Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe?
Abstract
:1. Introduction
2. Antibody Response in the Dermis and at the Liver Stage
3. Antibodies against Merozoites
4. Antibodies against the Surface of the Infected Red Blood Cell
5. Autoantibodies at the Blood-Stage
6. Antibodies at the Human–Mosquito Junction
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed consent statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Malaria World Report; WHO: Geneva, Switzerland, 2019; Available online: https://www.who.int/publications/i/item/9789241565721 (accessed on 21 May 2021).
- Weiss, D.J.; Bertozzi-Villa, A.; Rumisha, S.F.; Amratia, P.; Arambepola, R.; Battle, K.E.; Cameron, E.; Chestnutt, E.; Gibson, H.S.; Harris, J.; et al. Indirect effects of the COVID-19 pandemic on malaria intervention coverage, morbidity, and mortality in Africa: A geospatial modelling analysis. Lancet Infect. Dis. 2021, 21, 59–69. [Google Scholar] [CrossRef]
- Deng, Z.; Wang, X.; Liu, Y.; Tian, X.; Deng, S.; Sun, Y.; Wang, S.; Zheng, D.; Cui, Z.; Pan, Y.; et al. Single-cell RNA sequencing confirms IgG transcription and limited diversity of VHDJH rearrangements in proximal tubular epithelial cells. Sci. Rep. 2020, 10, 19657. [Google Scholar] [CrossRef]
- Li, J.; Korteweg, C.; Qiu, Y.; Luo, J.; Chen, Z.; Huang, G.; Li, W.; Gu, J. Two ultrastructural distribution patterns of immunoglobulin G in human placenta and functional implications. Biol. Reprod. 2014, 91, 128. [Google Scholar] [CrossRef]
- Niu, N.; Zhang, J.; Sun, Y.; Wang, S.; Sun, Y.; Korteweg, C.; Gao, W.; Gu, J. Expression and distribution of immunoglobulin G and its receptors in an immune privileged site: The eye. Cell Mol. Life Sci. 2011, 68, 2481–2492. [Google Scholar] [CrossRef]
- Qiu, X.; Zhu, X.; Zhang, L.; Mao, Y.; Zhang, J.; Hao, P.; Li, G.; Lv, P.; Li, Z.; Sun, X.; et al. Human epithelial cancers secrete immunoglobulin g with unidentified specificity to promote growth and survival of tumor cells. Cancer Res. 2003, 63, 6488–6495. [Google Scholar]
- Lu, L.L.; Suscovich, T.J.; Fortune, S.M.; Alter, G. Beyond binding: Antibody effector functions in infectious diseases. Nat. Rev. Immunol. 2018, 18, 46–61. [Google Scholar] [CrossRef]
- Cohen, S.; Mc, G.I.; Carrington, S. Gamma-globulin and acquired immunity to human malaria. Nature 1961, 192, 733–737. [Google Scholar] [CrossRef] [PubMed]
- Edozien, J.C.; Gilles, H.M.; Udeozo, I.O.K. Adult and Cord-blood Gamma-globulin and Immunity to Malaria in Nigerians. Lancet 1962, 280, 951–955. [Google Scholar] [CrossRef]
- Kisalu, N.K.; Idris, A.H.; Weidle, C.; Flores-Garcia, Y.; Flynn, B.J.; Sack, B.K.; Murphy, S.; Schon, A.; Freire, E.; Francica, J.R.; et al. A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat. Med. 2018, 24, 408–416. [Google Scholar] [CrossRef]
- Amanna, I.J.; Carlson, N.E.; Slifka, M.K. Duration of humoral immunity to common viral and vaccine antigens. N. Engl. J. Med. 2007, 357, 1903–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akpogheneta, O.J.; Duah, N.O.; Tetteh, K.K.; Dunyo, S.; Lanar, D.E.; Pinder, M.; Conway, D.J. Duration of naturally acquired antibody responses to blood-stage Plasmodium falciparum is age dependent and antigen specific. Infect. Immun. 2008, 76, 1748–1755. [Google Scholar] [CrossRef] [Green Version]
- Crompton, P.D.; Kayala, M.A.; Traore, B.; Kayentao, K.; Ongoiba, A.; Weiss, G.E.; Molina, D.M.; Burk, C.R.; Waisberg, M.; Jasinskas, A.; et al. A prospective analysis of the Ab response to Plasmodium falciparum before and after a malaria season by protein microarray. Proc. Natl. Acad. Sci. USA 2010, 107, 6958–6963. [Google Scholar] [CrossRef] [Green Version]
- Tijani, M.K.; Babalola, O.A.; Odaibo, A.B.; Anumudu, C.I.; Asinobi, A.O.; Morenikeji, O.A.; Asuzu, M.C.; Langer, C.; Reiling, L.; Beeson, J.G.; et al. Acquisition, maintenance and adaptation of invasion inhibitory antibodies against Plasmodium falciparum invasion ligands involved in immune evasion. PLoS ONE 2017, 12, e0182187. [Google Scholar] [CrossRef] [Green Version]
