Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management
Abstract
:1. Introduction
2. Epidemiology, Clinics, Therapy, and Prevention
3. Major GAS Virulence Factors
3.1. GAS Adhesins
3.2. GAS Secreted Factors
4. Major GAS TCS and Stand-Alone Transcriptional Regulators Involved in Virulence
4.1. GAS TCS Involved in Virulence
4.1.1. CovR/S
4.1.2. Ihk/Irr
4.1.3. CiaH/R
4.1.4. FasBCA/X
4.2. GAS Stand-Alone Regulators Involved in Virulence
4.2.1. Multiple Gene Regulator of Group A Streptococci—Mga
4.2.2. RALP Family Stand-Alone Regulators
4.2.3. Rgg/RopB
4.2.4. PerR
5. TCS and Stand-Alone Regulators as Potential Antibacterial Targets
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wessels, M.R. Pharyngitis and Scarlet fever. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Fer-retti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 512–525. [Google Scholar]
- Stevens, D.L.; Bryant, A.E. Impetigo, erysipelas and cellulitis. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 526–539. [Google Scholar]
- Stevens, D.L.; Bryant, A.E. Necrotizing soft-tissue infections. N. Engl. J. Med. 2017, 377, 2253–2265. [Google Scholar] [CrossRef]
- Stevens, D.L.; Bryant, A.E. Severe group a streptococcal infections. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 540–560. [Google Scholar]
- Carapetis, J.R.; Beaton, A.; Cunningham, M.W.; Guilherme, L.; Karthikeyan, G.; Mayosi, B.M.; Sable, C.; Steer, A.; Wilson, N.; Wyber, R.; et al. Acute rheumatic fever and rheumatic heart disease. Nat. Rev. Dis. Prim. 2016, 2, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Iturbe, B.; Haas, M. Post-streptococcal glomerulonephritis. In Post-Streptococcal Glomerulonephritis; Oxford University Press: Oxford, UK, 2018; pp. 593–612. [Google Scholar]
- Cunningham, M.W. Molecular mimicry, autoimmunity, and Infection: The cross-reactive antigens of group a streptococci and their Sequelae. Microbiol. Spectr. 2019, 7, 7. [Google Scholar] [CrossRef]
- Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 2005, 5, 685–694. [Google Scholar] [CrossRef]
- Fischetti, V.A. M Protein and other surface proteins on streptococci. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 23–43. [Google Scholar]
- Avire, N.; Whiley, H.; Ross, K. A Review of Streptococcus pyogenes: Public health risk factors, prevention and control. Pathogens 2021, 10, 248. [Google Scholar] [CrossRef]
- Bessen, D.E. Molecular basis of serotyping and the underlying genetic organization of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 74–82. [Google Scholar]
- Lancefield, R.C. Current knowledge of type-specific M antigens of group A streptococci. J. Immunol. 1962, 89, 307–313. [Google Scholar]
- Efstratiou, A.; Lamagni, T. Epidemiology of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 437–457. [Google Scholar]
- De Crombrugghe, G.; Baroux, N.; Botteaux, A.; Moreland, N.; Williamson, D.A.; Steer, A.C.; Smeesters, P.R. The limitations of the rheumatogenic concept for group a streptococcus: Systematic review and genetic analysis. Clin. Infect. Dis. 2019, 70, 1453–1460. [Google Scholar] [CrossRef]
- Norrby-Teglund, A.; Siemens, N. Is it time to reconsider the group a streptococcal rheumatogenic concept? Clin. Infect. Dis. 2019, 70, 1461–1462. [Google Scholar] [CrossRef]
- Guzman-Cottrill, J.A.; Jaggi, P.; Shulman, S.T. Acute rheumatic fever: Clinical aspects and insights into pathogenesis and prevention. Clin. Appl. Immunol. Rev. 2004, 4, 263–276. [Google Scholar] [CrossRef]
- Gray, L.-A.; D’Antoine, H.A.; Tong, S.; McKinnon, M.; Bessarab, D.; Brown, N.; Reményi, B.; Steer, A.; Syn, G.; Blackwell, J.M.; et al. Genome-wide analysis of genetic risk factors for rheumatic heart disease in aboriginal australians provides support for pathogenic molecular mimicry. J. Infect. Dis. 2017, 216, 1460–1470. [Google Scholar] [CrossRef] [Green Version]
- Parks, T.; Network, P.I.R.H.D.G.; Mirabel, M.M.; Kado, J.; Auckland, K.; Nowak, J.; Rautanen, A.; Mentzer, A.J.; Marijon, E.; Jouven, X.; et al. Association between a common immunoglobulin heavy chain allele and rheumatic heart disease risk in Oceania. Nat. Commun. 2017, 8, 14946. [Google Scholar] [CrossRef]
- Cunningham, M.W. Post-streptococcal autoimmune sequelae: Rheumatic fever and beyond. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 613–643. [Google Scholar]
- Orefici, G.; Cardona, F.; Cox, C.J.; Cunningham, M.W. Pediatric autoimmune neuropsychiatric disorders asso-ciated with Streptococcal infections (PANDAS). In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 561–592. [Google Scholar]
- Kaplan, E.L. The group A streptococcal upper respiratory tract carrier state: An enigma. J. Pediatr. 1980, 97, 337–345. [Google Scholar] [CrossRef]
- Flores, A.R.; Jewell, B.E.; Yelamanchili, D.; Olsen, R.J.; Musser, J.M. A single amino acid replacement in the sensor kinase lias contributes to a carrier phenotype in Group A Streptococcus. Infect. Immun. 2015, 83, 4237–4246. [Google Scholar] [CrossRef] [Green Version]
- Flores, A.R.; Olsen, R.J.; Cantu, C.; Pallister, K.B.; Guerra, F.E.; Voyich, J.M.; Musser, J.M. Increased pilus production conferred by a naturally occurring mutation alters host-pathogen interaction in favor of carriage in Streptococcus pyogenes. Infect. Immun. 2017, 85, e00949-16. [Google Scholar] [CrossRef] [Green Version]
- Cattoir, V. Mechanisms of Antibiotic Resistance. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 656–692. [Google Scholar]
- Logan, L.K.; McAuley, J.B.; Shulman, S.T. Macrolide treatment failure in streptococcal pharyngitis resulting in acute rheumatic fever. Pediatrics 2012, 129, e798–e802. [Google Scholar] [CrossRef] [Green Version]
