Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area and Population
4.2. Dairy Practices and Exposure Assessment
4.3. IgG and IgM Antibodies Detection
4.4. Ethical Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Disclaimer
References
- Shchelkunov, S.N. An Increasing Danger of Zoonotic Orthopoxvirus Infections. PLoS Pathog. 2013, 9, e1003756. [Google Scholar] [CrossRef]
- De Oliveira, J.S.; Figueiredo, P.D.O.; Costa, G.B.; De Assis, F.L.; Drumond, B.P.; Da Fonseca, F.G.; Nogueira, M.L.; Kroon, E.G.; Trindade, G.D.S. Vaccinia Virus Natural Infections in Brazil: The Good, the Bad, and the Ugly. Viruses 2017, 9, 340. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, M.G.; Guagliardo, S.A.J.; Nakazawa, Y.J.; Doty, J.; Mauldin, M.R. Understanding orthopoxvirus host range and evo-lution: From the enigmatic to the usual aspects. Curr. Opin. Virol. 2018, 28, 108–115. [Google Scholar] [CrossRef]
- Fenner, F.; Henderson, D. Smallpox and Its Eradication; World Health Organization: Geneva, Switzerland, 1988. [Google Scholar]
- Damon, I. Poxviruses; Lippincott-Raven: Philadelphia, PA, USA, 2013; pp. 2160–2184. [Google Scholar]
- Reynolds, M.G.; Damon, I.K. Outbreaks of human monkeypox after cessation of smallpox vaccination. Trends Microbiol. 2012, 20, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kantele, A.; Chickering, K.; Vapalahti, O.; Rimoin, A. Emerging diseases—The monkeypox epidemic in the Democratic Republic of the Congo. Clin. Microbiol. Infect. 2016, 22, 658–659. [Google Scholar] [CrossRef] [PubMed]
- Essbauer, S.; Pfeffer, M.; Meyer, H. Zoonotic poxviruses. Vet. Microbiol. 2010, 140, 229–236. [Google Scholar] [CrossRef]
- Franke, A.; Pfaff, F.; Jenckel, M.; Hoffmann, B.; Höper, D.; Antwerpen, M.; Meyer, H.; Beer, M.; Hoffmann, D. Classification of Cowpox Viruses into Several Distinct Clades and Identification of a Novel Lineage. Viruses 2017, 9, 142. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Balamurugan, V.; Bhanuprakash, V.; Venkatesan, G.; Hosamani, M. Emergence and Reemergence of Vaccinia-Like Viruses: Global Scenario and Perspectives. Indian J. Virol. 2012, 23, 1–11. [Google Scholar] [CrossRef]
- Doshi, R.H.; Guagliardo, S.A.J.; Dzabatou-Babeaux, A.; Likouayoulou, C.; Al, R.H.D.E.; Moses, C.; Olson, V.; Mccollum, A.M.; Petersen, B.W. Strengthening of Surveillance during Monkeypox Outbreak, Republic of the Congo, 2017. Emerg. Infect. Dis. 2018, 24, 1158–1160. [Google Scholar] [CrossRef] [PubMed]
- Quiner, C.A.; Nakazawa, Y. Ecological niche modeling to determine potential niche of Vaccinia virus: A case only study. Int. J. Heal. Geogr. 2017, 16, 1–12. [Google Scholar] [CrossRef]
- Franco-Luiz, A.P.M.; Fagundes-Pereira, A.; Costa, G.B.; Alves, P.A.; Oliveira, D.B.; Bonjardim, C.A.; Ferreira, P.C.P.; Trindade, G.D.S.; Panei, C.J.; Galosi, C.M.; et al. Spread of Vaccinia Virus to Cattle Herds, Argentina, 2011. Emerg. Infect. Dis. 2014, 20, 1576–1578. [Google Scholar] [CrossRef] [PubMed]