- Lugaajju, A.; Reddy, S.B.; Wahlgren, M.; Kironde, F.; Persson, K.E.M. Development of Plasmodium falciparum specific naive, atypical, memory and plasma B cells during infancy and in adults in an endemic area. Malar. J. 2017, 16, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, G.E.; Crompton, P.D.; Li, S.; Walsh, L.A.; Moir, S.; Traore, B.; Kayentao, K.; Ongoiba, A.; Doumbo, O.K.; Pierce, S.K. Atypical memory B cells are greatly expanded in individuals living in a malaria-endemic area. J. Immunol. 2009, 183, 2176–2182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muellenbeck, M.F.; Ueberheide, B.; Amulic, B.; Epp, A.; Fenyo, D.; Busse, C.E.; Esen, M.; Theisen, M.; Mordmuller, B.; Wardemann, H. Atypical and classical memory B cells produce Plasmodium falciparum neutralizing antibodies. J. Exp. Med. 2013, 210, 389–399. [Google Scholar] [CrossRef] [PubMed]
- Gueirard, P.; Tavares, J.; Thiberge, S.; Bernex, F.; Ishino, T.; Milon, G.; Franke-Fayard, B.; Janse, C.J.; Menard, R.; Amino, R. Development of the malaria parasite in the skin of the mammalian host. Proc. Natl. Acad. Sci. USA 2010, 107, 18640–18645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkel, B.M.F.; de Korne, C.M.; van Oosterom, M.N.; Staphorst, D.; Bunschoten, A.; Langenberg, M.C.C.; Chevalley-Maurel, S.C.; Janse, C.J.; Franke-Fayard, B.; van Leeuwen, F.W.B.; et al. A tracer-based method enables tracking of Plasmodium falciparum malaria parasites during human skin infection. Theranostics 2019, 9, 2768–2778. [Google Scholar] [CrossRef] [PubMed]
- Winkel, B.M.F.; de Korne, C.M.; van Oosterom, M.N.; Staphorst, D.; Meijhuis, M.; Baalbergen, E.; Ganesh, M.S.; Dechering, K.J.; Vos, M.W.; Chevalley-Maurel, S.C.; et al. Quantification of wild-type and radiation attenuated Plasmodium falciparum sporozoite motility in human skin. Sci. Rep. 2019, 9, 13436. [Google Scholar] [CrossRef] [Green Version]
- Hellmann, J.K.; Munter, S.; Kudryashev, M.; Schulz, S.; Heiss, K.; Muller, A.K.; Matuschewski, K.; Spatz, J.P.; Schwarz, U.S.; Frischknecht, F. Environmental constraints guide migration of malaria parasites during transmission. PLoS Pathog. 2011, 7, e1002080. [Google Scholar] [CrossRef] [Green Version]
- Hopp, C.S.; Chiou, K.; Ragheb, D.R.; Salman, A.M.; Khan, S.M.; Liu, A.J.; Sinnis, P. Longitudinal analysis of Plasmodium sporozoite motility in the dermis reveals component of blood vessel recognition. Elife 2015, 4. [Google Scholar] [CrossRef] [PubMed]
- Flores-Garcia, Y.; Nasir, G.; Hopp, C.S.; Munoz, C.; Balaban, A.E.; Zavala, F.; Sinnis, P. Antibody-Mediated Protection against Plasmodium Sporozoites Begins at the Dermal Inoculation Site. mBio 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Druilhe, P.; Pradier, O.; Marc, J.P.; Miltgen, F.; Mazier, D.; Parent, G. Levels of antibodies to Plasmodium falciparum sporozoite surface antigens reflect malaria transmission rates and are persistent in the absence of reinfection. Infect. Immun. 1986, 53, 393–397. [Google Scholar] [CrossRef] [Green Version]
- Nardin, E.H.; Nussenzweig, R.S.; McGregor, I.A.; Bryan, J.H. Antibodies to sporozoites: Their frequent occurrence in individuals living in an area of hyperendemic malaria. Science 1979, 206, 597–599. [Google Scholar] [CrossRef]
- Del Giudice, G.; Engers, H.D.; Tougne, C.; Biro, S.S.; Weiss, N.; Verdini, A.S.; Pessi, A.; Degremont, A.A.; Freyvogel, T.A.; Lambert, P.H.; et al. Antibodies to the repetitive epitope of Plasmodium falciparum circumsporozoite protein in a rural Tanzanian community: A longitudinal study of 132 children. Am. J. Trop. Med. Hyg. 1987, 36, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, S.L.; Wistar, R., Jr.; Ballou, W.R.; Hollingdale, M.R.; Wirtz, R.A.; Schneider, I.; Marwoto, H.A.; Hockmeyer, W.T. Immunity to malaria and naturally acquired antibodies to the circumsporozoite protein of Plasmodium falciparum. N. Engl. J. Med. 1986, 315, 601–606. [Google Scholar] [CrossRef] [PubMed]
- Marsh, K.; Hayes, R.H.; Carson, D.C.; Otoo, L.; Shenton, F.; Byass, P.; Zavala, F.; Greenwood, B.M. Anti-sporozoite antibodies and immunity to malaria in a rural Gambian population. Trans. R Soc. Trop. Med. Hyg. 1988, 82, 532–537. [Google Scholar] [CrossRef]