- Vyas, H.K.; Proctor, E.-J.; McArthur, J.; Gorman, J.; Sanderson-Smith, M. Current understanding of Group A Streptococcal biofilms. Curr. Drug Targets 2019, 20, 982–993. [Google Scholar] [CrossRef]
- Young, C.; Holder, R.C.; Dubois, L.; Reid, S.D. Streptococcus pyogenes Biofilm. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 366–390. [Google Scholar]
- Podbielski, A.; Beckert, S.; Schattke, R.; Leithäuser, F.; Lestin, F.; Goßler, B.; Kreikemeyer, B. Epidemiology and virulence gene expression of intracellular group A streptococci in tonsils of recurrently infected adults. Int. J. Med Microbiol. 2003, 293, 179–190. [Google Scholar] [CrossRef]
- Brook, I. Treatment Challenges of Group A Beta-hemolytic Streptococcal Pharyngo-Tonsillitis. Int. Arch. Otorhinolaryngol. 2016, 21, 286–296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichichero, M.E.; Casey, J.R. Systematic review of factors contributing to penicillin treatment failure in Streptococcus pyogenes pharyngitis. Otolaryngol. Neck Surg. 2007, 137, 851–857. [Google Scholar] [CrossRef]
- Southon, S.B.; Beres, S.B.; Kachroo, P.; Saavedra, M.O.; Erlendsdóttir, H.; Haraldsson, G.; Yerramilli, P.; Pruitt, L.; Zhu, L.; Musser, J.M.; et al. Population genomic molecular epidemiological study of macrolide-resistant streptococcus pyogenes in Iceland, 1995 to 2016: Identification of a large clonal population with a pbp2x mutation conferring reduced in vitro β-Lactam Susceptibility. J. Clin. Microbiol. 2020, 58, e00638-20. [Google Scholar] [CrossRef]
- Vannice, K.S.; Ricaldi, J.; Nanduri, S.; Fang, F.C.; Lynch, J.B.; Bryson-Cahn, C.; Wright, T.; Duchin, J.; Kay, M.; Chochua, S.; et al. Streptococcus pyogenes pbp2x Mutation Confers Reduced Susceptibility to β-Lactam Antibiotics. Clin. Infect. Dis. 2020, 71, 201–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dale, J.B.; Walker, M.J. Update on group A streptococcal vaccine development. Curr. Opin. Infect. Dis. 2020, 33, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, Y.; Sitkiewicz, I.; Ma, Y.; Wang, X.; Yestrepsky, B.D.; Huang, Y.; Lapadatescu, M.C.; Larsen, M.J.; Larsen, S.D.; et al. Inhibitor of streptokinase gene expression improves survival after group A streptococcus infection in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 3469–3474. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ma, Y.; Sun, H. A novel approach to develop anti-virulence agents against group A streptococcus. Virulence 2012, 3, 452–453. [Google Scholar] [CrossRef] [Green Version]
- Ford, C.A.; Hurford, I.M.; Cassat, J.E. Antivirulence Strategies for the Treatment of Staphylococcus aureus Infections: A mini review. Front. Microbiol. 2021, 11, 632706. [Google Scholar] [CrossRef]
- Wójcik, M.; Eleftheriadis, N.; Zwinderman, M.R.; Dömling, A.S.; Dekker, F.J.; Boersma, Y.L. Identification of potential antivirulence agents by substitution-oriented screening for inhibitors of Streptococcus pyogenes sortase A. Eur. J. Med. Chem. 2019, 161, 93–100. [Google Scholar] [CrossRef]
- Morales, T.G.P.; Ratia, K.; Wang, D.-S.; Gogos, A.; Driver, T.G.; Federle, M.J. A novel chemical inducer of Streptococcus quorum sensing acts by inhibiting the pheromone-degrading endopeptidase PepO. J. Biol. Chem. 2018, 293, 931–940. [Google Scholar] [CrossRef] [Green Version]
- LaSarre, B.; Federle, M.J. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol. Mol. Biol. Rev. 2013, 77, 73–111. [Google Scholar] [CrossRef] [Green Version]
- Courtney, H.S.; Hasty, D.L.; Dale, J. Molecular mechanisms of adhesion, colonization, and invasion of group A streptococci. Ann. Med. 2002, 34, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Kreikemeyer, B.; Klenk, M.; Podbielski, A. The intracellular status of Streptococcus pyogenes: Role of extracellular matrix-binding proteins and their regulation. Int. J. Med Microbiol. 2004, 294, 177–188. [Google Scholar] [CrossRef]
- Courtney, H.S.; Ofek, I.; Simpson, W.A.; Hasty, D.L.; Beachey, E.H. Binding of Streptococcus pyogenes to soluble and insoluble fibronectin. Infect. Immun. 1986, 53, 454–459. [Google Scholar] [CrossRef] [Green Version]
- Okada, N.; Liszewski, M.K.; Atkinson, J.P.; Caparon, M. Membrane cofactor protein (CD46) is a keratinocyte receptor for the M protein of the group A streptococcus. Proc. Natl. Acad. Sci. USA 1995, 92, 2489–2493. [Google Scholar] [CrossRef] [Green Version]
- Frick, I.-M.; Schmidtchen, A.; Sjöbring, U. Interactions between M proteins ofStreptococcus pyogenesand glycosaminoglycans promote bacterial adhesion to host cells. JBIC J. Biol. Inorg. Chem. 2003, 270, 2303–2311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rohde, M.; Cleary, P.P. Adhesion and invasion of Streptococcus pyogenes into host cells and clinical relevance of intracellular streptococci. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016. [Google Scholar]
- Kreikemeyer, B.; Nakata, M.; Oehmcke, S.; Gschwendtner, C.; Normann, J.; Podbielski, A. Streptococcus pyogenes Collagen Type I-binding Cpa Surface Protein. J. Biol. Chem. 2005, 280, 33228–33239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valentin-Weigand, P.; Grulich-Henn, J.; Chhatwal, G.S.; Muller-Berghaus, G.; Blobel, H.; Preissner, K.T. Media-tion of adherence of streptococci to human endothelial cells by complement S protein (vitronectin). Infect. Immun. 1988, 56, 2851–2855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boel, G.; Jin, H.; Pancholi, V. Inhibition of cell surface export of Group A Streptococcal anchorless surface dehydrogenase affects bacterial adherence and antiphagocytic properties. Infect. Immun. 2005, 73, 6237–6248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cork, A.J.; Jergic, S.; Hammerschmidt, S.; Kobe, B.; Pancholi, V.; Benesch, J.L.P.; Robinson, C.; Dixon, N.E.; Aquilina, J.A.; Walker, M.J. Defining the structural basis of human plasminogen binding by streptococcal surface enolase. J. Biol. Chem. 2009, 284, 17129–17137. [Google Scholar] [CrossRef] [Green Version]
