- Simon, G.; Berube, C.; Voyer, N.; Grenier, D. Anti-biofilm and anti-adherence properties of novel cyclic dipeptides against oral pathogens. Bioorgan. Med. Chem. 2019, 27, 2323–2331. [Google Scholar] [CrossRef] [PubMed]
- Borthwick, A.D. 2,5-Diketopiperazines: Synthesis, reactions, medicinal chemistry, and bioactive natural products. Chem. Rev. 2012, 112, 3641–3716. [Google Scholar] [CrossRef]
- Zhang, Q.; Nguyen, T.; McMichael, M.; Velu, S.E.; Zou, J.; Zhou, X.; Wu, H. New small-molecule inhibitors of dihydrofolate reductase inhibit Streptococcus mutans. Int. J. Antimicrob. Agents 2015, 46, 174–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davison, E.K.; Brimble, M.A. Natural product derived privileged scaffolds in drug discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Hamiltonmiller, J.M.T. Antimicrobial Properties of Tea (Camellia-Sinensis L.). Antimicrob. Agents Chemother. 1995, 39, 2375–2377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.D.; Wei, G.X. Tea as a functional food for oral health. Nutrition 2002, 18, 443–444. [Google Scholar] [CrossRef]
- Xu, X.; Zhou, X.D.; Wu, C.D. The tea catechin epigallocatechin gallate suppresses cariogenic virulence factors of Streptococcus mutans. Antimicrob. Agents Chemother. 2011, 55, 1229–1236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Zhou, X.D.; Wu, C.D. Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Arch. Oral Biol. 2012, 57, 678–683. [Google Scholar] [CrossRef]
- Islam, M.I.H.; Arokiyaraj, S.; Kuralarasan, M.; Kumar, V.S.; Harikrishnan, P.; Saravanan, S.; Ashok, G.; Chellappandian, M.; Bharanidharan, R.; Muralidaran, S.; et al. Inhibitory potential of EGCG on Streptococcus mutans biofilm: A new approach to prevent Cariogenesis. Microb. Pathog. 2020, 143, 104129. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Abiko, Y.; Washio, J.; Luo, Y.; Zhang, L.; Takahashi, N. Green Tea-Derived Epigallocatechin Gallate Inhibits Acid Production and Promotes the Aggregation of Streptococcus mutans and Non-Mutans Streptococci. Caries Res. 2021, 55, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Melok, A.L.; Lee, L.H.; Yussof, S.A.M.; Chu, T. Green Tea Polyphenol Epigallocatechin-3-Gallate-Stearate Inhibits the Growth of Streptococcus mutans: A Promising New Approach in Caries Prevention. Dent. J. 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Stavroullakis, A.T.; Goncalves, L.L.; Levesque, C.M.; Kishen, A.; Prakki, A. Interaction of epigallocatechin-gallate and chlorhexidine with Streptococcus mutans stimulated odontoblast-like cells: Cytotoxicity, Interleukin-1beta and co-species proteomic analyses. Arch. Oral Biol. 2021, 131, 105268. [Google Scholar] [CrossRef]
- Veloz, J.J.; Saavedra, N.; Alvear, M.; Zambrano, T.; Barrientos, L.; Salazar, L.A. Polyphenol-Rich Extract from Propolis Reduces the Expression and Activity of Streptococcus mutans Glucosyltransferases at Subinhibitory Concentrations. BioMed Res. Int. 2016, 2016, 4302706. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, R.L.; Maboni, F.; Machado, G.; Alves, S.H.; de Vargas, A.C. Antimicrobial activity of propolis extract against Staphylococcus coagulase positive and Malassezia pachydermatis of canine otitis. Vet. Microbiol. 2010, 142, 432–434. [Google Scholar] [CrossRef]