- Nwagwu, M.; Anumudu, C.A.; Sodeinde, O.; Ologunde, C.A.; Obi, T.U.; Wirtz, R.A.; Gordon, D.M.; Lyon, J.A. Identification of a subpopulation of immune Nigerian adult volunteers by antibodies to the circumsporozoite protein of Plasmodium falciparum. Am. J. Trop. Med. Hyg. 1998, 58, 684–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Offeddu, V.; Olotu, A.; Osier, F.; Marsh, K.; Matuschewski, K.; Thathy, V. High Sporozoite Antibody Titers in Conjunction with Microscopically Detectable Blood Infection Display Signatures of Protection from Clinical Malaria. Front. Immunol. 2017, 8, 488. [Google Scholar] [CrossRef]
- Shi, Y.P.; Udhayakumar, V.; Alpers, M.P.; Povoa, M.M.; Oloo, A.J.; Ruebush, T.K., 2nd; Lal, A.A. Natural antibody responses against the non-repeat-sequence-based B-cell epitopes of the Plasmodium falciparum circumsporozoite protein. Infect. Immun. 1993, 61, 2425–2433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurtovic, L.; Behet, M.C.; Feng, G.; Reiling, L.; Chelimo, K.; Dent, A.E.; Mueller, I.; Kazura, J.W.; Sauerwein, R.W.; Fowkes, F.J.I.; et al. Human antibodies activate complement against Plasmodium falciparum sporozoites, and are associated with protection against malaria in children. BMC Med. 2018, 16, 61. [Google Scholar] [CrossRef] [Green Version]
- Fowkes, F.J.; Richards, J.S.; Simpson, J.A.; Beeson, J.G. The relationship between anti-merozoite antibodies and incidence of Plasmodium falciparum malaria: A systematic review and meta-analysis. PLoS Med. 2010, 7, e1000218. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.S.; Uboldi, A.D.; Epp, C.; Bujard, H.; Tsuboi, T.; Czabotar, P.E.; Cowman, A.F. Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J. Biol. Chem. 2016, 291, 7703–7715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowman, N.M.; Juliano, J.J.; Snider, C.J.; Kharabora, O.; Meshnick, S.R.; Vulule, J.; John, C.C.; Moormann, A.M. Longevity of Genotype-Specific Immune Responses to Plasmodium falciparum Merozoite Surface Protein 1 in Kenyan Children from Regions of Different Malaria Transmission Intensity. Am. J. Trop. Med. Hyg. 2016, 95, 580–587. [Google Scholar] [CrossRef] [Green Version]
- Boyle, M.J.; Reiling, L.; Feng, G.; Langer, C.; Osier, F.H.; Aspeling-Jones, H.; Cheng, Y.S.; Stubbs, J.; Tetteh, K.K.; Conway, D.J.; et al. Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 2015, 42, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Galamo, C.D.; Jafarshad, A.; Blanc, C.; Druilhe, P. Anti-MSP1 block 2 antibodies are effective at parasite killing in an allele-specific manner by monocyte-mediated antibody-dependent cellular inhibition. J. Infect. Dis. 2009, 199, 1151–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woehlbier, U.; Epp, C.; Hackett, F.; Blackman, M.J.; Bujard, H. Antibodies against multiple merozoite surface antigens of the human malaria parasite Plasmodium falciparum inhibit parasite maturation and red blood cell invasion. Malar. J. 2010, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Blank, A.; Fürle, K.; Jäschke, A.; Mikus, G.; Lehmann, M.; Hüsing, J.; Heiss, K.; Giese, T.; Carter, D.; Böhnlein, E.; et al. Immunization with full-length Plasmodium falciparum merozoite surface protein 1 is safe and elicits functional cytophilic antibodies in a randomized first-in-human trial. NPJ Vaccines 2020, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; Hertrich, N.; Perrin, A.J.; Withers-Martinez, C.; Collins, C.R.; Jones, M.L.; Watermeyer, J.M.; Fobes, E.T.; Martin, S.R.; Saibil, H.R.; et al. Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs. Cell Host Microbe 2015, 18, 433–444. [Google Scholar] [CrossRef] [Green Version]
- Nwuba, R.I.; Sodeinde, O.; Anumudu, C.I.; Omosun, Y.O.; Odaibo, A.B.; Holder, A.A.; Nwagwu, M. The human immune response to Plasmodium falciparum includes both antibodies that inhibit merozoite surface protein 1 secondary processing and blocking antibodies. Infect. Immun. 2002, 70, 5328–5331. [Google Scholar] [CrossRef] [Green Version]