- Linke-Winnebeck, C.; Siemens, N.; Middleditch, M.J.; Kreikemeyer, B.; Baker, E.N. Purification, crystallization and preliminary crystallographic analysis of the adhesion domain of Epf fromStreptococcus pyogenes. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 2012, 68, 793–797. [Google Scholar] [CrossRef] [Green Version]
- Linke-Winnebeck, C.; Siemens, N.; Oehmcke, S.; Radjainia, M.; Law, R.H.; Whisstock, J.C.; Baker, E.N.; Kreikemeyer, B. The Extracellular Protein Factor Epf from Streptococcus pyogenes Is a Cell Surface Adhesin That Binds to Cells through an N-terminal Domain Containing a Carbohydrate-binding Module. J. Biol. Chem. 2012, 287, 38178–38189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uhlmann, J.; Siemens, N.; Kai-Larsen, Y.; Fiedler, T.; Bergman, P.; Johansson, L.; Norrby-Teglund, A. Phosphoglycerate Kinase—A novel streptococcal factor involved in neutrophil activation and degranulation. J. Infect. Dis. 2016, 214, 1876–1883. [Google Scholar] [CrossRef] [Green Version]
- LaPenta, D.; Rubens, C.; Chi, E.; Cleary, P.P. Group A streptococci efficiently invade human respiratory epithelial cells. Proc. Natl. Acad. Sci. USA 1994, 91, 12115–12119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dombek, P.E.; Cue, D.; Sedgewick, J.; Lam, H.; Ruschkowski, S.; Finlay, B.B.; Cleary, P.P. High-frequency intracellular invasion of epithelial cells by serotype M1 group A streptococci: M1 protein-mediated invasion and cytoskeletal rearrangements. Mol. Microbiol. 1999, 31, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.; Thulin, P.; Low, D.E.; Norrby-Teglund, A. Getting under the Skin: The Immunopathogenesis of Streptococcus pyogenes deep tissue infections. Clin. Infect. Dis. 2010, 51, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemens, N.; Chakrakodi, B.; Shambat, S.M.; Morgan, M.; Bergsten, H.; Hyldegaard, O.; Skrede, S.; Arnell, P.; Madsen, M.B.; Johansson, L.; et al. Biofilm in group A streptococcal necrotizing soft tissue infections. JCI Insight 2016, 1, e87882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thänert, R.; INFECT Study Group; Itzek, A.; Hoßmann, J.; Hamisch, D.; Madsen, M.; Hyldegaard, O.; Skrede, S.; Bruun, T.; Norrby-Teglund, A.; et al. Molecular profiling of tissue biopsies reveals unique signatures associated with streptococcal necrotizing soft tissue infections. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef]
- Timmer, A.M.; Timmer, J.C.; Pence, M.A.; Hsu, L.-C.; Ghochani, M.; Frey, T.G.; Karin, M.; Salvesen, G.S.; Nizet, V. Streptolysin o promotes Group A Streptococcus immune evasion by accelerated macrophage apoptosis. J. Biol. Chem. 2009, 284, 862–871. [Google Scholar] [CrossRef] [Green Version]
- Shewell, L.K.; Day, C.J.; Jen, F.E.-C.; Haselhorst, T.; Atack, J.M.; Reijneveld, J.F.; Everest-Dass, A.; James, D.B.A.; Boguslawski, K.M.; Brouwer, S.; et al. All major cholesterol-dependent cytolysins use glycans as cellular receptors. Sci. Adv. 2020, 6, eaaz4926. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Caparon, M.G. The NADase-Negative Variant of the Streptococcus pyogenes Toxin NAD + Glycohydrolase Induces JNK1-mediated programmed cellular necrosis. mBio 2016, 7, 02215. [Google Scholar] [CrossRef] [Green Version]
- Keyel, P.A.; Roth, R.; Yokoyama, W.M.; Heuser, J.E.; Salter, R.D. Reduction of Streptolysin O (SLO) pore-forming activity enhances inflammasome activation. Toxins 2013, 5, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Nizet, V.; Beall, B.; Bast, D.J.; Datta, V.; Kilburn, L.; Low, D.E.; De Azavedo, J.C.S. Genetic Locus for Streptolysin S Production by Group A Streptococcus. Infect. Immun. 2000, 68, 4245–4254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carr, A.; Sledjeski, D.D.; Podbielski, A.; Boyle, M.D.; Kreikemeyer, B. Similarities between Complement-mediated and Streptolysin S-mediated Hemolysis. J. Biol. Chem. 2001, 276, 41790–41796. [Google Scholar] [CrossRef] [Green Version]
- Higashi, D.L.; Biais, N.; Donahue, D.L.; Mayfield, J.A.; Tessier, C.R.; Rodriguez, K.; Ashfeld, B.L.; Luchetti, J.; Ploplis, V.A.; Castellino, F.J.; et al. Activation of band 3 mediates group A Streptococcus streptolysin S-based beta-haemolysis. Nat. Microbiol. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed]
- Pinho-Ribeiro, F.A.; Baddal, B.; Haarsma, R.; O’Seaghdha, M.; Yang, N.J.; Blake, K.J.; Portley, M.; Verri, W.; Dale, J.B.; Wessels, M.R.; et al. Blocking neuronal signaling to immune cells treats Streptococcal invasive infection. Cell 2018, 173, 1083–1097.e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uchiyama, S.; Döhrmann, S.; Timmer, A.M.; Dixit, N.; Ghochani, M.; Bhandari, T.; Timmer, J.C.; Sprague, K.; Bubeck-Wardenburg, J.; Simon, S.I.; et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to Group A Streptococcus. Front. Immunol. 2015, 6, 581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumba, P.; Shambat, S.M.; Siemens, N. The role of streptococcal and staphylococcal exotoxins and proteases in human necrotizing soft tissue infections. Toxins 2019, 11, 332. [Google Scholar] [CrossRef] [Green Version]
- Collin, M.; Björck, L. Toward Clinical use of the IgG Specific Enzymes IdeS and EndoS against Antibody-Mediated Diseases. Methods Mol. Biol. 2017, 1535, 339–351. [Google Scholar] [CrossRef] [PubMed]
- Naegeli, A.; Bratanis, E.; Karlsson, C.; Shannon, O.; Kalluru, R.; Linder, A.; Malmström, J.; Collin, M. Streptococcus pyogenes evades adaptive immunity through specific IgG glycan hydrolysis. J. Exp. Med. 2019, 216, 1615–1629. [Google Scholar] [CrossRef] [PubMed]