- Franco-Luiz, A.P.M.; Oliveira, D.B.; Pereira, A.F.; Gasparini, M.C.S.; Bonjardim, C.A.; Ferreira, P.C.P.; Trindade, G.D.S.; Puentes, R.; Furtado, A.; Abrahão, J.S.; et al. Detection of Vaccinia Virus in Dairy Cattle Serum Samples from 2009, Uruguay. Emerg. Infect. Dis. 2016, 22, 2174–2177. [Google Scholar] [CrossRef]
- Usme-Ciro, J.A.; Paredes, A.; Walteros, D.M.; Tolosa-Pérez, E.N.; Laiton-Donato, K.; del Carmen Pinzón, M.; Petersen, B.W.; Gallardo-Romero, N.F.; Li, Y.; Wilkins, K.; et al. Detection and Molecular Characterization of Zoonotic Poxviruses Circulating in the Amazon Region of Colombia, 2014. Emerg. Infect. Dis. 2017, 23, 649–653. [Google Scholar] [CrossRef]
- Silva-Fernandes, A.T.; Travassos, C.E.P.F.; Ferreira, J.M.S.; Abrahão, J.S.; Rocha, E.S.D.O.; Viana-Ferreira, F.; Dos Santos, J.R.; Bonjardim, C.A.; Ferreira, P.C.P.; Kroon, E.G. Natural human infections with Vaccinia virus during bovine vaccinia outbreaks. J. Clin. Virol. 2009, 44, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.; Reis, B.B.; Ricci Junior, J.E.R.; Fernandes, F.S.; Correa, J.F.; Schatzmayr, H.G. Infecção em humanos por varíola bovina na microrregião de Itajubá, Estado de Minas Gerais: Relato de caso. Rev. Soc. Bras. Med. Trop. 2008, 41, 507–511. [Google Scholar] [CrossRef]
- Lima, M.T.; Oliveira, G.P.; Assis, F.L.; De Oliveira, D.B.; Vaz, S.M.; Trindade, G.D.S.; Abrahão, J.S.; Kroon, E.G. Ocular Vaccinia Infection in Dairy Worker, Brazil. Emerg. Infect. Dis. 2018, 24, 161–162. [Google Scholar] [CrossRef]
- Laiton-Donato, K.; Ávila-Robayo, P.; Páez-Martinez, A.; Benjumea-Nieto, P.; Usme-Ciro, J.Á.; Pinzón-Nariño, N.; Giraldo, I.; Torres-Castellanos, D.; Nakazawa, Y.; Patel, N.; et al. Progressive Vaccinia Acquired through Zoonotic Transmission in a Pa-tient with HIV/AIDS, Colombia. Emerg. Infect. Dis. 2020, 26, 601–605. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, J.S.; Costa, G.B.; Luiz, A.P.M.F.; Leite, J.A.; Bonjardim, C.A.; Abrahão, J.S.; Drumond, B.P.; Kroon, E.G.; Trindade, G.D.S. Cross-sectional study involving healthcare professionals in a Vaccinia virus endemic area. Vaccine 2017, 35, 3281–3285. [Google Scholar] [CrossRef] [PubMed]
- Roess, A.A.; Monroe, B.P.; Kinzoni, E.A.; Gallagher, S.; Ibata, S.R.; Badinga, N.; Molouania, T.M.; Mabola, F.S.; Mombouli, J.V.; Carroll, D.S.; et al. Assessing the Effectiveness of a Community Intervention for Monkeypox Prevention in the Congo Basin. PLoS Negl. Trop. Dis. 2011, 5, e1356. [Google Scholar] [CrossRef]
- Bass, J.; Tack, D.M.; Mccollum, A.M.; Kabamba, J.; Pakuta, E.; Malekani, J.; Nguete, B.; Monroe, B.P.; Doty, J.B.; Karhemere, S.; et al. Enhancing health care worker ability to detect and care for patients with monkeypox in the Democratic Republic of the Congo. Int. Heal. 2013, 5, 237–243. [Google Scholar] [CrossRef]
- Borges, I.; Mccollum, A.; Mehal, J.; Haberling, D.; Dutra, L.; Vieira, F.; Andrade, L.; Kroon, E.; Holman, R.; Reynolds, M.; et al. Dairy production practices and associated risks for bovine vaccinia exposure in cattle, Brazil. N. Microbes N. Infect. 2017, 20, 43–50. [Google Scholar] [CrossRef]