- Koo, H.; Rosalen, P.L.; Cury, J.A.; Park, Y.K.; Bowen, W.H. Effects of compounds found in propolis on Streptococcus mutans growth and on glucosyltransferase activity. Antimicrob. Agents Chemother. 2002, 46, 1302–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.; Hayacibara, M.F.; Schobel, B.D.; Cury, J.A.; Rosalen, P.L.; Park, Y.K.; Vacca-Smith, A.M.; Bowen, W.H. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. J. Antimicrob. Chemother. 2003, 52, 782–789. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.G.; Pandit, S.; Xiao, J.; Gregoire, S.; Falsetta, M.L.; Klein, M.I.; Koo, H. Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms. Int. J. Oral Sci. 2011, 3, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.; Schobel, B.; Scott-Anne, K.; Watson, G.; Bowen, W.H.; Cury, J.A.; Rosalen, P.L.; Park, Y.K. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. J. Dent. Res. 2005, 84, 1016–1020. [Google Scholar] [CrossRef]
- Velazquez, C.; Navarro, M.; Acosta, A.; Angulo, A.; Dominguez, Z.; Robles, R.; Robles-Zepeda, R.; Lugo, E.; Goycoolea, F.M.; Velazquez, E.F.; et al. Antibacterial and free-radical scavenging activities of Sonoran propolis. J. Appl. Microbiol. 2007, 103, 1747–1756. [Google Scholar] [CrossRef]
- Veloz, J.J.; Alvear, M.; Salazar, L.A. Antimicrobial and Antibiofilm Activity against Streptococcus mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. Biomed. Res. Int. 2019, 2019, 7602343. [Google Scholar] [CrossRef] [Green Version]
- Niu, Y.; Wang, K.; Zheng, S.; Wang, Y.; Ren, Q.; Li, H.; Ding, L.; Li, W.; Zhang, L. Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrob. Agents Chemother. 2020, 64, e00251-20. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Huang, Z.; Jiang, W.; Zhou, W. Antimicrobial Activity of Cinnamaldehyde on Streptococcus mutans Biofilms. Front. Microbiol. 2019, 10, 2241. [Google Scholar] [CrossRef] [Green Version]
- Balasubramanian, A.R.; Vasudevan, S.; Shanmugam, K.; Levesque, C.M.; Solomon, A.P.; Neelakantan, P. Combinatorial effects of trans-cinnamaldehyde with fluoride and chlorhexidine on Streptococcus mutans. J. Appl. Microbiol. 2021, 130, 382–393. [Google Scholar] [CrossRef]
- Kim, S.; Song, M.; Roh, B.D.; Park, S.H.; Park, J.W. Inhibition of Streptococcus mutans biofilm formation on composite resins containing ursolic acid. Restor. Dent. Endod. 2013, 38, 65–72. [Google Scholar] [CrossRef] [Green Version]
- Lyu, X.; Wang, L.; Shui, Y.; Jiang, Q.; Chen, L.; Yang, W.; He, X.; Zeng, J.; Li, Y. Ursolic acid inhibits multi-species biofilms developed by Streptococcus mutans, Streptococcus sanguinis, and Streptococcus gordonii. Arch. Oral. Biol. 2021, 125, 105107. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Peng, W.; Zhu, Y. Effects of resveratrol on cariogenic virulence properties of Streptococcus mutans. BMC Microbiol. 2020, 20, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Y.; Jiang, W.; Zhang, M.; Zhang, L.; Shen, Y.; Huang, S.; Li, M.; Qiu, W.; Pan, Y.; Zhou, L.; et al. The Inhibitory Effects of Ficin on Streptococcus mutans Biofilm Formation. BioMed Res. Int. 2021, 2021, 6692328. [Google Scholar] [CrossRef]