- Cleary, P.P.; Prahbu, U.; Dale, J.B.; Wexler, D.E.; Handley, J. Streptococcal C5a peptidase is a highly specific en-dopeptidase. Infect. Immun. 1992, 60, 5219–5223. [Google Scholar] [CrossRef] [Green Version]
- Lynskey, N.N.; Reglinski, M.; Calay, D.; Siggins, M.K.; Mason, J.C.; Botto, M.; Sriskandan, S. Multi-functional mechanisms of immune evasion by the streptococcal complement inhibitor C5a peptidase. PLOS Pathog. 2017, 13, e1006493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidalgo-Grass, C.; Dan-Goor, M.; Maly, A.; Eran, Y.; Kwinn, L.A.; Nizet, V.; Ravins, M.; Jaffe, J.; Peyser, A.; E Moses, A.; et al. Effect of a bacterial pheromone peptide on host chemokine degradation in group A streptococcal necrotising soft-tissue infections. Lancet 2004, 363, 696–703. [Google Scholar] [CrossRef]
- Hidalgo-Grass, C.; Mishalian, I.; Dan-Goor, M.; Belotserkovsky, I.; Eran, Y.; Nizet, V.; Peled, A.; Hanski, E. A streptococcal protease that degrades CXC chemokines and impairs bacterial clearance from infected tissues. EMBO J. 2006, 25, 4628–4637. [Google Scholar] [CrossRef]
- Khil, J.; Im, M.; Heath, A.; Ringdahl, U.; Mundada, L.; Engleberg, N.C.; Fay, W.P. Plasminogen enhances virulence of Group A Streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J. Infect. Dis. 2003, 188, 497–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyberg, P.; Rasmussen, M.; Von Pawel-Rammingen, U.; Björck, L. SpeB modulates fibronectin-dependent internalization of Streptococcus pyogenes by efficient proteolysis of cell-wall-anchored protein F1. Microbiology 2004, 150, 1559–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raeder, R.; Woischnik, M.; Podbielski, A.; Boyle, M. A secreted streptococcal cysteine protease can cleave a surface-expressed M1 protein and alter the immunoglobulin binding properties. Res. Microbiol. 1998, 149, 539–548. [Google Scholar] [CrossRef]
- Wexler, D.E.; Chenoweth, D.E.; Cleary, P.P. Mechanism of action of the group A streptococcal C5a inactivator. Proc. Natl. Acad. Sci. USA 1985, 82, 8144–8148. [Google Scholar] [CrossRef] [Green Version]
- Allhorn, M.; Olsén, A.; Collin, M. EndoS from Streptococcus pyogenes is hydrolyzed by the cysteine proteinase SpeB and requires glutamic acid 235 and tryptophans for IgG glycan-hydrolyzing activity. BMC Microbiol. 2008, 8, 3. [Google Scholar] [CrossRef] [Green Version]
- Aziz, R.; Pabst, M.J.; Jeng, A.; Kansal, R.; Low, D.E.; Nizet, V.; Kotb, M. Invasive M1T1 group A Streptococcus undergoes a phase-shift in vivo to prevent proteolytic degradation of multiple virulence factors by SpeB. Mol. Microbiol. 2003, 51, 123–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinkney, M.; Kapur, V.; Smith, J.; Weller, U.; Palmer, M.; Glanville, M.; Messner, M.; Musser, J.M.; Bhakdi, S.; Ke-hoe, M.A. Different forms of streptolysin O produced by Streptococcus pyogenes and by Escherichia coli ex-pressing recombinant toxin: Cleavage by streptococcal cysteine protease. Infect. Immun. 1995, 63, 2776–2779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collin, M.; Olsén, A. Effect of SpeB and EndoS from Streptococcus pyogenes on Human Immunoglobulins. Infect. Immun. 2001, 69, 7187–7189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.-F.; Lin, Y.-S.; Chuang, W.-J.; Wu, J.-J.; Tsao, N. Degradation of complement 3 by streptococcal pyrogenic exotoxin B inhibits complement activation and neutrophil opsonophagocytosis. Infect. Immun. 2008, 76, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- LaRock, C.; Todd, J.; LaRock, D.L.; Olson, J.; O’Donoghue, A.J.; Robertson, A.; Cooper, M.A.; Hoffman, H.M.; Nizet, V. IL-1β is an innate immune sensor of microbial proteolysis. Sci. Immunol. 2016, 1, eaah3539. [Google Scholar] [CrossRef] [Green Version]
- Egesten, A.; Olin, A.I.; Linge, H.; Yadav, M.; Mörgelin, M.; Karlsson, A.; Collin, M. SpeB of Streptococcus pyogenes differentially modulates antibacterial and receptor activating properties of human chemokines. PLoS ONE 2009, 4, e4769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemens, N.; Snäll, J.; Svensson, M.; Norrby-Teglund, A. Pathogenic mechanisms of streptococcal necrotizing soft tissue infections. Adv. Exp. Med. Biol. 2020, 1294, 127–150. [Google Scholar] [CrossRef]
- Beres, S.; Sylva, G.L.; Barbian, K.D.; Lei, B.; Hoff, J.S.; Mammarella, N.D.; Liu, M.-Y.; Smoot, J.C.; Porcella, S.F.; Parkins, L.D.; et al. Genome sequence of a serotype M3 strain of group A Streptococcus: Phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proc. Natl. Acad. Sci. USA 2002, 99, 10078–10083. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, J.J.; McShan, W.M.; Ajdic, D.; Savic, D.J.; Savic, G.; Lyon, K.; Primeaux, C.; Sezate, S.; Suvorov, A.N.; Kenton, S.; et al. Complete genome sequence of an M1 strain of Streptococcus pyogenes. Proc. Natl. Acad. Sci. USA 2001, 98, 4658–4663. [Google Scholar] [CrossRef] [Green Version]
- Smoot, J.C.; Barbian, K.D.; Van Gompel, J.J.; Smoot, L.M.; Chaussee, M.S.; Sylva, G.L.; Sturdevant, D.E.; Ricklefs, S.M.; Porcella, S.F.; Parkins, L.D.; et al. Genome sequence and comparative microarray analysis of serotype M18 group A Streptococcus strains associated with acute rheumatic fever outbreaks. Proc. Natl. Acad. Sci. USA 2002, 99, 4668–4673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vega, L.A.; Malke, H.; McIver, K.S. Virulence-Related Transcriptional Regulators of Streptococcus pyogenes. In Streptococcus Pyogenes: Basic Biology to Clinical Manifestations; Ferretti, J.J., Stevens, D.L., Fischetti, V.A., Eds.; University of Oklahoma Health Sciences Center: Oklahoma City, OK, USA, 2016; pp. 254–304. [Google Scholar]