- Trindade, G.S.; Guedes, M.I.C.; Drumond, B.P.; Mota, B.E.F.; Abrahão, J.S.; Lobato, Z.I.P.; Gomes, J.A.S.; Corrêa-Oliveira, R.; Nogueira, M.L.; Kroon, E.G.; et al. Zoonotic Vaccinia Virus: Clinical and Immunological Characteristics in a Naturally Infected Patient. Clin. Infect. Dis. 2009, 48, e37–e40. [Google Scholar] [CrossRef]
- Assis, F.L.; Borges, I.A.; Ferreira, P.C.P.; Bonjardim, C.A.; Trindade, G.D.S.; Lobato, Z.I.P.; Guedes, M.I.M.; Mesquita, V.; Kroon, E.G.; Abrahão, J.S. Group 2 Vaccinia Virus, Brazil. Emerg. Infect. Dis. 2012, 18, 2035–2038. [Google Scholar] [CrossRef]
- Costa, G.B.; Borges, I.A.; Alves, P.A.; Miranda, J.B.; Luiz, A.P.M.; Ferreira, P.C.; Abrahão, J.S.; Moreno, E.C.; Kroon, E.G.; Trindade, G.D.S. Alternative Routes of Zoonotic Vaccinia Virus Transmission, Brazil. Emerg. Infect. Dis. 2015, 21, 2244–2246. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.B.; De Almeida, L.R.; Cerqueira, A.G.R.; Mesquita, W.U.; De Oliveira, J.S.; Miranda, J.B.; Saraiva-Silva, A.T.; Abrahão, J.S.; Drumond, B.P.; Kroon, E.G.; et al. Vaccinia Virus among Domestic Dogs and Wild Coatis, Brazil, 2013–2015. Emerg. Infect. Dis. 2018, 24, 2338–2342. [Google Scholar] [CrossRef]
- Peres, M.G.; Barros, C.B.; Appolinário, C.M.; Antunes, J.M.; Mioni, M.S.; Bacchiega, T.S.; Allendorf, S.D.; Vicente, A.F.; Fonseca, C.R.; Megid, J. Dogs and opossums positive for Vaccinia virus during outbreak affecting cattle and humans, São Paulo State, Brazil. Emerg. Infect. Dis. 2016, 22, 271–273. [Google Scholar] [CrossRef] [PubMed]
- Lederman, E.; Miramontes, R.; Openshaw, J.; Olson, V.A.; Karem, K.L.; Marcinak, J.; Panares, R.; Staggs, W.; Allen, D.; Weber, S.G.; et al. Eczema vaccinatum resulting from the transmission of vaccinia virus from a smallpox vaccinee: An investigation of potential fomites in the home environment. Vaccine 2009, 27, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Assis, F.L.; Borges, I.A.; Mesquita, V.S.; Ferreira, P.C.; Trindade, G.S.; Kroon, E.G.; Abrahão, J.S. Vaccinia Virus in Household Environment during Bovine Vaccinia Outbreak, Brazil. Emerg. Infect. Dis. 2013, 19, 2045–2047. [Google Scholar] [CrossRef] [PubMed]
- Costa, G.B.; Miranda, J.B.; Almeida, G.G.; De Oliveira, J.S.; Pinheiro, M.S.; Gonçalves, S.A.; Dos Reis, J.K.P.; Gonçalves, R.; Ferreira, P.C.P.; Bonjardim, C.A.; et al. Detection of Vaccinia Virus in Urban Domestic Cats, Brazil. Emerg. Infect. Dis. 2017, 23, 360–362. [Google Scholar] [CrossRef]
- Miranda, J.B.; Borges, I.A.; Campos, S.P.S.; Vieira, F.N.; de Ázara, T.M.F.; Marques, F.A.; Costa, G.B.; Luis, A.P.M.F.; de Oliveira, J.S.; Ferreira, P.C.P.; et al. Serologic and Molecular Evidence of Vaccinia Virus Circulation among Small Mammals from Different Biomes, Brazil. Emerg. Infect. Dis. 2017, 6, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Gurav, Y.K.; Raut, C.G.; Yadav, P.D.; Tandale, B.V.; Sivaram, A.; Pore, M.D.; Basu, A.; Mourya, D.T.; Mishra, A.C. Buffalopox outbreak in humans and animals in Western Maharashtra, India. Prev. Vet. Med. 2011, 100, 242–247. [Google Scholar] [CrossRef]