- Rono, J.; Färnert, A.; Olsson, D.; Osier, F.; Rooth, I.; Persson, K.E.M. Plasmodium falciparum line-dependent association of in vitro growth-inhibitory activity and risk of malaria. Infect. Immun. 2012, 80, 1900–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowyer, P.W.; Stewart, L.B.; Aspeling-Jones, H.; Mensah-Brown, H.E.; Ahouidi, A.D.; Amambua-Ngwa, A.; Awandare, G.A.; Conway, D.J. Variation in Plasmodium falciparum erythrocyte invasion phenotypes and merozoite ligand gene expression across different populations in areas of malaria endemicity. Infect. Immun. 2015, 83, 2575–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez-Escobar, N.; Amambua-Ngwa, A.; Walther, M.; Okebe, J.; Ebonyi, A.; Conway, D.J. Erythrocyte invasion and merozoite ligand gene expression in severe and mild Plasmodium falciparum malaria. J. Infect. Dis. 2010, 201, 444–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Persson, K.E.M.; McCallum, F.J.; Reiling, L.; Lister, N.A.; Stubbs, J.; Cowman, A.F.; Marsh, K.; Beeson, J.G. Variation in use of erythrocyte invasion pathways by Plasmodium falciparum mediates evasion of human inhibitory antibodies. J. Clin. Investig. 2008, 118, 342–351. [Google Scholar] [CrossRef] [Green Version]
- Persson, K.E.M.; Lee, C.T.; Marsh, K.; Beeson, J.G. Development and optimization of high-throughput methods to measure Plasmodium falciparum-specific growth inhibitory antibodies. J. Clin. Microbiol. 2006, 44, 1665–1673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halstead, S.B.; Mahalingam, S.; Marovich, M.A.; Ubol, S.; Mosser, D.M. Intrinsic antibody-dependent enhancement of microbial infection in macrophages: Disease regulation by immune complexes. Lancet Infect. Dis. 2010, 10, 712–722. [Google Scholar] [CrossRef] [Green Version]
- Biryukov, S.; Angov, E.; Landmesser, M.E.; Spring, M.D.; Ockenhouse, C.F.; Stoute, J.A. Complement and Antibody-mediated Enhancement of Red Blood Cell Invasion and Growth of Malaria Parasites. EBioMedicine 2016, 9, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bannister, L.H.; Hopkins, J.M.; Dluzewski, A.R.; Margos, G.; Williams, I.T.; Blackman, M.J.; Kocken, C.H.; Thomas, A.W.; Mitchell, G.H. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J. Cell Sci. 2003, 116, 3825–3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howell, S.A.; Well, I.; Fleck, S.L.; Kettleborough, C.; Collins, C.R.; Blackman, M.J. A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J. Biol. Chem. 2003, 278, 23890–23898. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Haynes, J.D.; Moch, J.K.; Barbosa, A.; Lanar, D.E. Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc. Natl. Acad. Sci. USA 2003, 100, 12295–12300. [Google Scholar] [CrossRef] [Green Version]
- Polley, S.D.; Mwangi, T.; Kocken, C.H.; Thomas, A.W.; Dutta, S.; Lanar, D.E.; Remarque, E.; Ross, A.; Williams, T.N.; Mwambingu, G.; et al. Human antibodies to recombinant protein constructs of Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) and their associations with protection from malaria. Vaccine 2004, 23, 718–728. [Google Scholar] [CrossRef] [PubMed]
- Greenhouse, B.; Ho, B.; Hubbard, A.; Njama-Meya, D.; Narum, D.L.; Lanar, D.E.; Dutta, S.; Rosenthal, P.J.; Dorsey, G.; John, C.C. Antibodies to Plasmodium falciparum antigens predict a higher risk of malaria but protection from symptoms once parasitemic. J. Infect. Dis. 2011, 204, 19–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, J.A.; Berry, A.A.; Travassos, M.A.; Ouattara, A.; Boudova, S.; Dotsey, E.Y.; Pike, A.; Jacob, C.G.; Adams, M.; Tan, J.C.; et al. Microarray analyses reveal strain-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 variants following natural infection and vaccination. Sci. Rep. 2020, 10, 3952. [Google Scholar] [CrossRef] [Green Version]
- Reiling, L.; Richards, J.S.; Fowkes, F.J.; Barry, A.E.; Triglia, T.; Chokejindachai, W.; Michon, P.; Tavul, L.; Siba, P.M.; Cowman, A.F.; et al. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. J. Immunol. 2010, 185, 6157–6167. [Google Scholar] [CrossRef] [Green Version]