- Kreikemeyer, B.; McIver, K.; Podbielski, A. Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends Microbiol. 2003, 11, 224–232. [Google Scholar] [CrossRef]
- Gryllos, I.; Levin, J.C.; Wessels, M.R. The CsrR/CsrS two-component system of group A Streptococcus responds to environmental Mg2+. Proc. Natl. Acad. Sci. USA 2003, 100, 4227–4232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gryllos, I.; Tran-Winkler, H.J.; Cheng, M.-F.; Chung, H.; Bolcome, R.; Lu, W.; Lehrer, R.I.; Wessels, M.R. Induction of group A Streptococcus virulence by a human antimicrobial peptide. Proc. Natl. Acad. Sci. USA 2008, 105, 16755–16760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, M.R.; Smoot, L.M.; Migliaccio, C.A.L.; Virtaneva, K.; Sturdevant, D.E.; Porcella, S.F.; Federle, M.J.; Adams, G.J.; Scott, J.R.; Musser, J.M. Virulence control in group A Streptococcus by a two-component gene regulatory system: Global expression profiling and in vivo infection modeling. Proc. Natl. Acad. Sci. USA 2002, 99, 13855–13860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernish, B.; van de Rijn, I. Characterization of a two-component system in Streptococcus pyogenes which is involved in regulation of hyaluronic acid production. J. Biol. Chem. 1999, 274, 4786–4793. [Google Scholar] [CrossRef] [Green Version]
- Darmstadt, G.L.; Mentele, L.; Podbielski, A.; Rubens, C.E. Role of Group A Streptococcal virulence factors in adherence to keratinocytes. Infect. Immun. 2000, 68, 1215–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heath, A.; DiRita, V.J.; Barg, N.L.; Engleberg, N.C. A Two-component regulatory system, CsrR-CsrS, represses expression of three streptococcus pyogenes virulence factors, hyaluronic acid capsule, streptolysin S, and pyrogenic exotoxin B. Infect. Immun. 1999, 67, 5298–5305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shelburne, S.A.; Olsen, R.J.; Suber, B.; Sahasrabhojane, P.; Sumby, P.; Brennan, R.G.; Musser, J.M. A Combination of independent transcriptional regulators shapes bacterial virulence gene expression during infection. PLoS Pathog. 2010, 6, e1000817. [Google Scholar] [CrossRef]
- Roberts, S.A.; Scott, J.R. RivR and the small RNA RivX: The missing links between the CovR regulatory cascade and the Mga regulon. Mol. Microbiol. 2007, 66, 1506–1522. [Google Scholar] [CrossRef]
- Treviño, J.; Liu, Z.; Cao, T.N.; Ramirez-Peña, E.; Sumby, P. RivR Is a Negative regulator of virulence factor expression in Group A Streptococcus. Infect. Immun. 2012, 81, 364–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engleberg, N.C.; Heath, A.; Miller, A.; Rivera, C.; DiRita, V.J. Spontaneous mutations in the CsrRS two-component regulatory system ofstreptococcus pyogenesresult in enhanced virulence in a murine model of skin and soft tissue infection. J. Infect. Dis. 2001, 183, 1043–1054. [Google Scholar] [CrossRef] [Green Version]
- Sumby, P.; Whitney, A.R.; A Graviss, E.; DeLeo, F.; Musser, J.M. Genome-wide analysis of group a streptococci reveals a mutation that modulates global phenotype and disease specificity. PLoS Pathog. 2006, 2, e5. [Google Scholar] [CrossRef] [PubMed]
- Walker, M.J.; Hollands, A.; Sanderson-Smith, M.L.; Cole, J.N.; Kirk, J.K.; Henningham, A.; McArthur, J.D.; Dinkla, K.; Aziz, R.; Kansal, R.G.; et al. DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat. Med. 2007, 13, 981–985. [Google Scholar] [CrossRef]
- Cole, J.N.; Barnett, T.; Nizet, V.; Walker, M.J. Molecular insight into invasive group A streptococcal disease. Nat. Rev. Genet. 2011, 9, 724–736. [Google Scholar] [CrossRef]
- Cole, J.N.; Mcarthur, J.D.; Mckay, F.C.; Sanderson-Smith, M.L.; Cork, A.J.; Ranson, M.; Rohde, M.; Itzek, A.; Sun, H.; Ginsburg, D.; et al. Trigger for group A streptococcal M1T1 invasive disease. FASEB J. 2006, 20, 1745–1747. [Google Scholar] [CrossRef]
- Kansal, R.G.; McGeer, A.; Low, D.E.; Norrby-Teglund, A.; Kotb, M. Inverse Relation between Disease Severity and Expression of the Streptococcal Cysteine Protease, SpeB, among Clonal M1T1 isolates recovered from invasive Group A streptococcal infection cases. Infect. Immun. 2000, 68, 6362–6369. [Google Scholar] [CrossRef]
- Gubba, S.; Low, D.E.; Musser, J.M. Expression and characterization of Group A Streptococcus extracellular cysteine protease recombinant mutant proteins and documentation of seroconversion during human invasive disease episodes. Infect. Immun. 1998, 66, 765–770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.F.; Wu, J.J.; Lin, K.Y.; Tsai, P.J.; Lee, S.C.; Jin, Y.T.; Lei, H.Y.; Lin, Y.S. Role of streptococcal pyrogenic exo-toxin B in the mouse model of group A streptococcal infection. Infect. Immun. 1998, 66, 3931–3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukomski, S.; Burns, E.H.; Wyde, P.R.; Podbielski, A.; Rurangirwa, J.; Moore-Poveda, D.K.; Musser, J.M. Genetic Inactivation of an Extracellular Cysteine Protease (SpeB) Expressed by Streptococcus pyogenes decreases resistance to phagocytosis and dissemination to organs. Infect. Immun. 1998, 66, 771–776. [Google Scholar] [CrossRef] [Green Version]
- Lukomski, S.; Montgomery, C.A.; Rurangirwa, J.; Geske, R.S.; Barrish, J.P.; Adams, G.J.; Musser, J.M. Extracellular cysteine protease produced by Streptococcus pyogenes participates in the pathogenesis of invasive skin infection and dissemination in mice. Infect. Immun. 1999, 67, 1779–1788. [Google Scholar] [CrossRef]
- Lukomski, S.; Sreevatsan, S.; Amberg, C.; Reichardt, W.; Woischnik, M.; Podbielski, A.; Musser, J.M. Inactivation of Streptococcus pyogenes extracellular cysteine protease significantly decreases mouse lethality of serotype M3 and M49 strains. J. Clin. Investig. 1997, 99, 2574–2580. [Google Scholar] [CrossRef] [PubMed]