- Abrahão, J.S.; Oliveira, T.M.; Campos, R.K.; Madureira, M.C.; Kroon, E.G.; Lobato, Z.I. Bovine vaccinia outbreaks: Detection and isolation of vaccinia virus in milk samples. Foodborne Pathog. Dis. 2009, 6, 1141–1146. [Google Scholar] [CrossRef]
- Rehfeld, I.S.; Matos, A.C.D.; Guedes, M.I.M.C.; Costa, A.G.; Fraiha, A.L.S.; Lobato, Z.I.P. Subclinical bovine vaccinia: An im-portant risk factor in the epidemiology of this zoonosis in cattle. Res. Vet. Sci. 2017, 114, 233–235. [Google Scholar] [CrossRef]
- Rehfeld, I.S.; Fraiha, A.L.S.; Matos, A.C.D.; Costa, A.G.; Gallinari, G.C.F.; Costa, É.A.; Guedes, M.I.M.C.; Lobato, Z.I.P. Short communication: Parapoxvirus and Orthopoxvirus coinfection in milk of naturally infected cows. J. Dairy Sci. 2018, 101, 7801–7803. [Google Scholar] [CrossRef]
- Costa, G.B.; Augusto, L.T.S.; Leite, J.A.; Ferreira, P.C.P.; Bonjardim, C.A.; Abrahão, J.S.; Kroon, E.G.; Moreno, E.C.; Trindade, G.D.S. Seroprevalence of Orthopoxvirus in rural Brazil: Insights into anti-OPV immunity status and its implications for emergent zoonotic OPV. Virol. J. 2016, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- IBGE (Instituto Brasileiro de Geografia e Estatística). 2020. Available online: https://www.ibge.gov.br/ (accessed on 15 February 2021).
- Borges, I.A.; Reynolds, M.G.; Mccollum, A.M.; Figueiredo, P.O.; Ambrosio, L.L.D.; Vieira, F.N.; Costa, G.B.; Matos, A.C.D.; Almeida, V.M.D.A.; Ferreira, P.C.P.; et al. Serological Evidence of Orthopoxvirus Circulation Among Equids, Southeast Brazil. Front. Microbiol. 2018, 9, 402. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.S. Queijo Minas Artesanal da Microrregiao do Serro-MG: Efeito da Sazonalidade Sobre a Microbiota do Leite Cru e Comportamento Microbiologico Durante a Maturacao. Master’s Thesis, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Brazil, 2010. [Google Scholar]
- Abreu, E.S. Producao do Quieijo Minas Artesanal da Microrregiao do Serro: Tradicao, Legieslacao e Controversias. Master’s Thesis, Universidade Federal de Vicosa, Viçosa, Brazil, 2015. [Google Scholar]
- Karem, K.L.; Reynolds, M.; Braden, Z.; Lou, G.; Bernard, N.; Patton, J.; Damon, I.K. Characterization of Acute-Phase Humoral Immunity to Monkeypox: Use of Immunoglobulin M Enzyme-Linked Immunosorbent Assay for Detection of Monkeypox Infection during the 2003 North American Outbreak. Clin. Diagn. Lab. Immunol. 2005, 12, 867–872. [Google Scholar] [CrossRef] [PubMed]
Sources of Information | Number of Participants (%) |
---|---|
Participants Who Had Previously Heard of BV | 124/240 (51.7%) |
From a farmer | 19/124 (15.3%) |
From a milker | 8/124 (6.4%) |
From health care professional | 7/124 (5.6%) |
From a veterinarian | 7/124 (5.6%) |
From TV | 7/124 (5.6%) |
From radio | 6/124 (4.8%) |
From Internet | 1/124 (0.8%) |
During an outbreak | 94/124 (75.8%) |
Hygiene Measure | n |
---|---|
Disinfection of hands (n = 85) | |
With water and soap only | 85/91 (93.4%) |
With chlorine solution | 27/91 (29.7%) |