- Elango, A.V.; Vasudevan, S.; Shanmugam, K.; Solomon, A.P.; Neelakantan, P. Exploring the anti-caries properties of baicalin against Streptococcus mutans: An in vitro study. Biofouling 2021, 37, 267–275. [Google Scholar] [CrossRef]
- Nijampatnam, B.; Zhang, H.; Cai, X.; Michalek, S.M.; Wu, H.; Velu, S.E. Inhibition of Streptococcus mutans Biofilms by the Natural Stilbene Piceatannol Through the Inhibition of Glucosyltransferases. ACS Omega 2018, 3, 8378–8385. [Google Scholar] [CrossRef] [Green Version]
- Evangelina, I.A.; Herdiyati, Y.; Laviana, A.; Rikmasari, R.; Zubaedah, C.; Anisah Kurnia, D. Bio-Mechanism Inhibitory Prediction of beta-Sitosterol from Kemangi (Ocimum basilicum L.) as an Inhibitor of MurA Enzyme of Oral Bacteria: In vitro and in silico Study. Adv. Appl. Bioinform. Chem. 2021, 14, 103–115. [Google Scholar]
- Wang, J.; Shi, Y.; Jing, S.; Dong, H.; Wang, D.; Wang, T. Astilbin Inhibits the Activity of Sortase A from Streptococcus mutans. Molecules 2019, 24, 465. [Google Scholar] [CrossRef] [Green Version]
- Ito, Y.; Ito, T.; Yamashiro, K.; Mineshiba, F.; Hirai, K.; Omori, K.; Yamamoto, T.; Takashiba, S. Antimicrobial and antibiofilm effects of abietic acid on cariogenic Streptococcus mutans. Odontology 2020, 108, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Liu, Y.; Lu, M.; Lyu, X.; Gong, T.; Tang, B.; Wang, L.; Zeng, J.; Li, Y. Rhodiola rosea extract inhibits the biofilm formation and the expression of virulence genes of cariogenic oral pathogen Streptococcus mutans. Arch. Oral Biol. 2020, 116, 104762. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Marquis, R.E. Antimicrobial actions of alpha-mangostin against oral streptococci. Can. J. Microbiol. 2011, 57, 217–225. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Falsetta, M.L.; Hwang, G.; Gonzalez-Begne, M.; Koo, H. Alpha-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal. PLoS ONE 2014, 9, e111312. [Google Scholar]
- SanudoPena, M.C.; Tsou, K.; Delay, E.R.; Hohman, A.G.; Force, M.; Walker, J.M. Endogenous cannabinoids as an aversive or counter-rewarding system in the rat. Neurosci. Lett. 1997, 223, 125–128. [Google Scholar] [CrossRef]
- Feldman, M.; Sionov, R.; Smoum, R.; Mechoulam, R.; Ginsburg, I.; Steinberg, D. Comparative Evaluation of Combinatory Interaction between Endocannabinoid System Compounds and Poly-L-lysine against Streptococcus mutans Growth and Biofilm Formation. BioMed Res. Int. 2020, 2020, 7258380. [Google Scholar] [CrossRef] [PubMed]
- Park, W.; Ahn, C.H.; Cho, H.; Kim, C.K.; Shin, J.; Oh, K.B. Inhibitory Effects of Flavonoids from Spatholobus suberectus on Sortase A and Sortase A-Mediated Aggregation of Streptococcus mutans. J. Microbiol. Biotechnol. 2017, 27, 1457–1460. [Google Scholar] [CrossRef]
- Song, M.; Teng, Z.; Li, M.; Niu, X.; Wang, J.; Deng, X. Epigallocatechin gallate inhibits Streptococcus pneumoniae virulence by simultaneously targeting pneumolysin and sortase A. J. Cell. Mol. Med. 2017, 21, 2586–2598. [Google Scholar] [CrossRef]
- Hu, P.; Lv, B.; Yang, K.; Lu, Z.; Ma, J. Discovery of myricetin as an inhibitor against Streptococcus mutans and an anti-adhesion approach to biofilm formation. Int. J. Med. Microbiol. 2021, 311, 151512. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.G.; Younson, J.S.; Hikmat, B.Y.; Todryk, S.M.; Czisch, M.; Haris, P.I.; Flindall, I.R.; Newby, C.; Mallet, A.I.; Ma, J.K.; et al. A synthetic peptide adhesion epitope as a novel antimicrobial agent. Nat. Biotechnol. 1999, 17, 42–47. [Google Scholar] [CrossRef]