- Ashbaugh, C.D.; Warren, H.B.; Carey, V.J.; Wessels, M.R. Molecular analysis of the role of the group A streptococcal cysteine protease, hyaluronic acid capsule, and M protein in a murine model of human invasive soft-tissue infection. J. Clin. Investig. 1998, 102, 550–560. [Google Scholar] [CrossRef] [Green Version]
- Ashbaugh, C.D.; Wessels, M.R. Absence of a cysteine protease effect on bacterial virulence in two murine models of human invasive group a streptococcal infection. Infect. Immun. 2001, 69, 6683–6688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hertzén, E.; Johansson, L.; Kansal, R.; Hecht, A.; Dahesh, S.; Janos, M.; Nizet, V.; Kotb, M.; Norrby-Teglund, A. Intracellular Streptococcus pyogenes in human macrophages display an altered gene expression profile. PLoS ONE 2012, 7, e35218. [Google Scholar] [CrossRef] [Green Version]
- Voyich, J.M.; Sturdevant, D.E.; Braughton, K.R.; Kobayashi, S.D.; Lei, B.; Virtaneva, K.; Dorward, D.W.; Musser, J.M.; DeLeo, F.R. Genome-wide protective response used by group A Streptococcus to evade destruction by human polymorphonuclear leukocytes. Proc. Natl. Acad. Sci. USA 2003, 100, 1996–2001. [Google Scholar] [CrossRef] [Green Version]
- Kachroo, P.; Eraso, J.M.; Olsen, R.J.; Zhu, L.; Kubiak, S.L.; Pruitt, L.; Yerramilli, P.; Cantu, C.C.; Saavedra, M.O.; Pensar, J.; et al. New pathogenesis mechanisms and translational leads identified by multidimensional analysis of necrotizing myositis in primates. mBio 2020, 11, 11. [Google Scholar] [CrossRef] [Green Version]
- Mejia, A.G.; Gámez, G.; Hammerschmidt, S. Streptococcus pneumoniae two-component regulatory systems: The interplay of the pneumococcus with its environment. Int. J. Med. Microbiol. 2018, 308, 722–737. [Google Scholar] [CrossRef] [PubMed]
- Riani, C.; Standar, K.; Srimuang, S.; Lembke, C.; Kreikemeyer, B.; Podbielski, A. Transcriptome analyses extend understanding of Streptococcus pyogenes regulatory mechanisms and behavior toward immunomodulatory substances. Int. J. Med. Microbiol. 2007, 297, 513–523. [Google Scholar] [CrossRef] [PubMed]
- Tatsuno, I.; Isaka, M.; Okada, R.; Zhang, Y.; Hasegawa, T. Relevance of the two-component sensor protein CiaH to acid and oxidative stress responses in Streptococcus pyogenes. BMC Res. Notes 2014, 7, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kreikemeyer, B.; Boyle, M.D.P.; Buttaro, B.A.; Heinemann, M.; Podbielski, A. Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. Mol. Microbiol. 2001, 39, 392–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Peña, E.; Treviño, J.; Liu, Z.; Perez, N.; Sumby, P. The group A Streptococcus small regulatory RNA FasX enhances streptokinase activity by increasing the stability of the ska mRNA transcript. Mol. Microbiol. 2010, 78, 1332–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Treviño, J.; Ramirez-Peña, E.; Sumby, P. The small regulatory RNA FasX controls pilus expression and adherence in the human bacterial pathogen group A Streptococcus. Mol. Microbiol. 2012, 86, 140–154. [Google Scholar] [CrossRef]
- Spanier, J.; Jones, S.; Cleary, P. Small DNA deletions creating avirulence in Streptococcus pyogenes. Science 1984, 225, 935–938. [Google Scholar] [CrossRef]
- Caparon, M.G.; Scott, J.R. Identification of a gene that regulates expression of M protein, the major virulence determinant of group A streptococci. Proc. Natl. Acad. Sci. USA 1987, 84, 8677–8681. [Google Scholar] [CrossRef] [Green Version]
- Hondorp, E.R.; McIver, K.S. The Mga virulence regulon: Infection where the grass is greener. Mol. Microbiol. 2007, 66, 1056–1065. [Google Scholar] [CrossRef]
- Caparon, M.G.; Geist, R.T.; Perez-Casal, J.; Scott, J.R. Environmental regulation of virulence in group A streptococci: Transcription of the gene encoding M protein is stimulated by carbon dioxide. J. Bacteriol. 1992, 174, 5693–5701. [Google Scholar] [CrossRef] [Green Version]
- McIver, K.; Heath, A.S.; Scott, J.R. Regulation of virulence by environmental signals in group A streptococci: Influence of osmolarity, temperature, gas exchange, and iron limitation on emm transcription. Infect. Immun. 1995, 63, 4540–4542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Podbielski, A.; Peterson, J.A.; Cleary, P. Surface protein-CAT reporter fusions demonstrate differential gene expression in the wr regulon of Streptococcus pyogenes. Mol. Microbiol. 1992, 6, 2253–2265. [Google Scholar] [CrossRef]
- Valdes, K.M.; Sundar, G.S.; Belew, A.T.; Islam, E.; El-Sayed, N.M.; Le Breton, Y.; McIver, K.S. Glucose levels alter the mga virulence regulon in the Group A Streptococcus. Sci. Rep. 2018, 8, 1–16. [Google Scholar] [CrossRef] [Green Version]
- McIver, K.S.; Myles, R.L. Two DNA-binding domains of Mga are required for virulence gene activation in the group A streptococcus. Mol. Microbiol. 2002, 43, 1591–1601. [Google Scholar] [CrossRef] [PubMed]
- Vahling, C.M.; McIver, K.S. Domains required for transcriptional activation show conservation in the Mga Family of virulence gene regulators. J. Bacteriol. 2006, 188, 863–873. [Google Scholar] [CrossRef] [Green Version]
- Hondorp, E.R.; Hou, S.C.; Hempstead, A.D.; Hause, L.L.; Beckett, D.M.; McIver, K.S. Characterization of the Group A Streptococcus Mga virulence regulator reveals a role for the C-terminal region in oligomerization and transcriptional activation. Mol. Microbiol. 2012, 83, 953–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hondorp, E.R.; Hou, S.C.; Hause, L.L.; Gera, K.; Lee, C.-E.; McIver, K.S. PTS phosphorylation of Mga modulates regulon expression and virulence in the group A streptococcus. Mol. Microbiol. 2013, 88, 1176–1193. [Google Scholar] [CrossRef] [PubMed]