- Villasis, E.; Lopez-Perez, M.; Torres, K.; Gamboa, D.; Neyra, V.; Bendezu, J.; Tricoche, N.; Lobo, C.; Vinetz, J.M.; Lustigman, S. Anti-Plasmodium falciparum invasion ligand antibodies in a low malaria transmission region, Loreto, Peru. Malar. J. 2012, 11, 361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baum, J.; Chen, L.; Healer, J.; Lopaticki, S.; Boyle, M.; Triglia, T.; Ehlgen, F.; Ralph, S.A.; Beeson, J.G.; Cowman, A.F. Reticulocyte-binding protein homologue 5—An essential adhesin involved in invasion of human erythrocytes by Plasmodium falciparum. Int. J. Parasitol. 2009, 39, 371–380. [Google Scholar] [CrossRef]
- Partey, F.D.; Castberg, F.C.; Sarbah, E.W.; Silk, S.E.; Awandare, G.A.; Draper, S.J.; Opoku, N.; Kweku, M.; Ofori, M.F.; Hviid, L.; et al. Kinetics of antibody responses to PfRH5-complex antigens in Ghanaian children with Plasmodium falciparum malaria. PLoS ONE 2018, 13, e0198371. [Google Scholar] [CrossRef] [Green Version]
- Tran, T.M.; Ongoiba, A.; Coursen, J.; Crosnier, C.; Diouf, A.; Huang, C.Y.; Li, S.; Doumbo, S.; Doumtabe, D.; Kone, Y.; et al. Naturally acquired antibodies specific for Plasmodium falciparum reticulocyte-binding protein homologue 5 inhibit parasite growth and predict protection from malaria. J. Infect. Dis. 2014, 209, 789–798. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.B.; Anders, R.F.; Cross, N.; Mueller, I.; Senn, N.; Stanisic, D.I.; Siba, P.M.; Wahlgren, M.; Kironde, F.; Beeson, J.G.; et al. Differences in affinity of monoclonal and naturally acquired polyclonal antibodies against Plasmodium falciparum merozoite antigens. BMC Microbiol. 2015, 15, 133. [Google Scholar] [CrossRef] [Green Version]
- Reiling, L.; Boyle, M.J.; White, M.T.; Wilson, D.W.; Feng, G.; Weaver, R.; Opi, D.H.; Persson, K.E.M.; Richards, J.S.; Siba, P.M.; et al. Targets of complement-fixing antibodies in protective immunity against malaria in children. Nat. Commun. 2019, 10, 610. [Google Scholar] [CrossRef] [Green Version]
- Osier, F.H.; Fegan, G.; Polley, S.D.; Murungi, L.; Verra, F.; Tetteh, K.K.; Lowe, B.; Mwangi, T.; Bull, P.C.; Thomas, A.W.; et al. Breadth and magnitude of antibody responses to multiple Plasmodium falciparum merozoite antigens are associated with protection from clinical malaria. Infect. Immun. 2008, 76, 2240–2248. [Google Scholar] [CrossRef] [Green Version]
- Modiano, D.; Chiucchiuini, A.; Petrarca, V.; Sirima, B.S.; Luoni, G.; Perlmann, H.; Esposito, F.; Coluzzi, M. Humoral response to Plasmodium falciparum Pf155/ring-infected erythrocyte surface antigen and Pf332 in three sympatric ethnic groups of Burkina Faso. Am. J. Trop. Med. Hyg. 1998, 58, 220–224. [Google Scholar] [CrossRef] [Green Version]
- Milet, J.; Sabbagh, A.; Migot-Nabias, F.; Luty, A.J.; Gaye, O.; Garcia, A.; Courtin, D. Genome-wide association study of antibody responses to Plasmodium falciparum candidate vaccine antigens. Genes Immun. 2016, 17, 110–117. [Google Scholar] [CrossRef]
- Shelton, J.M.; Corran, P.; Risley, P.; Silva, N.; Hubbart, C.; Jeffreys, A.; Rowlands, K.; Craik, R.; Cornelius, V.; Hensmann, M.; et al. Genetic determinants of anti-malarial acquired immunity in a large multi-centre study. Malar. J. 2015, 14, 333. [Google Scholar] [CrossRef] [Green Version]
- Aucan, C.; Traore, Y.; Fumoux, F.; Rihet, P. Familial correlation of immunoglobulin G subclass responses to Plasmodium falciparum antigens in Burkina Faso. Infect. Immun. 2001, 69, 996–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duah, N.O.; Weiss, H.A.; Jepson, A.; Tetteh, K.K.; Whittle, H.C.; Conway, D.J. Heritability of antibody isotype and subclass responses to Plasmodium falciparum antigens. PLoS ONE 2009, 4, e7381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sjoberg, K.; Lepers, J.P.; Raharimalala, L.; Larsson, A.; Olerup, O.; Marbiah, N.T.; Troye-Blomberg, M.; Perlmann, P. Genetic regulation of human anti-malarial antibodies in twins. Proc. Natl. Acad. Sci. USA 1992, 89, 2101–2104. [Google Scholar] [CrossRef] [Green Version]