Time frame | |
Before start milking only | 1/85 (1.2%) |
Between different cows | 83/85 (97.6%) |
Before start and after finish milking | 1/85 (1.2%) |
Disinfection of cow’s teats (n = 78) | |
Water and soap only | 78/91 (85.7%) |
Chlorine solution | 24/91 (26.4%) |
Iodine solution | 36/91 (39.5%) |
Time frame | |
Before start milking only | 9/78 (11.5%) |
Between different cows | 67/78 (85.9%) |
Before start and after finish milking | 2/78 (2.5%) |
Disinfection of milking machine * | 31/91 (34.1%) |
Time frame * | |
Before start milking only | 0/31 |
After start milking only | 14/31 (45.2%) |
Before start and after finish milking | 17/31 (54.8%) |
Serology | Presence of Smallpo × Vaccination Scar | Contact with Animals | Practice Milking | Raw Milk Consumption | ** Cheese Consumption | *** Hygiene Practices | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gender | Age | IgG OD-COV * | IgM OD-COV * | Bovines | Equids | Dogs | Cats | Disinfection of Hands | Disinfection of Cow’s Teats | Disinfection of Milking Machine | ||||
M | 32 | + (1.163) | - | No | Yes | Yes | Yes | No | Yes | No | NA | Yes | Yes | No |
F | 14 | + (1.063) | - | No | No | No | Yes | No | No | No | NA | No | No | No |
M | 31 | + (0.998) | - | No | Yes | Yes | NA | NA | Yes | No | NA | Yes | Yes | No |
F | 33 | + (0.991) | - | No | No | No | NA | NA | No | No | Yes | No | No | No |
M | 21 | + (0.791) | - | No | Yes | Yes | Yes | No | Yes | Yes | Yes | Yes | Yes | No |
M | 29 | + (0.568) | - | No | Yes | Yes | NA | NA | Yes | No | Yes | Yes | Yes | No |
M | 53 | + (0.275) | - | No | Yes | Yes | NA | NA | Yes | Yes | Yes | Yes | Yes | No |
F | 38 | - | + (0.101) | No | Yes | Yes | Yes | No | No | No | Yes | No | No | NA |
M | 70 | - | + (0.123) | Yes | No | Yes | Yes | No | Yes | No | NA | Yes | Yes | NA |
M | 67 | - | + (0.472) | No | Yes | Yes | Yes | No | Yes | No | NA | Yes | Yes | NA |
M | 39 | - | + (0.110) | No | Yes | Yes | NA | NA | Yes | No | NA | Yes | Yes | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa Costa, G.; Silva de Oliveira, J.; Townsend, M.B.; Carson, W.C.; Borges, I.A.; McCollum, A.M.; Kroon, E.G.; Satheshkumar, P.S.; Reynolds, M.G.; Nakazawa, Y.J.; et al. Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil. Pathogens 2021, 10, 511. https://doi.org/10.3390/pathogens10050511
Barbosa Costa G, Silva de Oliveira J, Townsend MB, Carson WC, Borges IA, McCollum AM, Kroon EG, Satheshkumar PS, Reynolds MG, Nakazawa YJ, et al. Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil. Pathogens. 2021; 10(5):511. https://doi.org/10.3390/pathogens10050511
Chicago/Turabian StyleBarbosa Costa, Galileu, Jaqueline Silva de Oliveira, Michael B. Townsend, William C. Carson, Iara Apolinário Borges, Andrea M. McCollum, Erna Geessien Kroon, Panayampalli Subbian Satheshkumar, Mary G. Reynolds, Yoshinori J. Nakazawa, and et al. 2021. "Educational Approach to Prevent the Burden of Vaccinia Virus Infections in a Bovine Vaccinia Endemic Area in Brazil" Pathogens 10, no. 5: 511. https://doi.org/10.3390/pathogens10050511