- Haanes, E.J.; Cleary, P.P. Identification of a divergent M protein gene and an M protein-related gene family in Streptococcus pyogenes serotype 49. J. Bacteriol. 1989, 171, 6397–6408. [Google Scholar] [CrossRef] [Green Version]
- Bessen, D.E.; Manoharan, A.; Luo, F.; Wertz, J.E.; Robinson, D.A. Evolution of transcription regulatory genes is linked to niche specialization in the bacterial pathogen Streptococcus pyogenes. J. Bacteriol. 2005, 187, 4163–4172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Courtney, H.S.; Hasty, D.L.; Li, Y.; Chiang, H.C.; Thacker, J.L.; Dale, J.B. Serum opacity factor is a major fibronectin-binding protein and a virulence determinant of M type 2 Streptococcus pyogenes. Mol. Microbiol. 1999, 32, 89–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeng, A.; Sakota, V.; Li, Z.; Datta, V.; Beall, B.; Nizet, V. Molecular Genetic Analysis of a Group A Streptococcus Operon Encoding Serum Opacity Factor and a Novel Fibronectin-Binding Protein, SfbX. J. Bacteriol. 2003, 185, 1208–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caswell, C.C.; Han, R.; Hovis, K.M.; Ciborowski, P.; Keene, D.R.; Marconi, R.T.; Lukomski, S. The Scl1 protein of M6-type group AStreptococcusbinds the human complement regulatory protein, factor H, and inhibits the alternative pathway of complement. Mol. Microbiol. 2008, 67, 584–596. [Google Scholar] [CrossRef]
- Caswell, C.C.; Lukomska, E.; Seo, N.-S.; Höök, M.; Lukomski, S. Scl1-dependent internalization of group A Streptococcus via direct interactions with the α2β1 integrin enhances pathogen survival and re-emergence. Mol. Microbiol. 2007, 64, 1319–1331. [Google Scholar] [CrossRef]
- Kihlberg, B.-M.; Cooney, J.; Caparon, M.G.; Olsén, A.; Björck, L. Biological properties of a Streptococcus pyogenes mutant generated by Tn916 insertion in mga. Microb. Pathog. 1995, 19, 299–315. [Google Scholar] [CrossRef]
- Le Breton, Y.; Belew, A.T.; Freiberg, J.A.; Sundar, G.S.; Islam, E.; Lieberman, J.; Shirtliff, M.E.; Tettelin, H.; El-Sayed, N.M.; McIver, K.S. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog. 2017, 13, e1006584. [Google Scholar] [CrossRef] [PubMed]
- Nakata, M.; Kreikemeyer, B. Genetics, structure, and function of Group A Streptococcal Pili. Front. Microbiol. 2021, 12, 616508. [Google Scholar] [CrossRef]
- Fogg, G.C.; Caparon, M.G. Constitutive expression of fibronectin binding in Streptococcus pyogenes as a result of anaerobic activation of rofA. J. Bacteriol. 1997, 179, 6172–6180. [Google Scholar] [CrossRef] [Green Version]
- Kreikemeyer, B.; Beckert, S.; Braun-Kiewnick, A.; Podbielski, A. Group A streptococcal RofA-type global regulators exhibit a strain-specific genomic presence and regulation pattern. Microbiology 2002, 148, 1501–1511. [Google Scholar] [CrossRef] [Green Version]
- Beckert, S.; Kreikemeyer, B.; Podbielski, A. Group A Streptococcal rofA gene is involved in the control of several virulence genes and eukaryotic cell attachment and internalization. Infect. Immun. 2001, 69, 534–537. [Google Scholar] [CrossRef] [Green Version]
- Nakata, M.; Köller, T.; Moritz, K.; Ribardo, D.; Jonas, L.; McIver, K.S.; Sumitomo, T.; Terao, Y.; Kawabata, S.; Podbielski, A.; et al. Mode of expression and functional characterization of FCT-3 pilus region-encoded proteins in Streptococcus pyogenes Serotype M49. Infect. Immun. 2009, 77, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Kreikemeyer, B.; Nakata, M.; Köller, T.; Hildisch, H.; Kourakos, V.; Standar, K.; Kawabata, S.; Glocker, M.O.; Podbielski, A. The Streptococcus pyogenes Serotype M49 Nra-Ralp3 Transcriptional regulatory network and its control of virulence factor expression from the Novel eno ralp3 epf sagA pathogenicity region. Infect. Immun. 2007, 75, 5698–5710. [Google Scholar] [CrossRef] [Green Version]
- Podbielski, A.; Woischnik, M.; Leonard, B.A.B.; Schmidt, K.-H. Characterization of nra, a global negative regulator gene in group A streptococci. Mol. Microbiol. 1999, 31, 1051–1064. [Google Scholar] [CrossRef]
- Siemens, N.; Fiedler, T.; Normann, J.; Klein, J.; Münch, R.; Patenge, N.; Kreikemeyer, B. Effects of the ERES Pathogenicity Region Regulator Ralp3 on Streptococcus pyogenes Serotype M49 virulence factor expression. J. Bacteriol. 2012, 194, 3618–3626. [Google Scholar] [CrossRef] [Green Version]
- Le Breton, Y.; Mistry, P.; Valdes, K.M.; Quigley, J.; Kumar, N.; Tettelin, H.; McIver, K.S. Genome-wide identification of genes required for fitness of Group A Streptococcus in human blood. Infect. Immun. 2013, 81, 862–875. [Google Scholar] [CrossRef] [Green Version]
- Kwinn, L.A.; Khosravi, A.; Aziz, R.K.; Timmer, A.M.; Doran, K.S.; Kotb, M.; Nizet, V. genetic characterization and virulence role of the RALP3/LSA locus upstream of the Streptolysin S Operon in Invasive M1T1 Group A Streptococcus. J. Bacteriol. 2007, 189, 1322–1329. [Google Scholar] [CrossRef] [Green Version]
- Chaussee, M.A.; Callegari, E.A.; Chaussee, M.S. Rgg Regulates Growth Phase-Dependent Expression of Proteins Associated with Secondary Metabolism and Stress in Streptococcus pyogenes. J. Bacteriol. 2004, 186, 7091–7099. [Google Scholar] [CrossRef] [Green Version]
- Chaussee, M.S.; Somerville, G.A.; Reitzer, L.; Musser, J.M. Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes. J. Bacteriol. 2003, 185, 6016–6024. [Google Scholar] [CrossRef] [Green Version]
- Dmitriev, A.V.; McDowell, E.J.; Kappeler, K.V.; Chaussee, M.A.; Rieck, L.D.; Chaussee, M.S. The Rgg regulator of streptococcus pyogenes influences utilization of nonglucose carbohydrates, prophage induction, and expression of the NAD-glycohydrolase virulence operon. J. Bacteriol. 2006, 188, 7230–7241. [Google Scholar] [CrossRef] [Green Version]