- Chan, J.A.; Boyle, M.J.; Moore, K.A.; Reiling, L.; Lin, Z.; Hasang, W.; Avril, M.; Manning, L.; Mueller, I.; Laman, M.; et al. Antibody Targets on the Surface of Plasmodium falciparum-Infected Erythrocytes That Are Associated With Immunity to Severe Malaria in Young Children. J. Infect. Dis. 2019, 219, 819–828. [Google Scholar] [CrossRef]
- Chan, J.A.; Stanisic, D.I.; Duffy, M.F.; Robinson, L.J.; Lin, E.; Kazura, J.W.; King, C.L.; Siba, P.M.; Fowkes, F.J.; Mueller, I.; et al. Patterns of protective associations differ for antibodies to P. falciparum-infected erythrocytes and merozoites in immunity against malaria in children. Eur. J. Immunol. 2017, 47, 2124–2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salanti, A.; Staalsoe, T.; Lavstsen, T.; Jensen, A.T.; Sowa, M.P.; Arnot, D.E.; Hviid, L.; Theander, T.G. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 2003, 49, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.M.; Christoffersen, S.; Dahlback, M.; Langkilde, A.E.; Jensen, K.E.; Resende, M.; Agerbaek, M.O.; Andersen, D.; Berisha, B.; Ditlev, S.B.; et al. Structural and functional insight into how the Plasmodium falciparum VAR2CSA protein mediates binding to chondroitin sulfate A in placental malaria. J. Biol. Chem. 2012, 287, 23332–23345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brolin, K.J.; Persson, K.E.M.; Wahlgren, M.; Rogerson, S.J.; Chen, Q. Differential recognition of P. falciparum VAR2CSA domains by naturally acquired antibodies in pregnant women from a malaria endemic area. PLoS ONE 2010, 5, e9230. [Google Scholar] [CrossRef] [Green Version]
- Fried, M.; Nosten, F.; Brockman, A.; Brabin, B.J.; Duffy, P.E. Maternal antibodies block malaria. Nature 1998, 395, 851–852. [Google Scholar] [CrossRef] [PubMed]
- O’Neil-Dunne, I.; Achur, R.N.; Agbor-Enoh, S.T.; Valiyaveettil, M.; Naik, R.S.; Ockenhouse, C.F.; Zhou, A.; Megnekou, R.; Leke, R.; Taylor, D.W.; et al. Gravidity-dependent production of antibodies that inhibit binding of Plasmodium falciparum-infected erythrocytes to placental chondroitin sulfate proteoglycan during pregnancy. Infect. Immun. 2001, 69, 7487–7492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ricke, C.H.; Staalsoe, T.; Koram, K.; Akanmori, B.D.; Riley, E.M.; Theander, T.G.; Hviid, L. Plasma antibodies from malaria-exposed pregnant women recognize variant surface antigens on Plasmodium falciparum-infected erythrocytes in a parity-dependent manner and block parasite adhesion to chondroitin sulfate A. J. Immunol. 2000, 165, 3309–3316. [Google Scholar] [CrossRef] [Green Version]
- Salanti, A.; Dahlbäck, M.; Turner, L.; Nielsen, M.A.; Barfod, L.; Magistrado, P.; Jensen, A.T.; Lavstsen, T.; Ofori, M.F.; Marsh, K.; et al. Evidence for the involvement of VAR2CSA in pregnancy-associated malaria. J. Exp. Med. 2004, 200, 1197–1203. [Google Scholar] [CrossRef] [PubMed]
- Beeson, J.G.; Ndungu, F.; Persson, K.E.M.; Chesson, J.M.; Kelly, G.L.; Uyoga, S.; Hallamore, S.L.; Williams, T.N.; Reeder, J.C.; Brown, G.V.; et al. Antibodies among men and children to placental-binding Plasmodium falciparum-infected erythrocytes that express var2csa. Am. J. Trop. Med. Hyg. 2007, 77, 22–28. [Google Scholar] [CrossRef]
- Elliott, S.R.; Brennan, A.K.; Beeson, J.G.; Tadesse, E.; Molyneux, M.E.; Brown, G.V.; Rogerson, S.J. Placental malaria induces variant-specific antibodies of the cytophilic subtypes immunoglobulin G1 (IgG1) and IgG3 that correlate with adhesion inhibitory activity. Infect. Immun. 2005, 73, 5903–5907. [Google Scholar] [CrossRef] [Green Version]
- Lambert, L.H.; Bullock, J.L.; Cook, S.T.; Miura, K.; Garboczi, D.N.; Diakite, M.; Fairhurst, R.M.; Singh, K.; Long, C.A. Antigen reversal identifies targets of opsonizing IgGs against pregnancy-associated malaria. Infect. Immun. 2014, 82, 4842–4853. [Google Scholar] [CrossRef] [Green Version]
- Cutts, J.C.; Agius, P.A.; Zaw, L.; Powell, R.; Moore, K.; Draper, B.; Simpson, J.A.; Fowkes, F.J.I. Pregnancy-specific malarial immunity and risk of malaria in pregnancy and adverse birth outcomes: A systematic review. BMC Med. 2020, 18, 14. [Google Scholar] [CrossRef] [Green Version]