- Li, M.Y.; Wang, J.; Lai, G.Y. Effect of a dentifrice containing the peptide of streptococcal antigen I/II on the adherence of mutans Streptococcus. Arch. Oral Biol. 2009, 54, 1068–1073. [Google Scholar] [CrossRef] [PubMed]
- Younson, J.; Kelly, C. The rational design of an anti-caries peptide against Streptococcus mutans. Mol. Divers. 2004, 8, 121–126. [Google Scholar] [CrossRef]
- Koo, H.; Xiao, J.; Klein, M.I.; Jeon, J.G. Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J. Bacteriol. 2010, 192, 3024–3032. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Han, L.; Yang, H.; Liu, S.; Huang, C. Effect of apigenin on surface-associated characteristics and adherence of Streptococcus mutans. Dent. Mater. J. 2020, 39, 933–940. [Google Scholar] [CrossRef] [PubMed]
- Nijampatnam, B.; Casals, L.; Zheng, R.; Wu, H.; Velu, S.E. Hydroxychalcone inhibitors of Streptococcus mutans glucosyl transferases and biofilms as potential anticaries agents. Bioorgan. Med. Chem. Lett. 2016, 26, 3508–3513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nijampatnam, B.; Ahirwar, P.; Pukkanasut, P.; Womack, H.; Casals, L.; Zhang, H.; Cai, X.; Michalek, S.M.; Wu, H.; Velu, S.E. Discovery of Potent Inhibitors of Streptococcus mutans Biofilm with Antivirulence Activity. ACS Med. Chem. Lett. 2021, 12, 48–55. [Google Scholar] [CrossRef] [PubMed]
Small Molecules | Chemical Structure | Mechanisms | References |
---|---|---|---|
Bedaquiline | Inhibit cariogenic bacteria in an acidic environment and inhibit (Streptococcus mutans) S. mutans biofilm proliferation | [26] | |
Biapenem | Inhibit the planktonic growth of S. mutans; inhibit S. mutans biofilms formation and reduce the viability of pre-existing S. mutans biofilms | [19] | |
Cefdinir | Inhibit the planktonic growth of S. mutans; inhibit the biofilm formation of S. mutans | [19] | |
Calcitriol | Inhibit the planktonic growth of S. mutans; reduce the viability of pre-existing S. mutans biofilms | [20] | |
Doxercalciferol | Inhibit the planktonic growth of S. mutans; inhibit the S. mutans biofilms formation and reduce the viability of pre-existing S. mutans biofilms | [20] | |
LCG-N25 | Inhibit both the planktonic cells and biofilms formation of S. mutans | [32] | |
Napabucasin | Inhibit S. mutans biofilms | [31] | |
Reserpine | Suppress acid tolerance; inhibit the glycosyltransferase activity of S. mutans | [24] | |
Saxagliptins | Reduce S. mutans biofilm formation | [23] | |
Toremifene | Inhibit the growth and biofilm formation of S. mutans | [27] | |
Zinc pyrithione | [19] | ||
Zafirlukast | Inhibit S. mutans planktonic cells; inhibit biofilm formation and reduce the viability of the preformed biofilms of S. mutans | [28] | |
ZY354 | Inhibit S. mutans growth and selectively inhibit the biofilm formation of S. mutans | [35] |
Small Molecules | Chemical Formula | Mechanisms | References |
---|---|---|---|
Compound 3F1 | Specifically disturb S. mutans biofilms in a mixed biofilm | [16] | |
Compound 1 | Inhibit biofilm formation by inhibiting quorum sensing systems | [59] | |