- Do, H.; Makthal, N.; VanderWal, A.R.; Rettel, M.; Savitski, M.M.; Peschek, N.; Papenfort, K.; Olsen, R.J.; Musser, J.M.; Kumaraswami, M. Leaderless secreted peptide signaling molecule alters global gene expression and increases virulence of a human bacterial pathogen. Proc. Natl. Acad. Sci. USA 2017, 114, E8498–E8507. [Google Scholar] [CrossRef] [Green Version]
- Hollands, A.; Aziz, R.; Kansal, R.; Kotb, M.; Nizet, V.; Walker, M.J. A naturally occurring mutation in ropB Suppresses SpeB expression and reduces M1T1 Group A Streptococcal systemic virulence. PLoS ONE 2008, 3, e4102. [Google Scholar] [CrossRef]
- Do, H.; Makthal, N.; Vanderwal, A.R.; Saavedra, M.O.; Olsen, R.J.; Musser, J.M.; Kumaraswami, M. Environmental pH and peptide signaling control virulence of Streptococcus pyogenes via a quorum-sensing pathway. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerlach, D.; Reichardt, W.; Vettermann, S. Extracellular superoxide dismutase fromStreptococcus pyogenestype 12 strain is manganese-dependent. FEMS Microbiol. Lett. 1998, 160, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Brenot, A.; King, K.Y.; Caparon, M.G. The PerR regulon in peroxide resistance and virulence of Streptococcus pyogenes. Mol. Microbiol. 2004, 55, 221–234. [Google Scholar] [CrossRef]
- King, K.Y.; Horenstein, J.A.; Caparon, M.G. Aerotolerance and Peroxide Resistance in Peroxidase and PerR Mutants of Streptococcus pyogenes. J. Bacteriol. 2000, 182, 5290–5299. [Google Scholar] [CrossRef] [Green Version]
- Tsou, C.-C.; Chiang-Ni, C.; Lin, Y.-S.; Chuang, W.-J.; Lin, M.-T.; Liu, C.-C.; Wu, J.-J. An Iron-Binding Protein, Dpr, decreases hydrogen peroxide stress and protects Streptococcus pyogenes against Multiple Stresses. Infect. Immun. 2008, 76, 4038–4045. [Google Scholar] [CrossRef] [Green Version]
- Brenot, A.; King, K.Y.; Janowiak, B.; Griffith, O.; Caparon, M.G. Contribution of glutathione peroxidase to the virulence of Streptococcus pyogenes. Infect. Immun. 2004, 72, 408–413. [Google Scholar] [CrossRef] [Green Version]
- Bsat, N.; Herbig, A.; Casillas-Martinez, L.; Setlow, P.; Helmann, J. Bacillus subtiliscontains multiple Fur homologues: Identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol. Microbiol. 1998, 29, 189–198. [Google Scholar] [CrossRef]
- Gryllos, I.; Grifantini, R.; Colaprico, A.; Cary, M.E.; Hakansson, A.; Carey, D.W.; Suarez-Chavez, M.; Kalish, L.A.; Mitchell, P.D.; White, G.L.; et al. PerR confers phagocytic killing resistance and allows pharyngeal colonization by Group A Streptococcus. PLoS Pathog. 2008, 4, e1000145. [Google Scholar] [CrossRef] [Green Version]
- Brenot, A.; Weston, B.F.; Caparon, M.G. A PerR-regulated metal transporter (PmtA) is an interface between oxidative stress and metal homeostasis in Streptococcus pyogenes. Mol. Microbiol. 2007, 63, 1185–1196. [Google Scholar] [CrossRef]
- VanderWal, A.R.; Makthal, N.; Pinochet-Barros, A.; Helmann, J.D.; Olsen, R.J.; Kumaraswami, M. Iron Efflux by PmtA is critical for oxidative stress resistance and contributes significantly to Group A Streptococcus Virulence. Infect. Immun. 2017, 85, 85. [Google Scholar] [CrossRef] [Green Version]
- Johnson, B.K.; Abramovitch, R.B. Small molecules that sabotage bacterial virulence. Trends Pharmacol. Sci. 2017, 38, 339–362. [Google Scholar] [CrossRef] [Green Version]
- Koppolu, V.; Osaka, I.; Skredenske, J.M.; Kettle, B.; Hefty, P.S.; Li, J.; Egan, S.M. Small-Molecule Inhibitor of the Shigella flexneri Master Virulence Regulator VirF. Infect. Immun. 2013, 81, 4220–4231. [Google Scholar] [CrossRef] [Green Version]
- Shakhnovich, E.A.; Hung, D.T.; Pierson, E.; Lee, K.; Mekalanos, J.J. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl. Acad. Sci. USA 2007, 104, 2372–2377. [Google Scholar] [CrossRef] [Green Version]
- Emanuele, A.A.; Adams, N.E.; Chen, Y.-C.; Maurelli, A.T.; Garcia, G.A. Potential novel antibiotics from HTS targeting the virulence-regulating transcription factor, VirF, from Shigella flexneri. J. Antibiot. 2014, 67, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Hurt, J.K.; McQuade, T.J.; Emanuele, A.; Larsen, M.J.; Garcia, G.A. High-Throughput Screening of the Virulence Regulator VirF. J. Biomol. Screen. 2010, 15, 379–387. [Google Scholar] [CrossRef] [Green Version]
- Shambat, S.M.; Siemens, N.; Monk, I.; Mohan, D.B.; Mukundan, S.; Krishnan, K.C.; Prabhakara, S.; Snäll, J.; Kearns, A.; Vandenesch, F.; et al. A point mutation in AgrC determines cytotoxic or colonizing properties associated with phenotypic variants of ST22 MRSA strains. Sci. Rep. 2016, 6, 31360. [Google Scholar] [CrossRef] [Green Version]
- Sully, E.K.; Malachowa, N.; Elmore, B.O.; Alexander, S.M.; Femling, J.K.; Gray, B.M.; DeLeo, F.; Otto, M.; Cheung, A.L.; Edwards, B.S.; et al. Selective Chemical Inhibition of agr Quorum Sensing in Staphylococcus aureus Promotes Host Defense with Minimal Impact on Resistance. PLoS Pathog. 2014, 10, e1004174. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siemens, N.; Lütticken, R. Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens 2021, 10, 776. https://doi.org/10.3390/pathogens10060776
Siemens N, Lütticken R. Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens. 2021; 10(6):776. https://doi.org/10.3390/pathogens10060776
Chicago/Turabian StyleSiemens, Nikolai, and Rudolf Lütticken. 2021. "Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management" Pathogens 10, no. 6: 776. https://doi.org/10.3390/pathogens10060776
APA StyleSiemens, N., & Lütticken, R. (2021). Streptococcus pyogenes (“Group A Streptococcus”), a Highly Adapted Human Pathogen—Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens, 10(6), 776. https://doi.org/10.3390/pathogens10060776