- Ataide, R.; Mayor, A.; Rogerson, S.J. Malaria, primigravidae, and antibodies: Knowledge gained and future perspectives. Trends Parasitol. 2014, 30, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, A.M.; Gonzalez, R.; Bardaji, A.; Jairoce, C.; Ruperez, M.; Jimenez, A.; Quinto, L.; Cistero, P.; Vala, A.; Sacoor, C.; et al. VAR2CSA Serology to Detect Plasmodium falciparum Transmission Patterns in Pregnancy. Emerg. Infect. Dis. 2019, 25, 1851–1860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adebajo, A.O.; Charles, P.; Maini, R.N.; Hazleman, B.L. Autoantibodies in malaria, tuberculosis and hepatitis B in a west African population. Clin. Exp. Immunol. 1993, 92, 73–76. [Google Scholar] [CrossRef]
- Fernandez-Arias, C.; Rivera-Correa, J.; Gallego-Delgado, J.; Rudlaff, R.; Fernandez, C.; Roussel, C.; Gotz, A.; Gonzalez, S.; Mohanty, A.; Mohanty, S.; et al. Anti-Self Phosphatidylserine Antibodies Recognize Uninfected Erythrocytes Promoting Malarial Anemia. Cell Host Microbe 2016, 19, 194–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Correa, J.; Mackroth, M.S.; Jacobs, T.; Schulze Zur Wiesch, J.; Rolling, T.; Rodriguez, A. Atypical memory B-cells are associated with Plasmodium falciparum anemia through anti-phosphatidylserine antibodies. Elife 2019, 8. [Google Scholar] [CrossRef]
- Berzins, K.; Wahlgren, M.; Perlmann, P. Studies on the specificity of anti-erythrocyte antibodies in the serum of patients with malaria. Clin. Exp. Immunol. 1983, 54, 313–318. [Google Scholar]
- Fontaine, A.; Pophillat, M.; Bourdon, S.; Villard, C.; Belghazi, M.; Fourquet, P.; Durand, C.; Lefranc, D.; Rogier, C.; Fusai, T.; et al. Specific antibody responses against membrane proteins of erythrocytes infected by Plasmodium falciparum of individuals briefly exposed to malaria. Malar. J. 2010, 9, 276. [Google Scholar] [CrossRef] [Green Version]
- Rivera-Correa, J.; Conroy, A.L.; Opoka, R.O.; Batte, A.; Namazzi, R.; Ouma, B.; Bangirana, P.; Idro, R.; Schwaderer, A.L.; John, C.C.; et al. Autoantibody levels are associated with acute kidney injury, anemia and post-discharge morbidity and mortality in Ugandan children with severe malaria. Sci. Rep. 2019, 9, 14940. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, S.H.; Kasili, F.G.; Weatherall, D.J. The coombs direct antiglobulin test in Kenyans. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 99–102. [Google Scholar] [CrossRef]
- Merry, A.H.; Looareesuwan, S.; Phillips, R.E.; Chanthavanich, P.; Supanaranond, W.; Warrell, D.A.; Weatherall, D.J. Evidence against immune haemolysis in falciparum malaria in Thailand. Br. J. Haematol. 1986, 64, 187–194. [Google Scholar] [CrossRef]
- Abdalla, S.; Weatherall, D.J. The direct antiglobulin test in P. falciparum malaria. Br. J. Haematol. 1982, 51, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Ludin, P.; Nilsson, D.; Maser, P. Genome-wide identification of molecular mimicry candidates in parasites. PLoS ONE 2011, 6, e17546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donati, D.; Zhang, L.P.; Chene, A.; Chen, Q.; Flick, K.; Nyström, M.; Wahlgren, M.; Bejarano, M.T. Identification of a polyclonal B-cell activator in Plasmodium falciparum. Infect. Immun. 2004, 72, 5412–5418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavishe, R.A.; Koenderink, J.B.; Alifrangis, M. Oxidative stress in malaria and artemisinin combination therapy: Pros and Cons. FEBS J. 2017, 284, 2579–2591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ludwig, R.J.; Vanhoorelbeke, K.; Leypoldt, F.; Kaya, Z.; Bieber, K.; McLachlan, S.M.; Komorowski, L.; Luo, J.; Cabral-Marques, O.; Hammers, C.M.; et al. Mechanisms of Autoantibody-Induced Pathology. Front. Immunol. 2017, 8, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivera-Correa, J.; Rodriguez, A. Autoimmune Anemia in Malaria. Trends Parasitol. 2020, 36, 91–97. [Google Scholar] [CrossRef]
- Hogh, B.; Petersen, E.; Crandall, I.; Gottschau, A.; Sherman, I.W. Immune responses to band 3 neoantigens on Plasmodium falciparum-infected erythrocytes in subjects living in an area of intense malaria transmission are associated with low parasite density and high hematocrit value. Infect. Immun. 1994, 62, 4362–4366. [Google Scholar] [CrossRef] [Green Version]