Curcumin | Inhibit F1F0-ATPase in S. mutans and inhibit S. mutans growth | [62] | |
Desmethoxycurcumin | |||
Piceatannol | |||
G43 | Inhibit S. mutans biofilm formation by selectively binding to GtfC | [52] | |
Pyrimidinone or pyrimidindione-fused 1,4-naphthoquinones | Bacteriostatic and bactericidal effects against S. mutans in both resistant and sensitive strains | [65] | |
ZINC19835187 (ZI-187) | Inhibit S. mutans adhesion and biofilm formation by targeting antigens I/II | [49] | |
ZINC19924939 (ZI-939) | |||
ZINC 19924906 (ZI-906) | |||
2A4 | Inhibit S. mutans adhesion and biofilm formation by targeting antigens I/II and glucosyltransferases (Gtfs) | [51] | |
2-(4-methoxyphenyl)-N-(3-{[2-(4-methoxyphenyl)ethyl]imino}-1,4-dihydro-2-quinoxalinylidene) ethanamine | Inhibit the biofilm formation and destroy mature biofilms without killing S. mutans by inhibiting GtfC | [53] | |
II-6s | Inhibit growth and exopolysaccharides (EPS) generation of S. mutans; inhibit the demineralization of tooth enamel and induce no drug resistance in S. mutans | [64] | |
5H6 | Inhibit the biofilm formation of S. mutans by antagonizing Gtfs | [50] |
Small Molecules | Chemical Formula | Mechanisms | References |
---|---|---|---|
Apigenin and trans-trans farnesol | Inhibit Gtfs, specifically GtfB and GtfC; disrupt membrane integrity, destabilize oral biofilms and reduce the intracellular iodophilic polysaccharides (IPS) accumulation of S. mutans | [79,80,81,82,83,84,85,86,87] | |
Astilbin | Inhibit the activity of sortase A (SrtA) and the biofilm formation of S. mutans without repressing its growth | [97] | |
Abietic acid | Inhibit acid production and the biofilm formation of S. mutans | [98] | |
AEA | Show synergistic antibiofilm effects with poly-L-lysine aginst S. mutans | [103] | |
αMG | Disrupt S. mutans biofilms by inhibiting the enzyme activities of GtfB, GtfC, and F1F0-ATPase | [100,101] | |
Baicalin | Inhibit biofilm formation, acid production, and virulence | [94] | |
β-sitosterol from Kemangi | Inhibit S. mutans biofilm formation by inhibiting SrtA | [96] | |
Epigallocatechin gallate (EGCG) | Inhibit S. mutans acid production, aciduricity, and biofilm formation | [73,74,75,76,77,78] | |
Piceatannol | Inhibit glucans production by Gtfs, selectively affect S. mutans biofilms formation and inhibit S. mutans colonization in vivo | [95] | |
Resveratrol | Inhibit acid production and aciduricity and down-regulated virulence genes | [92] | |
Trans-cinnamaldehyde (TC) | Inhibit virulence genes; show synergistic effects with CHX antibiofilms | [88,89] | |
Ursolic acid | Inhibit biofilm formation and maturation by reducing EPS production | [90,91] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Zhang, J.; Yang, R.; Xu, X. Small Molecule Compounds, A Novel Strategy against Streptococcus mutans. Pathogens 2021, 10, 1540. https://doi.org/10.3390/pathogens10121540
Yang S, Zhang J, Yang R, Xu X. Small Molecule Compounds, A Novel Strategy against Streptococcus mutans. Pathogens. 2021; 10(12):1540. https://doi.org/10.3390/pathogens10121540
Chicago/Turabian StyleYang, Sirui, Jin Zhang, Ran Yang, and Xin Xu. 2021. "Small Molecule Compounds, A Novel Strategy against Streptococcus mutans" Pathogens 10, no. 12: 1540. https://doi.org/10.3390/pathogens10121540