- Brahimi, K.; Martins, Y.C.; Zanini, G.M.; Ferreira-da-Cruz Mde, F.; Daniel-Ribeiro, C.T. Monoclonal auto-antibodies and sera of autoimmune patients react with Plasmodium falciparum and inhibit it’s in vitro growth. Mem Inst. Oswaldo Cruz 2011, 106 (Suppl. 1), 44–51. [Google Scholar] [CrossRef] [Green Version]
- Pantaleo, A.; Giribaldi, G.; Mannu, F.; Arese, P.; Turrini, F. Naturally occurring anti-band 3 antibodies and red blood cell removal under physiological and pathological conditions. Autoimmun. Rev. 2008, 7, 457–462. [Google Scholar] [CrossRef]
- Zanini, G.M.; De Moura Carvalho, L.J.; Brahimi, K.; De Souza-Passos, L.F.; Guimaraes, S.J.; Da Silva Machado, E.; Bianco-Junior, C.; Riccio, E.K.; De Sousa, M.A.; Alecrim, M.D.; et al. Sera of patients with systemic lupus erythematosus react with plasmodial antigens and can inhibit the in vitro growth of Plasmodium falciparum. Autoimmunity 2009, 42, 545–552. [Google Scholar] [CrossRef]
- Pradel, G. Proteins of the malaria parasite sexual stages: Expression, function and potential for transmission blocking strategies. Parasitology 2007, 134, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
- Bousema, J.T.; Drakeley, C.J.; Kihonda, J.; Hendriks, J.C.; Akim, N.I.; Roeffen, W.; Sauerwein, R.W. A longitudinal study of immune responses to Plasmodium falciparum sexual stage antigens in Tanzanian adults. Parasite Immunol. 2007, 29, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Amoah, L.E.; Abagna, H.B.; Ayanful-Torgby, R.; Blankson, S.O.; Aryee, N.A. Diversity and immune responses against Plasmodium falciparum gametocytes in non-febrile school children living in Southern Ghana. Malar. J. 2019, 18, 265. [Google Scholar] [CrossRef] [Green Version]
- Molina-Cruz, A.; Canepa, G.E.; Barillas-Mury, C. Plasmodium P47: A key gene for malaria transmission by mosquito vectors. Curr. Opin. Microbiol. 2017, 40, 168–174. [Google Scholar] [CrossRef]
- Molina-Cruz, A.; Garver, L.S.; Alabaster, A.; Bangiolo, L.; Haile, A.; Winikor, J.; Ortega, C.; van Schaijk, B.C.; Sauerwein, R.W.; Taylor-Salmon, E.; et al. The human malaria parasite Pfs47 gene mediates evasion of the mosquito immune system. Science 2013, 340, 984–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramphul, U.N.; Garver, L.S.; Molina-Cruz, A.; Canepa, G.E.; Barillas-Mury, C. Plasmodium falciparum evades mosquito immunity by disrupting JNK-mediated apoptosis of invaded midgut cells. Proc. Natl. Acad. Sci. USA 2015, 112, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Molina-Cruz, A.; Canepa, G.E.; Alves, E.S.T.L.; Williams, A.E.; Nagyal, S.; Yenkoidiok-Douti, L.; Nagata, B.M.; Calvo, E.; Andersen, J.; Boulanger, M.J.; et al. Plasmodium falciparum evades immunity of anopheline mosquitoes by interacting with a Pfs47 midgut receptor. Proc. Natl. Acad. Sci. USA 2020, 117, 2597–2605. [Google Scholar] [CrossRef] [PubMed]
- Canepa, G.E.; Molina-Cruz, A.; Yenkoidiok-Douti, L.; Calvo, E.; Williams, A.E.; Burkhardt, M.; Peng, F.; Narum, D.; Boulanger, M.J.; Valenzuela, J.G.; et al. Antibody targeting of a specific region of Pfs47 blocks Plasmodium falciparum malaria transmission. NPJ Vaccines 2018, 3, 26. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tijani, M.K.; Lugaajju, A.; Persson, K.E.M. Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens 2021, 10, 832. https://doi.org/10.3390/pathogens10070832
Tijani MK, Lugaajju A, Persson KEM. Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens. 2021; 10(7):832. https://doi.org/10.3390/pathogens10070832
Chicago/Turabian StyleTijani, Muyideen Kolapo, Allan Lugaajju, and Kristina E. M. Persson. 2021. "Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe?" Pathogens 10, no. 7: 832. https://doi.org/10.3390/pathogens10070832
APA StyleTijani, M. K., Lugaajju, A., & Persson, K. E. M. (2021). Naturally Acquired Antibodies against Plasmodium falciparum: Friend or Foe? Pathogens, 10(7), 832. https://doi.org/10.3390/pathogens10070832